arXiv:2006.14149v1 [eess AS] 25 Jun 2020

Speaker-Conditional Chain Model for Speech Separation and Extraction

Jing Shi', Jiaming Xu', Yusuke Fujita®, Shinji Watanabe®, Bo Xu'

"nstitute of Automation, Chinese Academy of Sciences (CASIA)
2Center for Language and Speech Processing, Johns Hopkins University
3Hitachi, Ltd. Research & Development Group

shijing20l4@ia.ac.cn

Abstract

Speech separation has been extensively explored to tackle the
cocktail party problem. However, these studies are still far
from having enough generalization capabilities for real scenar-
10s. In this work, we raise a common strategy named Speaker-
Conditional Chain Model to process complex speech record-
ings. In the proposed method, our model first infers the identi-
ties of variable numbers of speakers from the observation based
on a sequence-to-sequence model. Then, it takes the informa-
tion from the inferred speakers as conditions to extract their
speech sources. With the predicted speaker information from
whole observation, our model is helpful to solve the problem
of conventional speech separation and speaker extraction for
multi-round long recordings. The experiments from standard
fully-overlapped speech separation benchmarks show compara-
ble results with prior studies, while our proposed model gets
better adaptability for multi-round long recordings.

Index Terms: speech separation, speaker extraction, cocktail
party problem

1. Introduction

Human interactions are often in a broad range of complex audi-
tory scenes, consisting of several speech sources from different
speakers and various noises. This complexity poses challenges
for many speech technologies, because they usually assume one
or zero speaker to be active at the same time [1]. To tackle these
challenging scenes, many techniques have been studied.
Speech separation aims at isolating individual speaker’s
voices from a recording with overlapped speech [2—8]. With the
separation results, both the speech intelligibility for human lis-
tening and speech recognition accuracy could be improved [9].
Different from the separation task, speaker extraction makes use
of additional information to distinguish a target speaker from
other participating speakers [10—13]. Besides, speech denois-
ing [14,15] and speaker diarization [ 16, 17] tasks have also been
studied for solving the problem of complex acoustic scenes.
Although many works have been proposed towards each
task mentioned above, the processing of natural recordings is
still challenging. Overall, these tasks are designed to accom-
plish one particular problem, which has assumptions that do not
hold in complex speech recordings. For instance, speech sepa-
ration was heavily explored with pre-segmented audio samples
with a length of several seconds (less than 10 seconds), which
makes it difficult to form reasonable results for long recordings.
Because most existing separation methods only output a fixed
number of speech sources with agnostic order, and it is unable
to process the variable number of speakers and the relation of
the orders between different segments. Similarly, the speaker
diarization bypassed the overlapped part before. Recently, the
emergence of EEND approaches [16, 17] could fix the prob-

lem of overlapped speech parts to some extent. However, the
diarization results seem an intermediate product without the ex-
traction of each speaker, especially for the overlapped parts.

To address these limitations, we believe that integrating
speaker information (used in aim speaker extraction, speaker
diarization) into speaker-independent tasks (e.g., speech sepa-
ration, speech denoising and even speech recognition) will help
broaden the application of these techniques towards real scenes.
To be specific, we reconstruct the speech separation/extraction
task with the strategy over probabilistic chain rule by import-
ing the conditional probability based on speaker information.
In practice, our model automatically infers the information of
speakers’ identities and then takes it as condition to extract
speech sources. The speaker information here is some learned
hidden representation related to the speaker’s identity, which
makes it also suitable for open speaker tasks. We believe this
design actually better meets the expectation about an intelligent
front-end speech processing pipeline. Because users usually
want to get the information about not only the extracted clean
speech sources but also which ones speak what.

In this work, we propose our Speaker-Conditional Chain
Model (SCCM) to separate the speech sources of different
speakers with overlapped speech. Meanwhile, the proposed
method can handle a long recording with multiple rounds of ut-
terances spoken by different speakers. Based on this model, we
verified its effectiveness in getting both the identity information
of each speaker and the extracted speech sources of them.

The contributions of this paper span the following aspects:
(1) we built a common chain model for the processing of
speech with one or more speakers. Through the inference-to-
extraction pipeline, our model solves the problem about the
variable and even unknown number of speakers; (2) with the
same architecture, our model shows a comparative performance
with the base model, while we could additionally offer accurate
speaker identity information for further downstream usage; (3)
we proved the effectiveness of this design for both short over-
lapped segments and long recordings with multi-round conver-
sations, (4) we analyze the advantages and drawbacks of this
model. Our demo video and Supplementary Material are avail-
able at https://shincling.github.io/.

