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Abstract

The search for professional voice-actors for audiovisual pro-
ductions is a sensitive task, performed by the artistic directors
(ADs). The ADs have a strong appetite for new talents/voices
but cannot perform large scale auditions. Automatic tools able
to suggest the most suited voices are of a great interest for au-
diovisual industry.

In previous works, we showed the existence of acoustic in-
formation allowing to mimic the AD’s choices. However, the
only available information is the ADs’ choices from the already
dubbed multimedia productions. In this paper, we propose a
representation-learning based strategy to build a character/role
representation, called p-vector. In addition, the large variability
between audiovisual productions makes difficult to have homo-
geneous training datasets. We overcome this difficulty by using
knowledge distillation methods to take advantage of external
datasets.

Experiments are conducted on video-game voice excerpts.
Results show a significant improvement using the p-vector,
compared to the speaker-based x-vectors representation.

1. Introduction

In order to broadcast to the widest audience, audiovisual com-
panies target the market on an international, multilingual and
multicultural level. At the same time, audiovisual creation pro-
ducers pay more and more attention to the voices they attribute
for a particular character or role in order to reinforce the audi-
ence’s sense of immersion. Voice dubbing is one of the most
important solution for audiovisual production localization and
is capable of fostering this sense of immersion. Voice dubbing
is about replacing the entire dialogs of the original creation by
new voice-actors in the targeted language and cultural context.
In this context, selecting the appropriate voices in a target lan-
guage according to both the original voice and the role is a cru-
cial task, referred as voice casting. Usually, a human expert
called artistic director (AD) carries out the voice casting task in
dubbing companies.

The major difficulty of voice dubbing lies in the fact that
the similarity” sought between an original voice and a dubbed
voice is far from being a simple acoustical resemblance. It in-
cludes socio-cultural characteristics of both source and target
languages and countries. Moreover, there is no well-established
vocabulary for describing voices, characters and immersive ef-
fects. There are two limitations to the way ADs perform the
voice casting task: the ADs are embedding their own socio-
cultural characteristics in the casting task with the correlated
subjectives biases, and 2), the ADs can’t listen and memorize a
very large set of voices. As a result, an AD usually works with
a short list of actors he has listened to and/or with whom he has
already worked.

Automatic tools able to measure the potential adequacy be-
tween an original voice in a source language/cultural context
and a dubbed voice in a target language and context are of a
great interest for audiovisual industry. They will help the ADs
to remedy to the highlighted problems and to open the door for
fresh voice talents, for example by preselecting a reasonable
number of candidates inside a very large set of voices.

Perceptual voice similarity in the context of voice dubbing
has been studied in [1, 2]. The authors show the importance of
certain para-linguistic features (e.g. age, gender, speaker state,
voice quality). In [3], the authors propose to estimate the ’dub-
bing” proximity of two voices (one in the source language and
one in a target language) using a i-vector/PLDA based speaker-
recognition approach. Moreover, [4] makes the assumption that
traces of the casting task performed by the ADs are present in
the existing dubbed audiovisual creations. The proposed ap-
proach makes it possible to distinguish the rarget pairs of voices
(i.e. a voice in the source language associated with the corre-
sponding character voice in a target language) from nontarget
ones (i.e. voices corresponding to different characters). A limit
of this work is that the use of binary-supervised learning gives
poor generalization capacities to the model, considering that in-
terpolation could only be based on counter-examples.

Recent works in speaker recognition [5, 6, 7, 8] showed
that deep neural network embeddings and end-to-end learn-
ing can outperform ¢-vectors. In this article, we propose to
learn an original latent representation, called p-vector, from a
character/role-based neural network approach. The p-vector
representation should help the system to have better assimila-
tion of the character dimension and consequently to better han-
dle unknown voices. It constitutes the first contribution of this
paper.

