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Abstract

Attention-based seq2seq text-to-speech systems, especially
those use self-attention networks (SAN), have achieved state-
of-art performance. But an expressive corpus with rich prosody
is still challenging to model as 1) prosodic aspects, which span
across different sentential granularities and mainly determine
acoustic expressiveness, are difficult to quantize and label and
2) the current seq2seq framework extracts prosodic information
solely from a text encoder, which is easily collapsed to an aver-
aged expression for expressive contents. In this paper, we pro-
pose a context extractor, which is built upon SAN-based text
encoder, to sufficiently exploit the sentential context over an
expressive corpus for seq2seq-based TTS. Our context extrac-
tor first collects prosodic-related sentential context information
from different SAN layers and then aggregates them to learn a
comprehensive sentence representation to enhance the expres-
siveness of the final generated speech. Specifically, we inves-
tigate two methods of context aggregation: 1) direct aggrega-
tion which directly concatenates the outputs of different SAN
layers, and 2) weighted aggregation which uses multi-head at-
tention to automatically learn contributions for different SAN
layers. Experiments on two expressive corpora show that our
approach can produce more natural speech with much richer
prosodic variations, and weighted aggregation is more superior
in modeling expressivity.
IndexTerms: speech synthesis, self-attention network, prosody

1. Introduction
Recently, the naturalness of corpus-based text-to-speech (TTS)
has been significantly improved with the use of attention-based
sequence-to-sequence (seq2seq) mapping framework [1, 2].
Such so-called end-to-end (E2E) systems directly employ a
text encoder network to learn linguistic, syntactic and seman-
tic information from simple character or phoneme sequences.
The sequence of aggregated textual representation is further at-
tended by an acoustic decoder network through some attention
mechanism, producing predicted speech representations (e.g.,
mel-spectrogram) that are subsequently transformed to wave-
forms via a neural vocoder.

Sentential context [3] mainly involves the latent syntac-
tic and semantic information embedded in the text, recently
proved to be important in natural language processing (NLP)
tasks [3, 4]. It might be essential to the naturalness of speech
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synthesis as well, especially for a system built upon an expres-
sive corpus with rich prosodic variations. The seq2seq frame-
work extracts prosodic information solely from the text encoder
in an unsupervised way, which is easily collapsed to an aver-
aged expression for expressive contents. To better make use of
the sentential context in an E2E framework, one way is feature
engineering as the previous generation of TTS does. For exam-
ple, recent study has shown that exploiting syntactic features in
a parsed tree is beneficial to the richness of the prosodic out-
comes, leading to more natural synthesized speech [5].

However, modeling expressiveness in text-to-speech is still
challenging as it refers to different levels of syntactic and se-
mantic information reflected in intensity, rhythm, intonation and
other prosody related factors. However, it is difficult to define
the relations explicitly between the syntactic/semantic factors
and the prosodic factors. To model expressivity, the global style
tokens (GST) family [6, 7] learns style embeddings from a ref-
erence audio in an unsupervised way, which lets the synthesized
speech imitate the style of reference audio. Although the style
embeddings from a reference audio is helpful to control the style
of synthesized speech, it is hard to choose an appropriate refer-
ence audio for each input sentence. Likewise, the variational
autoencoder (VAE) models styles or expressivity in a similar
way [8].

Recent studies have revealed that self-attention based net-
works (SAN) [9, 10, 11, 12] have strong ability in capturing
global prosodic information, leading to more natural synthe-
sized speech. And unveiled by recent NLP tasks, different SAN
encoder layers can capture latent syntactic and semantic prop-
erties of the input sentence at different levels [3, 4]. But cur-
rent SAN-based TTS systems only leverage the highly aggre-
gated latent text representation, usually the outputs of the text
encoder, from the simple textual input, to guide the speech gen-
eration process. Although the highly aggregated representation
can be treated as a global description of the sentential context,
it is not enough to generate expressive content according to our
experiments as it may disperse the contribution of sentential
context embedded in the intermediate SAN layers [13].