2. Related work

2.1. Speech separation

As the core part of the cocktail party problem [18], speech sep-
aration gains much attention recently. The common design of
this task is to disentangle fully overlapped speech signals from a
given short mixture (less than 10 seconds) with a fixed number
of speakers. Under this design, from spectrogram-based meth-
ods [4-6, 19, 20] to time-domain methods [21-23], speaker-
agnostic separation approaches have been intensively studied.
However, with the steady improvement in performance, most
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existing approaches might overfit the fully overlapped audio
data, which is far from the natural situation with less than 20%
overlap ratio in conversations [24]. Besides, most existing sep-
aration models should know the number of speakers in advance
and could only tackle the data with the same number of speak-
ers [25]. These constraints further limit their application to real
scenes, while our proposed SCCM can provide a solution to the
above sparse overlap and unknown speaker number issues. A
similar idea with recurrent selective attention networks [26] has
been proposed before to tackle the variable number of speakers
in separation. However, this model performs with residual spec-
trograms without leveraging the time-domain methods. And
their uPIT [19] based training is hard to process a long record-
ing, due to the speaker tracing problem raised when chunking
the long recording into short segments.

2.2. Speaker extraction

Another task related to our model is the speaker extraction
[10-13]. The idea of speaker extraction is to provide a refer-
ence from a speaker, and then use such reference to direct the
attention to the specified speaker. The reference may be taken
from different characteristic binding with the specific speaker,
such as voiceprint, location, onset/offset information, and even
visual representation [27]. The speaker extraction technique is
particularly useful when the system is expected to respond to a
specific target speaker. However, for a meeting or conversation
with multiple speakers, the demand for additional references
makes it inconvenient. In our work, the reference could be di-
rectly inferred from the original recordings, which shows an ad-
vantage when the complete analysis of each speaker is needed.

3. Speaker-conditional chain model

This section describes our Speaker-Conditional Chain Model
(SCCM). As illustrated in Figure 1, the chain here refers to
a pipeline through two sequential components: speaker infer-
ence and speech extraction. These models are integrated based
on a joint probability formulation, which will be described in
Section 3.1. Speaker identities play an important role in our
strategy. The speaker inference module aims to predict the pos-
sible speaker identities and the corresponding embedding vec-
tors. The speech extraction module takes each embedding from
the speaker inference module as the query to disentangle the
corresponding source audio from the input recording.

This design will bring several advantages. First, the possi-
ble speakers are inferred by a sequence-to-sequence model with
an end-of-sequence label, which easily handles variable and un-
known numbers of speakers. Second, the inference part is based
on a self-attention network, which utilizes the full context in-
formation in a recording to form a speaker embedding. This
avoids the calculation inefficiency problem in some clustering-
based models [4, 5, 9], which needs an iterative k-means algo-
rithm in each frame. Third, the information about each speaker
will make it suitable for our model to some further applications
in speaker diarization or speaker tracking.

3.1. Problem setting and formulation

Assume there is a training dataset with a set of speaker iden-
tities Y with |Y| = N known distinct speakers in total. In a
T-length segment of waveform observation O € R, there are
I different speakers Y = (y1, ..., i, ..., y1). Each speaker y;'

! Although y; € Y during training, potentially y; ¢ ) during in-
ference in the open speaker task, where the system could still provide a
meaningful speaker embedding vector for downstream applications.
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Figure 1: The framework of the proposed Speaker-Conditional
Chain Model (SCCM). (a) shows the whole strategy of our pro-
posed SCCM; (b) is the module of speaker inference, which pre-
dicts the speaker identities and corresponding embeddings. (c)
refers to the time-domain speech extraction module. This mod-
ule takes the each inferred information from (b) respectively to
conduct a conditional extraction.

has the corresponding speech source s; € RT to form the set
of sources S = (s1,..., Si, ..., s1). The basic formulation of
our strategy is to estimate the joint probability of speaker labels
and corresponding sources, i.e., p(S, Y|O). This is factorized
with speaker inference probability p(Y'|O) and speech extrac-
tion probability p(S|Y, O) as follows:

p(5,Y[0) = p(S]Y,0)p(Y|0). M

We further factorize each probability distribution based on the
probabilistic chain rule.