Nevertheless, a brake on the use of such a neural network
approach is the need for a large amount of in-domain data,
which is critical for many tasks, including the one we are deal-
ing with in this work. The only information that we can use
for a supervised learning approach is the operator’s past voice
selection from existing dubbing. In addition, voices used in our
previous works come from a small number of characters. In
this paper, we propose to remedy to this problem by applying
knowledge distillation methods with the use of additional data,
coming from a close domain, to extract the character/role spe-
cific information. More generally, we think the knowledge ex-
tracted, for example, from video-games could be transferred to
other contexts, such as TV show voices characters.

This paper is organized as follows. We first present the ap-
proach and the generalized knowledge distillation framework
in Section 2. Then we detail the corpus and we describe the
experimental protocol we set-up in Section 3. We present our
results and discuss them in Section 4. Finally, conclusions and
perspectives are given in Section 5.



2. Approach
2.1. A character-based representation

In recent years, Deep Neural Networks have been proposed to
learn task-oriented representational spaces allowing to disen-
tangle the factors that explicate hidden data variability [9]. We
propose to learn a dedicated representation called p-vector on
professional acted voices. The p-vector space (p stands for “’per-
sonnage” in French) is optimized on a character/role discrimi-
nation task. It learns to map the features space to a latent space
that maximizes the character variability.

In general, input representation has a strong impact on the
performance of machine learning applications. Here, we adopt
the x-vector representation, originally introduced in automatic
speaker recognition [8]. A large amount of data from many
speakers are used to build the speaker embeddings space. Au-
dio segments are projected into this space and characterized by
x-vectors. x-vectors are seen here as a compact and fixed size
representation of a variable length acoustic parameters vectors
sequence. We make the hypothesis that the speaker embed-
dings contain entangled information corresponding to the char-
acter/role dimension. Hence, we propose to build a new rep-
resentational space (p-vector) able to discriminate between the
different characters.

2.2. Knowledge distillation

In the context of this work, we have to deal with relatively small
number of data. We propose to use knowledge distillation in
order to exploit additional data from a close domain to tackle
this problem.

The generalized distillation framework [10] unifies two
techniques that both introduce a teacher to guide a student
model through its learning process. The first technique intro-
duces the concept of Privileged Information [11] by adding
a novel element x; to the feature-label pair (z;, y;) where
¢ € [1...N], with N the number of samples. The second tech-
nique, referred as Knowledge Distillation [12], allows a sim-
ple neural network to solve a complicated task by distilling
the knowledge from a cumbersome model. More generally,
the teacher offers an opportunity for the student model to learn
about decision boundary which is not contained in the training
sample [10]. Typically, a softmax activation function computes
the probability associated to every class ¢ € [1...C] given the
i-th sample with the following formula:

g = exp (z;/T)
"X exp(z/T)

where T refers to the temperature and z; denotes the output
computed for each class in the final layer. A higher value of
T (> 1) gives a softer probability distribution over all classes.
Distillation consists in raising the temperature until the teacher
model produces proper soft-targets. The point is that soft-
targets contain much more information than a simple one-hot
encoding vector. These posterior probabilities, can be used as
privileged information s; to train a student model.

As illustrated in Figure 1, we fit the student model to the
hard-targets (the one-hot encoded character labels) and soft-
targets computed by the teacher model. This is achieved by
minimizing the following loss:

L= S 1A= Ny, @) + M(si, )]

1 N
i=1

1

where [ denotes the cross-entropy loss and s; refers to the soft-
targets from the teacher model. The A\ parameter balances
the imitation of soft-targets and hard-targets during the student
model training.

The teacher-student framework has been used in differ-
ent works [13, 14, 15, 16, 17, 18] for a wide variety of tasks
such as noise-robust speech recognition, domain adaptation,
and speaker normalization. The proposed approach originally
extends this framework to acted voices and specifically to char-
acter/role representation.

Given the limited number of character labels in our cor-
pus, we train the teacher model on an additional dataset with
contains more character labels. We suppose it could help the
student model to learn a robust, more general, representation by
fitting to the soft-targets from the teacher. Also, we suppose the
student model could bypass hard-targets limitation by simply
ignoring them to some extent.