In this paper, to excavate the sentential context for expres-
sive speech synthesis, we propose a context extractor to suf-
ficiently exploit sentential context over an expressive corpus
for seq2seq-based TTS. Specifically, we utilize different lev-
els of representations from the SAN-based text encoder to build
a context extractor, which is helpful to extract different levels
of syntactic and semantic information [14]. In details, our con-
text extractor first collects the prosodic-related sentential con-
text information from different SAN-based encoder layers, and
then aggregates them to learn a comprehensive sentence repre-
sentation to enhance the expressiveness of the final generated
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Figure 1: Proposed architecture with context aggregation based
on Tacotron2 and SAN encoder.

speech. Specifically, we investigate two methods of context ag-
gregation: 1) direct aggregation which directly concatenates the
outputs of different SAN layers, and 2) weighted aggregation
which uses multi-head attention to automatically learn contri-
butions for different SAN layers. Experiments on two expres-
sive corpora show that our approach can produce more natural
speech with richer prosodic variations, and weighted aggrega-
tion is more superior in modeling expressivity.

2. Proposed Model
Figure 1 illustrates our proposed approach on exploiting deep
sentential contexts for expressive speech synthesis. It contains
a modified self-attention based text encoder, an auto-regressive
decoder and a GMM-based attention [15] to bridge the encoder
and the decoder. WaveGlow [16] is adopted to reconstruct
waveforms from mel spectrogram. We augment the encoder
with a context aggregation module, which will be described in
detail.

2.1. Self-attention based Encoder

Self-attention based sequence-to-sequence framework has been
successfully applied to speech synthesis [9, 10, 17]. In the basic
SAN-based text encoder, there is a stack of L blocks, each of
which has two sub-networks: a multi-head attention and a feed
forward network. The residual connection and layer normaliza-
tion are applied to both of the sub-networks. Formally, from the
previous encoder block output Hl−1, the first sub-network Cl

and the second sub-network Hl are calculated as:

Cl = LN(MultiHead(headl1, . . . , head
l
H) +Hl−1), (1)

Hl = LN(FFN(Cl) + Cl). (2)
where MultiHead(·), FFN(·) and LN(·) are multi-head attention,
feed forward network and layer normalization respectively. And
each head in multi-head attention split from the previous en-
coder block output is computed by:

headh = α·V = softmax(
QKT

√
d

)·V, (3)

where {Q,K, V } represent queries, keys and values, d is the di-
mension of the hidden state and α represents the weight matrix
for each head.

2.2. Direct Aggregation

Although the SANs have the ability of directly capturing global
dependencies among whole input sequence [18], it may not ap-
propriately exploit the sentential context because it calculates

the relevance between the characters without considering the
contextual information [3, 14]. Besides, the weighted sum op-
tion from the lower layers in SANs has only aggregated the
global contextual information, which may weaken the contri-
bution of sequential context extracted in each block.

To fully make use of the contexts extracted from each block,
we propose a context extractor to aggregate the different levels
of contexts to form a comprehensive sentence representation.
For the lth self-attention block, we extract the intermediate con-
text from the output Hl through:

gl = g(Hl) = MeanPool(Conv1d(Hl)), (4)

where Conv1d means 1d-convolution, MeanPool represents
mean pooling[19], g(·) denotes the function to summarize the
outputs of self-attention layers, and gl represents the sentential
context from lth block. A straightforward and intuitive choice
to aggregate the different levels of contexts is through a concate-
nation operation, with residual connection and layer normaliza-
tion [9]:

Cg = LN(Concat(g0, . . . , gL) + gL), (5)

where g0 represents the inputs of the first self-attention layer
through Eq. (4). To further integrate the information concate-
nated from all sentential contexts, we use another round of feed-
forward network and layer normalization as the final aggrega-
tion function [14][20]:

g = LN(FFN(Cg) + Cg). (6)

Here, g is the final sentential context.