The speaker inference probability p(Y|O) in Eq. (1) re-
cursively predicts variable numbers of speaker identities as fol-
lows:

p(Y|0) = [ P(%ilO, -1, ., 1) @

We adopt a sequence-to-sequence model based on self-attention
transformer [28], as illustrated in Figure 1(b). The network ar-
chitecture of p(Y'|O) will be discussed in Section 3.2.

The speech extraction probability p(S|Y, O) in Eq. (1) is
also factorized by using the probabilistic chain rule and the con-
ditional independence assumption, as follows:

p(S|Y,0) = Hpsz‘waO [ »(silys, 0).

3)
As illustrated in Figure 1(c), our speech extraction module takes
the speaker identity y;, which is predicted from the speaker in-
ference module p(Y'|O) in Eq. (2), to conduct a conditional ex-
traction. Every speaker information here serves as the condition
to guide the following extraction. For multi-round long record-
ings, the speaker information will be formed as global informa-
tion from the whole observation to track the specific speaker.
The network architecture of p(s;|y;, O) will be discussed in
Section 3.3.

3.2. Speaker inference module

In the speaker inference part, we build a model to simulate
the probability p(Y'|O) in Eq. (1) and (2) . We adopt a self-
attention based transformer [28] architecture as the encoder-
decoder structure. In this part, we take the observation spec-
trogram (Short-Time Fourier Transform (STFT) coefficients) as
an input. The reason we do not use the time-domain approach
here is to avoid excessive computation complexities which may



consume too much GPU memory to train the model, especially
with inputs of long recordings. .

In detail, for a given spectrogram X containing 71" frames
and F' frequency bins, it is viewed as a sequence of frames. For
the encoder part, we use the Transformer Encoder as follows:

Eo = Linear™ ") (X) e RP*T| )
E,, = Encoder(E,,_1) € R”*T (1 <m < M), (5
where, Linear™ ") () is a linear projection that maps F-
dimensional vector to D-dimensional vector for each column of
the input matrix. Encoder() is the Transformer Encoder block
that contains multi-head self-attention layer, position-wise feed-
forward layer, and residual connections. By stacking the en-
coder M times, Ep; € RP*7 is an output of the encoder part.
For the decoder part, the neural network outputs probability
distribution z; for the ¢-th speaker, calculated as follows:

ji = Linear™ (i) e R?, (6)
h; = Decoder(Ear, h;_1,ji) € R”, )
zZ; = SoftmaX(Linear(DHN)(hi)) e RVHL 8)

where j; is the positional encoding in each step to predict the
speaker. Decoder() is the Transformer Decoder block, which
takes the states from the output of encoder and the hidden state
from the previous step to output the speakers embedding h; at
this step. Finally, a linear projection with a softmax produces
a (N + 1)-dimensional vector z; as the network output, where
z, is the ¢-th predicted probability distribution over the union of
speaker set ) and the additional end-of-sequence label (EOS),
ie.,y* € {Y,(EOS)}.

3.3. Speech extraction module

For the speech extraction module, each speaker channel
p(silys, O) will be processed independently, as formed in
Eq. (3). This part takes each inferred speaker embedding h;
predicted in Eq. (7) instead of identity y;, and the raw wave-
form O as input to produce the corresponding clean signal §;:

§; = Extractor(O, h;) € RT» )

where, Extractor() takes a similar architecture with time-
domain speech separation methods from the Conv-TasNet [22].
The difference lies in that we will output one channel towards
each speaker embedding rather than separate several sources to-
gether. To be specific, at the end of the separator module in [22],
we will concatenate the h; with each frame of the output fea-
tures. Then, a single channel 1 X 1 — conv operation is con-
ducted towards this speaker, rather than multi-channel (as the
number of speakers in this mixture). Besides this simple fusion
approach, we have tested several different methods to integrate
the condition vector h; into the model. For example, to con-
catenate it at the beginning of the separator, or use the similar
method in [9] with FILM [29] in each block in TasNet’s separa-
tor. However, we found both of the other methods cause severe
overfitting.