3. Experimental Protocol
3.1. Corpus

The voices from the Mass Effect 3 role-playing game compose
the main corpus. Originally released in English, this video-
game has been translated and revoiced in other languages. In
our experiments, we use the English and French versions of the
audio sequences, representing 7.5 hours of speech in each lan-
guage. Voice segments are 3 seconds long on average, each
segment corresponds to a unique vocal interaction. Each En-
glish and French dataset contains 10,000 voice segments. A
character is then defined by a unique French-English couple of
voice-actors. To avoid any bias in terms of speaker identity, we
consider only a small subset of 31 different characters (13 fe-
male characters and 18 males), where we are certain that none
of the actors plays more than one character.

To remedy the limited amount of characters in the Mass Ef-
fect 3 corpus, we use additional data from another multilingual
video-game called Skyrim. We limit this corpus to the English
and French dialogues that are totalizing 120 hours of speech.
We have 50,000 segments in each language that are labelized
according to 30 different character (7 females and 23 males).
Since we do not have enough guarantee on the French-English
correspondence of the segments and we are not sure that an ac-
tor plays a unique role, we do not use this corpus in the evalua-
tion step. It only serves to transfer knowledge from the teacher
to the student model in the distillation process. We make sure
that there is no intersection between actors from Skyrim and
Mass-Effect 3 to prevent speaker-bias in the test set. Besides,
all voice segments are high-quality studio-recorded audio files
and we remove all segments shorter than one second.

3.2. Sequences extraction

We perform a usual acoustic parameterization of the audio sig-
nal that we transform into 60-dimensional feature sequences
containing 20 MFCCs including the log of the energy plus the
first- and second-order derivatives. We use a Hamming sliding
window of 20ms with a 10ms overlap to compute the param-
eters. We perform a cepstral mean normalization and a voice
activity detection to remove the low-energy frames that mainly
correspond to silence. An x-vector extractor has been built with
the Kaldi toolkit [19] and trained on the Voxceleb corpus [20].



Soft-Targets

Posterior Probabilities

Student Model 8 9
Q| O <

0| O

Q| O

Ol O

0| O

O] O
Q| @

Input Hidden O O

Layers o

Outout

Hard-Ta rgets

~-. Hard
Targets

000000
O0O0Oe0

Teacher Model

Figure 1: The teacher model is trained to predict good soft-targets so that we can use them to train the student model. The teacher and
student models can be trained either on the same or different corpus. The last layer of the student model (yellow) refers to p-vector.

3.3. Training protocol

The quantity of voice segments in the Mass Effect 3 corpus
is not well balanced among the different characters because
of their relative importance in the video-game. Consequently,
we select only 16 characters that all have at least 90 voice seg-
ments from both English and French voice-actors. Segments are
all randomly picked-out. Moreover, we create a k-fold cross-
validation on this set of characters in order to have 4 of them in
each fold. Thus, we have 4 distinct cases denoted A, B, C, and
D that cover every character, each case involving 12 training
characters and 4 characters kept-out for the evaluation. These
4 characters are completely unknown in the training part (they
are not sharing any label or a speaker with one of the training
data), making the voice-pairing task described in 3.4 extremely
difficult. 20% of training data are used for validation. Regard-
ing the additional corpus, we picked-out the same number of
segments for all the 30 characters and we also divided it into
two parts with the same ratio assigned to validation. As we said
before, no data from Skyrim are used for the test.