2.3. Weighted Aggregation

With direct aggregation, the sequential contexts of each block
are simply concatenated to guide the auto-regressive genera-
tion, which does not consider the varying importance of each
gl. Assuming the sequential contexts in each block may have
different contribution to the expressiveness of the synthesized
speech, we utilize a self-learned weighted aggregation module
across layers to catch the different levels of contribution.

In detail, we employ a multi-head attention to learn the
contribution of each block. The individual sentential contexts
{g0, g1, . . . , gL} are treated as attention memory for the at-
tention based weighted aggregation. Specifically, we transpose
the dimension of sequential length with the number of heads
in the multi-head attention to combine the contextual informa-
tion across layers. Therefore, we modify Eq. (5) to obtain the
weighted contexts:

Cg = LN(MultiHead(g0, . . . , gL) + gL), (7)

where the modified Cg offers a more precise control of aggre-
gation for each gl.

3. Experiments
3.1. Basic setups

To investigate the effectiveness of modeling expressiveness, we
carried out experiments on two expressive Mandarin corpora
– the publicly-available Blizzard Challenge 2019 corpus [21]
from a male talk-show speaker and an internal voice assistant
corpus from a female speaker. The talk-show (TS) corpus con-
tains about 8 hours speech of, and the voice assistant (VA)
corpus contains about 40 hours of speech. Both corpora are



Table 1: MCD scores over the two expressive corpora.

Corpus BASE SA SA-DA SA-WA
TS 8.01 7.48 7.42 7.32
VA 7.60 7.37 7.32 7.23

expressive in prosodic delivery, separated to non-overlapping
training and testing sets (with data ratio 9:1). Besides, we also
utilize a publicly-available standard reading-style corpus [22]
with less expressivity to see how our approach perform. The
corpus, named DB1, contains 10 hours of female speech with
consistent reading style. Again, we separate the corpus to train-
ing and testing with ratio 9:1. Linguistic inputs include phones,
tones, character segments and three levels of prosodic segments:
prosodic word (PW), phonological phrase (PPH) and intonation
phrase (IPH). We use 80-band mel-spectrogram extracted from
22.05KHz waveforms (for TS and VA) and 16KHz waveforms
(for DB1) as acoustic targets. We calculate mel cepstral distor-
tion (MCD) on test set for objective evaluation. As for subjec-
tive evaluation, we conduct mean opinion score (MOS) and A/B
preference test on 30 randomly selected test set samples and 20
native Chinese listeners participated in the tests.

3.2. Model details

We use the standard encoder-decoder structure in Tacotron2 [2]
as the baseline, but GMM attention is adopted instead because
it can bring superior naturalness and stability [15]. For net-
works using SAN based encoder, a 3-layer CNN is firstly ap-
plied to the input text embeddings with positional information.
Each self-attention block includes an 8-head self-attention and
a feed forward sub-network consisting of two linear transfor-
mations with 2048 and 512 hidden units. Residual connection
and layer normalization are applied to these two sub-networks.
There are totally 6 self-attention blocks. In the aggregation
module, we double feed gL into aggregation attention function
for the convenience of implementation, where the number of
heads in multi-head attention are length and the dimension of
weighted matrix are [batch, length, 8, 8]. For the remaining
part, we adopt the auto-regressive decoder described in [2]. We
use WaveGlow as vocoder which follows the structure in [16],
trained using the same training set. We built the following sys-
tems for comparison:

• Base: Baseline system following Tacotron2 [2] with
slightly modified GMMv2 attention [15].

• SA: Another baseline system with SAN based encoder
described in Section 2.1.

• SA-DA: SAN based encoder with the direct aggregation
module fusing all sentential contexts described in Sec-
tion 2.2.

• SA-WA: SAN based encoder with the weighted aggre-
gation module fusing all sentential contexts described in
Section 2.3.