3.4. Training targets

Our whole model is end-to-end, with the loss £, which corre-
sponds to optimize the joint probability p(S, Y'|O) in Eq. (1). £
is calculated from both the cross-entropy loss L., which corre-
sponds to deal with speaker inference p(Y'|O) in Section 3.2,

and the source reconstruction loss (SI-SNR) L£,, which cor-
responds to deal with speech extraction p(S|Y, O) in a non-
probabilistic manner in Section 3.3. One critical problem in
training SCCM is to decide the order of the inferred speak-
ers. For one possible permutation p, the speakers list Y and the
speech sources S will be re-ordered synchronously as follows:

Y, = (Wi ys-00), Yy, Zyey, (10)
S, =(s,55...,57),Vsi & s€b. 11)

Some former works have shown that the seq2seq structure helps
to improve the accuracy in the inference module by setting a
fixed order in training [30]. We compared several options to use
a random fixed order or use the order defined by the energy in
the spectrogram (observed well in [31]). But we found the order
decided by the model itself gets better performance in practice.
Therefore, we take the best permutation 6 with least reconstruc-
tion error in the extraction part as the order to train the inference
part as follows:

0 = argmin £,.(S, S,), (12)
p~Perms
L=1L(S,8)+ aLlZ,Ys), (13)

where we use o = 50 in all our experiments.

4. Experiments

As a generalized framework to tackle the problem of extract-
ing speech sources of all speakers, we tested the effectiveness
of SCCM with different tasks. Besides the signal reconstruc-
tion quality (e.g., SDRi, SI-SNRi) used in speech separation
task, we also verified the performance over speaker identifica-
tion and speech recognition. In our experiments, all data are re-
sampled to 8 kHz. For the speaker inference module, the magni-
tude spectra are used as the input feature, computed from STFT
with 32 ms window length, 8 ms hop size, and the sine window.
More detailed configuration of the proposed architecture could
be seen in Section A.1 of our Supplementary Material® .

4.1. Speech separation for overlapped speech

First, we evaluated our method on fully-overlapped speech mix-
tures from the Wall Street Journal (WSJO) corpus. The WSJO-
2mix and 3mix datasets are the benchmarks designed for speech
separation in [4]. In the validation set, we used the so-called
Closed Conditions (CC) in [4, 5], where the speakers are all
from the training set. As a contrast, for the evaluation set, we
use Open Condition (OC), which provides unknown speakers.
For the separation performance, we compare our results with the
TasNet, which is our base model described in Section 3.3, with-
out changing any hyper-parameter. Table 1 listed the speech
separation performance over the different training sets.

Table 1 shows that our SCCM got slightly worse perfor-
mance than the base model in OC with the same architecture
and training dataset. However, unlike the fixed-speaker-number
speech separation method, SCCM could be trained and tested in
the variable number of speakers with a single model thanks to
our speaker-conditional strategy with the sequence-to-sequence
model. As we expect, the training with both WSJ0-2mix and
WSJO0-3mix datasets got better performance than the training
with each dataset in close condition. Although we did not
achieve obvious improvement in the OC case, with the care-
ful tuning based on the cascading technique (the similar meth-

2https://drive.gooqle.com/open?id:
lagdy465dLHaWPdMgG-BgjAgYEg70g7as
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Table 1: Speech separation performance (SI-SNRi) for the
benchmark datasets with overlapped speech.

Models Training SI-SNRi CC SI-SNRi OC
Dataset WSJO-2mix | WSJO-3mix | WSJO-2mix | WSJO-3mix
TasNet WSJOme?X - - 14.6 -
‘WSJO-3mix - - - 11.6
‘WSJO-2mix 15.4 - 14.5 -
SCCM | WSJO0-3mix - 11.9 - 11.4
both 16.4 12.1 14.3 11.3
SCCM+ both 17.7 134 15.4 12.5

Table 2: Speaker inference performance of SCCM.

Training Fl.scores in Speaker counting accuracy in
Dataset Val_ldset (CO) i T§stset (0C) _
WSJO0-2mix | WSJO-3mix | WSJO-2mix ‘WSJO-3mix
WSJO-2mix 89.2 - 99.7 -
WSJO-3mix - - - 98.9
both 90.4 75.5 96.8 94.5

ods used in [19]), the separation performance gets a notable im-
provement, which also exceeds the base model. For the SCCM+
model, we use the extracted speech source, along with the raw
observation, as input to go through another extraction module
(TasNet). With this cascading method, the details of the ex-
tracted source get further optimized, which may fix the ambigu-
ity caused by the independence assumption in Eq. (3).