Both teacher and student models are Multi-Layer Percep-
tron (MLP) created with Keras [21]. The two models begin with
a similar network architecture. We connect a 512-dimensional
input layer to two hidden layers of dimension 256. However, the
teacher model ends with a single softmax function layer, while
the student model has an extra hidden layer (i.e. corresponding
to p-vectors) of dimension 64 connected to two different out-
put layers (one for the soft-targets and one for the hard-targets).
Hidden layers are all combined to a hyperbolic tangent activa-
tion. We apply a 0.25 dropout rate to the first two hidden layers
and a 0.5 to the embedding layer. We use a Xavier initialization
of the model parameters [22] and we use the Adadelta optimizer
with its default configuration to solve the minimization of the
cross-entropy loss function. Moreover, we use a batch size of
12 examples and we train the models during 300 epochs. We
monitor the loss function on the validation set to avoid overfit-
ting.

We first fit the teacher model to the features and labels from
the additional dataset (Skyrim), considered as privileged infor-
mation. The teacher model can be seen as a character/role dis-
criminator. We compute the soft-targets given the Mass Effect 3
features with the trained teacher. Then train the student model
on input features, hard-targets and soft-targets (previously com-
puted) from the Mass Effect 3 corpus. The student model learns
to fit the 12 hard-targets and the 30 soft-targets depending on A
which balances between soft- and hard-targets. It controls the
weight of privileged information in the training process. Finally,
p-vectors are extracted from the student embedding layer.

We perform the distillation process for varying tempera-
tures 7' € [1...5]. and we train the student modeling with dif-
ferent imitation values A € [0, 1]. Note that 7" = 1 denotes the
absence of distillation and A = 0.0 is equivalent to avoid the
privileged information coming from the additional corpus. In
opposition, when A = 1.0 the model ignores the hard-targets.

3.4. Evaluation

Experimental validation is conducted on Mass Effect 3 isolated
characters. We evaluate the ability of the system to predict the
choices made by the AD on the test voice segments.

To challenge the inherent quality of the learned representa-
tion, we first perform a clustering analysis using the k-means
algorithm on the extracted p-vectors. We expressly set &k = 4 to
reflect the number of character labels present in the test set. Ev-
ery voice segments then being gathered within the same cluster
are assigned to the most represented character so that one cluster
has one character label. Thus, a F'-measure score is computed
on the segment label hypothesis. Note that multiple clusters
may be assigned to the same character, which constitutes a flaw.
However, it remains a particular case indicating a bad result.

In addition, we evaluate the approach on a voice-pairing
task using the similarity scoring system proposed in [4]. Here,
we test the capacity to make a significant distinction between
target (i.e. same character) and nontarget (i.e. different charac-
ters) pairs when we train the similarity model on p-vectors.

4. Results

[lustration 2 depicts the p-vectors space. We observe a good
distinction between male and female characters. Same gen-
der characters are also well separated, especially in case A
and D. In C, we distinguish two clusters for the character
“global _hackett” (blue) representing the two voice-actors play-
ing this particular character. Their voices singularity might
cause this distinction in the p-vectors space. We observe a sim-
ilar phenomenon for character “hench_prothean” (red) in B.

4.1. Clustering analysis

Table 1 presents the results of the clustering analysis. For con-
venience we only present results corresponding to the extreme
and central values of A. The highest F'-score (66% on average)
involving the less variations (3%) among test cases A, B, C'
and D is observed with 7" = 4 and A = 1.0. Unsurprisingly,
baseline does not achieve good results, which is not surprising
since x-vectors are designed to focus on the vocal identities of



hench_edi
hench_garrus
hench_kaidan
10 player_f

global_illusive_man
hench_liara
hench_marine
hench_prothean

-20 -10 0 10 20 30 =20 -10 0 10 20 30 40

C D

global_hackett global_anderson
10 global_wreav 15 global_zaeed
global_wrex hench_ashley
hench_tali player m

5 .

-40 -30 =20 -10 0 10 20 =30 -20 -10 0 10 20

Figure 2: Visualization of p-vectors from voice segments of case
A, B, C and D using t-SNE. The colors discriminate the char-
acters in each test case where English and French voices play-
ing a same character share the same color.

both English and French voice-actors more than on their char-
acter/role. Distillation has a positive impact given that higher
temperatures have the better results, except for case B. How-
ever, according to the F'-score (64%) obtained with the baseline
on this case, we can argue that the acoustic proximity of male
voices increases the confusions for the p-vector approach.