3.3. Objective Evaluation

Table 1 shows the MCD results of different systems. It demon-
strates that SAN based encoder has lower MCD than the RNN
based encoder for both expressive corpora. It also shows that
modeling sentential context can further improve the perfor-
mance of SAN based encoder. Besides, weighted aggregation
is a better way than direct aggregation to extract the deep sen-
tential context. With the help of deep sentential context, the
SA-WA system achieves the lowest MCD on both expressive

Table 2: The MOS over the two expressive corpora with confi-
dence intervals of 95%.

Corpus BASE SA SA-DA
TS 3.84±0.05 3.97±0.06 4.04±0.06
VA 4.11±0.06 4.20±0.06 4.24±0.06

Corpus SA-WA GT
TS 4.11±0.06 4.54±0.05
VA 4.36±0.07 4.63±0.05

57.5%35.0%

44.6%28.0%27.3%

54.6%20.4%25.0%

81.7%

BASE

BASE SA

SA SA-DA

SA-DA SA-WA

SA-WA

No Preference

No Preference

No Preference

No Preference

13.3%5.0%

7.5%

Figure 2: AB Preference results on TS with confidence intervals
of 95% and p-value < 0.0001 from t-test.

corpora, which indicates that the synthesized speech samples
are the most similar ones to the real speech samples.

3.4. Subjective Evaluation

We conduct AB preference tests and MOS tests on the two ex-
pressive test sets which include a large number of modal par-
ticles, interrogatives and exclamations. The listeners are asked
to select preferred audio according to the overall impression on
the expressiveness of the testing samples1. The AB preference
results are shown in Figure 2 and 3 for TS and VA, respectively.
MOS results are reported in Table 2.

For baseline systems, we can find that the SA system with
SAN based encoder brings better performance on expressive-
ness than the conventional BASE system. It indicates that us-
ing self-attention layers as text encoder may capture features
that better represents expressiveness, in accordance with our
previous findings [12]. For the proposed context extractor, we
find that, by introducing direct aggregation across all the self-
attention layers, system SA-DA achieves significantly better
performance than the solely self-attention based encoder sys-
tem SA. This is confirmed by both AB preference and MOS
test on the two tested corpora. By further replacing simple
concatenation operation with multi-head attention aggregation
(i.e., weighted aggregation), system SA-WA brings extra perfor-
mance gain over system SA-DA. Listeners particularly give the
SA-WA system more preferences according to the AB prefer-
ence test. In summary, the results unveil that the deep sentential
context encoder achieves significantly better performance than
the baseline systems, showing that modeling different levels of
latent syntax and semantic information through a deep encoder
is effective for generating expressive speech. This conclusion is
consistently confirmed on two expressive corpora.

3.5. Performance on less-expressive corpus

We also quickly examine the performance of our approach on a
less-expressive reading-style corpus – DB1 [22], to see how our
sentential context extractor perform. Here, we only compare
the above best-performed SA-WA system with the BASE sys-
tem. The MCD scores for BASE and SA-WA are 5.78 and 5.72,
respectively. The AB preference is illustrated in Figure 4. In-

1Samples can be found from: https://fyyang1996.github.io/context/
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Figure 3: AB Preference results on VA with confidence intervals
of 95% and p-value < 0.0001 from t-test.
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Figure 4: AB Preference results on DB1 with confidence inter-
vals of 95% and p-value < 0.0001 from t-test.

terestingly, the effectiveness of our sentential context extractor
is not salient on this less-expressive corpus, which is proved by
close MCD and AB preference scores between the two systems.
In other words, our sentential context extractor works better on
expressive datasets, which is further confirmed in the following.

3.6. Analysis

Prosody Correlation To further evaluate the expressiveness
for statistical significance, we extract the acoustic features com-
monly associated with prosody: relative energy within each
phoneme (E), duration in ms (Dur.) and fundamental frequency
in Hertz (F0), which represent phoneme-level intensity, rhythm
and intonation of audio, respectively. According to [23], we
measure the three prosody attributes for each phoneme through-
out additional alignments. The ratio of the average signal mag-
nitude within a phoneme with the average magnitude of the en-
tire utterance is used as the relative energy of a phoneme. We
calculate the number of frames within a phoneme as the du-
ration of the phoneme. And the mean value of F0 within a
phoneme is regarded as a prosody attribute. To estimate these
statistics, we synthesized 100 random samples in the test set
to calculate the Pearson correlation coefficient between all sys-
tems and the ground truth. The higher Pearson correlation co-
efficient value the model produces, the higher accuracy of the
predicted prosody attribute the model can achieve.