Also, as the former node in the chain, the ability to predict
the correct speakers or get the distinct and informative embed-
dings is quite crucial. Table 2 shows the performance of the
speaker inference module, as discussed in Section 3.2. For the
CC, micro-F1 is calculated to evaluate the correctness of the
predicted speakers. For the OC, we use the speaker counting
accuracy to measure the speaker inference module, which guar-
antees the success of the subsequent speech extraction module.
From the results, we could see that the speaker inference mod-
ule in SCCM could reasonably infer the correct speaker identity
in CC and the correct number of speakers in OC.

It should be mentioned that the number of speakers in train-
ing data (N in Section 3.1) with WSJO-2mix and 3mix is 101,
much smaller than the number in a standard speaker recognition
task (e.g., 1,211 in VoxCelebl [32]). We infer that this limited
number somewhat limits the performance of the speaker infer-
ence part and the following extraction module, especially for
the open condition. Besides, compared with the state-of-the-art
speaker recognition methods, our model takes the overlapped
speech as input, which also brings more complexity.

4.2. Extraction performance for multi-round recordings

As mentioned before, the natural conversions in real scenes usu-
ally get multi-round utterances from several speakers. And the
ratio of overlapped speech is less than 20% in general. For the
conventional speech separation methods, there exists a problem
with the consistent order of several speakers in different parts
in a relatively long recording, especially when the dominant
speaker changes [9]. To validate this, we extend each mixture
in the standard WSJO-mix to multiple rounds. In detail (seen
in Algorithm 1 and Section A.2 in Supplementary Material),
we take the list of the original mixtures from WSJO-2mix and
sample several additional utterances from the provided speak-
ers. After getting the sources from different speakers, the long
recording will be formed by concatenating the sources one by
one. The beginning of the following source gets a random shift
around the end of the former one, making it similar to a natural
conversation with an overlap-ratio around 15%.

Without any change in our model, we could directly train
our SCCM on the synthetic multi-round data. It should be men-
tioned that our speaker inference module takes the whole spec-
trogram as an input. In contrast, the speech extraction module
takes a random segment with 4 seconds from the long recording

Table 3: Extraction performance for multi-round recordings.

Valid SI-SNRi Test SI-SNRi
TasNet 14.2 11.5
SCCM 17.5 13.7

<5dB >5dB <5dB >5dB
TasNet | 17.0% | 83.0% | 33.6% | 66.4%
SCCM | 12.6% | 87.4% | 26.8% | 73.2%

Table 4: WERs for utterance-wise evaluation over the single-
channel LibriCSS dataset with clean mixtures. 0S: 0% overlap
with short inter-utterance silence (0.1-0.5 s). OL: 0% overlap
with long inter-utterance silence (2.9-3.0 s).

Overlap ratio in %
0S OL 10 20 30 40
No separation 27130119204 ]302]43.0
Single-channel SCCM | 9.5 | 94 | 65 | 93 | 11.9 | 13.9

System

to avoid the problem with out-of-memory. Table 3 shows the
performance difference compared with the base model. Both
valid set and test set are fixed with four rounds of conversations
with an average length of 10 seconds. As we expect, the results
show that SCCM stays more stable than the baseline model with
multi-round recordings. To further understand the model, we
observed the attention status of the Decoder in Eq. (7). We find
the attention of the inference reflects the speaker’s activities at
different parts within a recording. More details and visualiza-
tion could be viewed in Section A.3 in the Supplementary Ma-
terial.

4.3. Speech recognition in continuous speech separation

To further validate the downstream application, we conducted
the speech recognition in the recently proposed continuous
speech separation dataset [33]. LibriCSS is derived from Lib-
riSpeech [34] by concatenating the corpus utterances to simu-
late conversations. In line with the utterance-wise evaluation in
LibriCSS, we directly use our trained model from the former
multi-round task to test the recognition performance. The orig-
inal raw recordings in LibriCSS are from far-field scenes with
noise and reverberation, which is inconsistent with ours. So we
use the single-channel clean mixtures and convert to 8 kHz to
separate them. Moreover, we use the trained model from the
Espnet’s [35] LibriSpeech recipe to recognize each utterance.
Table 4 shows the WER results in this dataset.