4.2. Similarity task

We evaluate the p-vector approach on the voice-pairing task pre-
sented in [4]. The system automatically attributes a score of
similarity to every pair of voices (one voice in the source lan-
guage, one in the target language). The similarity models is
trained on the same corpus to avoid any bias. The objective
of this task is to automatically distinguish rarget pairs (same
character) from nontarget pairs (different characters). Table 2
presents the results of the Student’s ¢-test performed between
the scores of rarget and nontarget pairs. The t-score reflects
the difference between the mean of the two groups. We ob-
serve a significant difference since all p-values are under the
rejecting threshold. Moreover, the p-vector approach leads to
an increased disparity between scores of target and nontarget
pairs. The results presented in Tables 1 & 2 indicate that our
approach offers better generalization on test voices than the
speaker-oriented representation which shows that this new rep-
resentation contains information dedicated to the character di-
mension.

5. Conclusion

In this paper, we introduced a deep neural network embedding
called p-vector for automatic voice casting. The proposed ap-
proach firstly projects a speech recording in a character/role dis-
criminant neural network representational space. It uses knowl-
edge distillation methods to overpass data limitation problems.
We use p-vector representation to apply character-based simi-

A B C D Mean

x-vector baseline 50 64 54 47 53+06
p-vector
A=0.0 64 76 48 74 66£l11
T=1 A=0.5 55 63 48 62 57405
A=1.0 53 67 62 61 61£05
p-vector + distillation
A=0.0 52 57 54 75 60+09
T=2 A=0.5 54 63 50 63 58£07
A=1.0 54 66 51 72 61+09
A=0.0 48 56 56 76 6010
T=3 A=0.5 63 64 51 71 62£07
A=1.0 57 69 64 66 64404
A=0.0 53 63 58 75 63£08
T=4 A=0.5 54 63 49 73 60+09
A=1.0 63 66 63 71 6603
A=0.0 70 67 54 70 65£05
T=5 A=0.5 52 55 54 73 59408
A=1.0 54 67 66 71 65406
Table 1: F'-scores (%) computed on p-vectors with varying tem-
peratures for test A, B, C and D. T = 1 indicate the absence
of distillation. The A\ parameter controls the soft-targets imita-
tion.

System A B C D Cumulative

T-vector 5.60 4250 4.69 33.77 26.55
p-vector 394 44.62 1042 82.11 58.76
pveelor+ 4906 3028 3710 3227  63.29
distillation
Table 2: Student’s t-score obtained with the similarity scor-
ing system. The last column considers the results from pairs
of voices of all cases. Distillation parameters are T' = 4 and
A= 1.0

larity metrics. We propose a very constrained protocol to coun-
terbalance the limited amount of evaluation data. We observe a
substantial improvement using our neural network embedding
over the x-vector baseline. These results demonstrate that p-
vectors contain information dedicated to the character/role di-
mension. We achieved to differentiate the same- and different-
character pairs given the results of the similarity metric. Also,
we successfully retrieved characters from unknown voices with
a satisfying I'-measure performance.

However, due to the limitations of our database and de-
spite the rigorous protocol we designed, some caution should be
taken. Confirmation of our findings on a bigger database with
more character-labels is needed before to generalize to every
kind of audiovisual production, character or language/culture.

The teacher-student framework allows us to compute new
soft-labels and it could be more effective on larger training
datasets with numerous character labels and multiple actors per
label. Moreover, p-vectors allow the initiation of new research
on the explicability/explainability questions, in particular in the
context of artistic directors choices. We wish to confront p-
vectors to a simple binary decision to observe the potential im-
pact of a particular feature on the character dimension. Future
work will replace the similarity system that discriminates be-
tween same- and different-character pairs with explanatory fea-
tures (e.g. gender, voice-quality, timbre, prosody).
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