Table 3 shows that our proposed SA-WA system obtains
highest correlation scores in all three prosody attributes, which
demonstrates that our approach has the best reconstruction per-
formance in phoneme-level intensity, rhythm and intonation.
Additionally, [24] reveals that the order of prosody attributes
being captured is always found to be energy, duration, and F0.
Energy is the amplitude of the signal directly related to the re-
construction loss and is easier to be captured, but F0 is the most
difficult to be captured as it is modeled implicitly. However,
our SA-WA system achieves approximately 20% gains than the
BASE system in F0, which is far more than the promotion of
approximately 6% in energy and duration. Based on these, we
believe that the proposed approach has strong ability in mod-
eling F0 that is most difficult one to be captured in the three
prosody attributes.

Figure 5 shows the F0 trajectories for a synthesized test ut-
terance. The sentence begins with a modal particle (heng1),
which reveals sense of disgust emotion in Mandarin. In this
case, high raise of F0, where the SA-WA system produces, can
deliver more disgust mood to listeners. This example shows
that the proposed sequential context extractor can model better
expressive patterns compared to the baseline systems.

Table 3: Correlation in relative energy, duration and F0 within
a phoneme computed from different models on TS.

BASE SA SA-DA SA-WA
E 0.755 0.776 0.781 0.799

Dur. 0.617 0.638 0.641 0.654
F0 0.42 0.426 0.437 0.501

BASE

SA

SA-DA

SA-WA

哼，想你有什么用，你又不来陪我玩。

Figure 5: F0 values of a test utterance generated by different
systems. Audios can be found in Section 1.1 of the demo page.

Prosody Diversity An expressive TTS system should be
able to generate speech with a large prosody diversity. Con-
sequently, we measure the standard deviation of three prosody
attributes at phoneme level as well according to [23]. And the
average standard deviation across all 100 utterances is reported
for statistical significance. Table 4 demonstrate that the SA-
WA system has the highest diversity in phoneme-level intensity,
rhythm and intonation among all systems, which is the closest
to the ground-truth (GT). We believe that the SA-WA system
has better ability in modeling prosody variations on expressive
datasets.

Table 4: Diversity values using average standard deviation
computed across 100 samples on TS.

BASE SA SA-DA SA-WA GT
E 0.238 0.277 0.285 0.304 0.321

Dur. 33.374 34.337 34.955 37.003 41.866
F0 32.362 33.405 35.161 35.766 36.824

4. Conclusion
Seq2seq-based TTS directly maps the character/phoneme se-
quence to the acoustic feature sequence using an encoder-
decoder paradigm. The encoder functions as a sentential con-
text extractor which aggregates latent semantic and syntactic in-
formation that highly correlates with the expressiveness of the
synthesized speech by the decoder. In this paper, we propose
a context extractor, which is built upon the SAN-based text en-
coder, to sufficiently exploit the text-side sentential context to
produce more expressive speech. With the belief that differ-
ent self-attention layers may capture different levels of latent
syntactic and semantic information, which was discovered by
recent NLP researches, we proposed two context aggregation
strategies: 1) direct aggregation which directly concatenates the
outputs of different SAN layers, and 2) weighted aggregation
which uses multi-head attention to automatically learn contribu-
tions for different SAN layers. Experiments on two expressive
corpora show that the two strategies can produce more natural
and expressive speech, and weighted aggregation is more supe-
rior. Comprehensive analysis on the synthesized speech demon-
strates that our sentential context extractor has better ability in
reconstruction of prosody related acoustic features and model-
ing prosody diversity.
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