We observed that (1) the results show a similar tendency
with the provided baseline model in LibriCSS [33]. (2) With
the increase of overlap ratio, the performance on the original
clean mixture becomes much worse, while our model stays a
low level of WER. (3) Because the training data of our model
comes from the situation of multi speakers, the performance on
the no-overlapped segments becomes worse. And we think this
could be avoided by adding some single speaker’s segments in
the training set.

5. Conclusions

We introduced the Speaker-conditional chain model as a com-
mon framework to process audio recordings with multiple
speakers. Our model could be applied to tackle the separation
problem towards fully-overlapped speech with variable and un-
known number of speakers. Meanwhile, multi-round long audio
recordings in natural scenes can also be modeled and extracted
effectively using this method. Experimental results showed the
effectiveness and good adaptability of the proposed model. Our
following work will extend this model to the real scenes with
noisy and reverberant multi-channel recordings. We would also
like to explore the factors to improve the generalization abil-
ity of this approach, like the introduction of more speakers or
changes in the network and training objectives.


https://drive.google.com/file/d/1aqJy465dLHaWPdMqG-BgjAgYEg70q7as/view?usp=sharing
https://drive.google.com/file/d/1aqJy465dLHaWPdMqG-BgjAgYEg70q7as/view?usp=sharing
https://drive.google.com/file/d/1aqJy465dLHaWPdMqG-BgjAgYEg70q7as/view?usp=sharing

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

6. References

R. Haeb-Umbach, S. Watanabe, T. Nakatani, M. Bacchiani,
B. Hoffmeister, M. L. Seltzer, H. Zen, and M. Souden, “Speech
processing for digital home assistants: Combining signal process-
ing with deep-learning techniques,” IEEE Signal Processing Mag-
azine, vol. 36, no. 6, pp. 111-124, 2019.

P. Huang, M. Kim, M. Hasegawajohnson, and P. Smaragdis,
“Deep learning for monaural speech separation,” in ICASSP,
2014, pp. 1562-1566.

G. Wang, C. Hsu, and J. Chien, “Discriminative deep recurrent
neural networks for monaural speech separation,” in /CASSP,
2016, pp. 2544-2548.

J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clus-
tering: Discriminative embeddings for segmentation and separa-
tion,” in ICASSP, 2016, pp. 31-35.

Y. Isik, J. L. Roux, Z. Chen, S. Watanabe, and J. R. Hershey,
“Single-channel multi-speaker separation using deep clustering,”
in INTERSPEECH, 2016.

D. Yu, M. Kolb&k, Z.-H. Tan, and J. Jensen, “Permutation invari-
ant training of deep models for speaker-independent multi-talker
speech separation,” in JCASSP, 2017, pp. 241-245.

Z. Chen, Y. Luo, and N. Mesgarani, “Deep attractor network
for single-microphone speaker separation,” in /CASSP, 2017, pp.
246-250.

L. Drude, T. von Neumann, and R. Haeb-Umbach, “Deep attrac-
tor networks for speaker re-identification and blind source separa-
tion,” in ICASSP, 2018, pp. 11-15.

N. Zeghidour and D. Grangier, “Wavesplit: End-to-end
speech separation by speaker clustering,” arXiv preprint
arXiv:2002.08933, 2020.

M. Delcroix, K. Zmolikova, K. Kinoshita, A. Ogawa, and
T. Nakatani, “Single channel target speaker extraction and recog-
nition with speaker beam,” in ICASSP, 2018, pp. 5554-5558.

Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. R. Her-
shey, R. A. Saurous, R. J. Weiss, Y. Jia, and I. L. Moreno, “Voice-
Filter: Targeted Voice Separation by Speaker-Conditioned Spec-
trogram Masking,” in INTERSPEECH, 2019, pp. 2728-2732.

J. Xu, J. Shi, G. Liu, X. Chen, and B. Xu, “Modeling attention
and memory for auditory selection in a cocktail party environ-
ment,” in Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI), 2018, pp. 2564-2571.

C. Xu, W. Rao, E. S. Chng, and H. Li, “Spex: Multi-
scale time domain speaker extraction network,” arXiv preprint
arXiv:2004.08326, 2020.

C. Donahue, B. Li, and R. Prabhavalkar, “Exploring speech en-
hancement with generative adversarial networks for robust speech
recognition,” in ICASSP, 2018, pp. 5024-5028.

D. Rethage, J. Pons, and X. Serra, “A wavenet for speech denois-
ing,” in ICASSP, 2018, pp. 5069-5073.

Y. Fujita, N. Kanda, S. Horiguchi, K. Nagamatsu, and S. Watan-
abe, “End-to-end neural speaker diarization with permutation-free
objectives,” in INTERSPEECH, 2019, pp. 4300-4304.

Y. Fujita, N. Kanda, S. Horiguchi, Y. Xue, K. Nagamatsu, and
S. Watanabe, “End-to-end neural speaker diarization with self-
attention,” in ASRU, 2019.

E. C. Cherry, “Some experiments on the recognition of speech,
with one and with two ears,” Journal of the Acoustical Society of
America, vol. 25, no. 5, pp. 975-979, 1953.

M. Kolbaek, D. Yu, Z. H. Tan, J. Jensen, M. Kolbaek, D. Yu, Z. H.
Tan, and J. Jensen, “Multitalker speech separation with utterance-
level permutation invariant training of deep recurrent neural net-
works,” IEEE/ACM Transactions on Audio Speech and Language
Processing, vol. 25, no. 10, pp. 1901-1913, 2017.

Y. Luo, Z. Chen, and N. Mesgarani, “Speaker-independent speech
separation with deep attractor network,” IEEE/ACM Transactions
on Audio Speech and Language Processing, vol. 26, no. 4, pp.
787-796, 2018.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Y. Luo and N. Mesgarani, “Real-time single-channel dereverbera-
tion and separation with time-domain audio separation network.”
in INTERSPEECH, 2018, pp. 342-346.

——, “Tasnet:time-domain audio separation network for real-
time, single-channel speech separation,” in /CASSP, 2018, pp.
696-700.

Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path rnn: efficient long
sequence modeling for time-domain single-channel speech sepa-
ration,” in ICASSP, 2020, pp. 46-50.

O. Cetin and E. Shriberg, “Analysis of overlaps in meetings by
dialog factors, hot spots, speakers, and collection site: Insights for
automatic speech recognition,” in Ninth international conference
on spoken language processing, 20006.

J. Shi, J. Xu, G. Liu, and B. Xu, “Listen, think and listen again:
Capturing top-down auditory attention for speaker-independent
speech separation,” in Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI), 2018.

K. Kinoshita, L. Drude, M. Delcroix, and T. Nakatani, “Listen-
ing to each speaker one by one with recurrent selective hearing
networks,” in ICASSP, 2018, pp. 5064-5068.

A. Ephrat, 1. Mosseri, O. Lang, T. Dekel, and M. Rubinstein,
“Looking to listen at the cocktail party: A speaker-independent
audio-visual model for speech separation,” Acm Transactions on
Graphics, vol. 37, no. 4, pp. 1-11, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp.
5998-6008.

E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville,
“Film: Visual reasoning with a general conditioning layer,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

J. Shi, J. Xu, and B. Xu, “Which ones are speaking? speaker-
inferred model for multi-talker speech separation,” INTER-
SPEECH, pp. 4609—4613, 2019.

C. Weng, D. Yu, M. L. Seltzer, and J. Droppo, “Deep neu-
ral networks for single-channel multi-talker speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 23, no. 10, pp. 1670-1679, 2015.

A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-
scale speaker identification dataset,” in INTERSPEECH, 2017.

Z. Chen, T. Yoshioka, L. Lu, T. Zhou, Z. Meng, Y. Luo, J. Wu,
and J. Li, “Continuous speech separation: dataset and analysis,”
arXiv preprint arXiv:2001.11482, 2020.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in ICASSP, 2015, pp. 5206-5210.

S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen et al., “Espnet:
End-to-end speech processing toolkit,” in INTERSPEECH, 2018.

Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time—
frequency magnitude masking for speech separation,” IEEE/ACM
transactions on audio, speech, and language processing, vol. 27,
no. 8, pp. 1256-1266, 2019.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine transla-
tion by jointly learning to align and translate,” Computer Science,
2014.

Y. Kim, C. Denton, L. Hoang, and A. M. Rush, “Structured at-
tention networks,” in 5th International Conference on Learning
Representations ICLR, Toulon, France, April 24-26, 2017.



Algorithm 1: Multi-round recordings simulation.
Input: Y /1 Speaker lists set in WSJO-mix
N, spk /I number of speakers per mixture

k‘mm, kmaz // Min&Max number of rounds per mixture
8 // random shift range
R /I SRN range
Output: O + {o}

// Simulated list of mixtures

1 forallY € Y do

2 0+ ¢ // initial mixture signal
3 t+ 0 // beginning of one mixture
4 for k € [kmin, kmaz] do

5 fory €Y do

6 // each speaker in one mixture
7 Sample one audio s towards spkear y

8 Sample SNR 7 from the given range R

9 s=sx 1020 I/ scale with SNR
10 o[t :].add(s) // extend the mixture around the end
1 t = length(o)
12 t =t + random(— 0, +3)
13 O.append(o)

A. Supplementary Material
A.1. Model details

For the inference module, we used self-attention based encoder-
decoder architecture to predict several possible speakers. For
both the encoder and decoder, we used one encoder blocks with
512 attention units containing eight heads (M = 1, dmoder =
512, H = 8). The size of dimension used in key and value is
64 (d, = 64,d, = 64). We used 2048 internal units (dss =
2048) in a position-wise feed-forward layer. And, we used the
Adam optimizer with the learning rate decayed by a factor of
2 x 107! after every 20 epochs. We tested several different
configuration in the model architecture, we found that the large
number of layers (above 4) resulted in unconvergent training.
And the configuration with M = 2 shows similar results with
M =1

Different from the original transformer model, we did not
feed the output embeddings offset by one position to the next
step in decoder. Instead, position ¢ is embedded with a lin-
ear layer to j; (as shown in Eq. (6)) to serve as input at each
step. This is to ensure the decoding process can be done with-
out knowing the order of the true speakers, and the order will be
decided after the following extraction module by choosing the
best permutation with the £,

For the extraction module, we used the original config-
ure from Conv-TasNet [22] with N = 256,L = 20,B =
256, H = 512, P = 3, X = 8, R = 4. Also, we noticed the
update of the base model in extraction could further improve
the performance like the same tendency in [23, 36]. In this pa-
per, we mainly focus the relative performance over the original
TasNet.

For the training strategy, we set a large ratio o in Eq.
(13) to balance the £, and L,, which get a large difference in
their ranges. To be specific, with training continues, the cross-
entropy criterion L. tends to a small positive number close to
zero, while the non-probabilistic £, changes from positive to al-
most -20 because of the negative SI-SNR loss definition. There-
fore, we set o = 50 to keep a reasonable balance between these
two factors. Besides, in practice, we found that the extraction
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Figure 2: Visualization of one sample of the learned attention
status in speaker inference module for overlapped speech in
WSJO-2mix.
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Figure 3: Visualization of one sample of the learned attention
status in 2 rounds of utterances.

module takes much more time to converge than the speaker in-
ference module. To avoid the overfitting, the speaker inference
module is early-stopped based on the L. in validation set, which
the extraction module will continue until converged.

A.2. Simulation of WSJ0-mix multi-round recordings

For the multi-round mixtures mentioned in Section 4.2, we sim-
ulated them by Algorithm 1. The algorithm is to simply simu-
late the natural conversations with several parts of overlapped
part.

A.3. Attention status

Attention mechanisms have become an integral part of com-
pelling sequence modeling and transduction models in vari-
ous tasks, allowing modeling of dependencies without regard
to their distance in the input or output sequences [28, 37, 38].
For the speech related tasks, the vocal characteristics from one
specific speaker stay stable in a short segment and a long con-
versation. Based on these, we use the self-attention based model
in our inference part to utilize the relation between different
frames from the same speaker. Therefore, the attention status
could be used to check the specific process to find the possible
speakers. As shown in Figure 2, we visualized one example



from WSJO-2mix test set about the real spectrograms of the two
speakers and the corresponding attention status towards them.
The attention status is from the multi-head self-attention block
in the decoder, and we added the weights from each head to

form the attention status € R'* 7"

As we expect, the attention status shows significant con-
sistency with the real spectrogram. In particular, the attention
tends to focus on the frame with larger difference. This is to say,
if one speaker gets dominant in some frames, then the attention
of this one tends to place emphasis on these dominant frames.
Similarly, the attention from multi-round mixture also shows
the consistency for one speaker in the whole audio, which could
be taken as the implicit speech activity outputted by speaker di-
arization task.
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