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Abstract
Domain generalization remains a critical problem for speaker
recognition, even with the state-of-the-art architectures based
on deep neural nets. For example, a model trained on reading
speech may largely fail when applied to scenarios of singing
or movie. In this paper, we propose a domain-invariant pro-
jection to improve the generalizability of speaker vectors. This
projection is a simple neural net and is trained following the
Model-Agnostic Meta-Learning (MAML) principle, for which
the objective is to classify speakers in one domain if it had
been updated with speech data in another domain. We tested
the proposed method on CNCeleb, a new dataset consisting
of single-speaker multi-condition (SSMC) data. The results
demonstrated that the MAML-based domain-invariant projec-
tion can produce more generalizable speaker vectors, and effec-
tively improve the performance in unseen domains.
Index Terms: speaker recognition, meta-learning, domain gen-
eralization

1. Introduction
Speaker recognition (SRE) has gained good performance af-
ter decades of research [1]. Most modern SRE approaches are
based on speech embedding, i.e., representing variable-length
speech segments by fixed-length continuous vectors. This em-
bedding is traditionally derived from statistical models, e.g.,
the i-vector model [2], and recently mostly via deep neu-
ral nets (DNN) [3, 4], e.g., the x-vector model [5, 6]. The
deep embedding models have been significantly improved re-
cently, by employing better architectures [7, 8], pooling ap-
proaches [6, 9, 10, 11], training objectives [12, 13, 14, 15, 16],
and training schemes [17, 18, 19]. As a result, it has achieved
the state-of-the-art (SOTA) performance on several benchmark
datasets [20], in particular when combined with the PLDA
model [21] for scoring.

In spite of the high performance on existing benchmark
datasets, a large performance degradation is often observed
when the deep embedding models are deployed to real appli-
cations. For example, in a preliminary study [22], we found
that a SOTA model trained with the large-scale Voxceleb dataset
can achieve great performance on the SITW evaluation set (less
than 2% in equal error rate (EER)), however when applied to
a more realistic CNCeleb evaluation set, the performance de-
grades to 10%-30% in EER, depending on the genre of the test
data. This degradation should be attributed to the severe do-
main mismatch caused by the complex acoustic environments
and speaking styles in real-life applications. Unfortunately, this
mismatch is not easy to solve by simply collecting more data,
compared to other speech processing tasks such as automatic
speech recognition (ASR). This is because the speaker property
is convolved with other factors in the speech signal. In order to
distinguish the speaker property from other factors, the training

data must contain speech from the same speaker but in different
acoustic environments and speaking styles, i.e., single-speaker
and multi-condition (SSMC) data. In contrast, ASR training
requires single-word and multi-condition (SWMC) data. It is
obvious that SSMC data is much more difficult to collect than
SWMC data.

A large body of research has been conducted to solve the
domain mismatch problem. The most popular approach is
domain adaptation, which adapts the basic model by a small
amount of in-domain data. Since the embedding model is
highly complex, the adaptation is more often performed with the
PLDA scoring model. This adaptation could be supervised or
unsupervised. The supervised approach uses class labels in the
target domain, and adapts PLDA following the Bayesian rule
in principle [23, 24]. The unsupervised approach employs var-
ious clustering methods to generate pseudo classes, and then
treats these pseudo classes as true speakers to conduct super-
vised adaptation [25]. Another approach is domain-invariant
training. Compared to the adaptation approach that targets for
better performance in a particular domain, the domain-invariant
training targets for learning domain-insensitive speaker vectors,
and is more amiable to real applications where the conditions
may vary in time. For example, Wang et al. [26] proposed an
adversarial loss that prevents the produced speaker vectors from
being domain discriminative.

In this paper, we present a domain-invariant training ap-
proach based on meta learning. Meta learning is a high-level
learning strategy with the principle of knowledge sharing and
transferring among tasks [27, 28]. In the deep learning regime,
early meta-learning approaches learn a training scheme [29, 30].
Recently, Finn et al. presented a new Model-Agnostic Meta-
Learning (MAML) algorithm [31], which employs data of mul-
tiple tasks to learn a model that can be easily adapted to a new
task. Borrowing this idea, we propose a robust MAML algo-
rithm that can learn domain-invariant model directly, rather than
a model that is ready for adaptation as in the standard MAML.
We apply this new algorithm to learn a projection net that im-
proves the domain invariance of the raw deep speaker vectors
(x-vectors in our experiments). Experimental results on a new
SSMC CNCeleb dataset [22] demonstrated that this approach is
promising.

The rest of the paper is organized as follows. Section 2 re-
views the basic MAML algorithm, and Section 3 presents the
details of the robust MAML algorithm and the MAML-based
project net. Section 4 presents the experimental result, and Sec-
tion 5 gives a conclusion of the entire paper.

2. MAML algorithm
Meta learning is a long-standing theme in machine learning [27,
28]. The central idea of this learning approach is to reuse the
knowledge of some prior tasks to speed up the learning of a
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new task. The knowledge can be either the learned models or
the learning strategy (how to learn a task). For neural models,
reusing both types of knowledge is easy. In the former case, it
is known as multi-task learning or transfer learning [32], and in
the latter case, a more proper name is learning to learn [29, 30].

Model-Agnostic Meta-Learning (MAML) [31] is a new
meta learning approach. The concept is shown in Figure 1(a).
In this picture, there are two prior tasks T1 and T2, and the asso-
ciated training and test data are (T r1 , T

t
1) and (T r2 , T

t
2), respec-

tively. Let fθ denotes the function of the model parameterized
by θ. For each mini-batch, a small set of training data from Ti,
denoted by mr

i ∼ T ri , is selected. Using this mini-batch, the
gradient∇θ is computed, which is then used to perform a local
update for the model:

θ′ = θ − α∇θLTi(fθ;m
r
i ),

where LTi is the loss function of task Ti, and α is the learning
rate. Based on the new parameters θ′, compute the loss onmt

i ∼
T ti , a mini-batch from the test dataset of the same task:

LTi(fθ′ ;m
t
i) = LTi(fθ−α∇θLTi (fθ ;m

r
i )
;mt

i).

This loss is used to compute gradient for model update, which
is called the meta update.

θ ← θ − β∇θLTi(fθ−α∇θLTi (fθ ;m
r
i )
;mt

i),

where β is the learning rate. It should be noted that it is the
meta update that truly modifies the model parameters. The lo-
cal update is just a proxy to compute the gradient for the meta
update.

From the training procedure, it can be seen that the goal
of MAML is to find an optimal θ∗ at which the averaged per-
formance would be best if a simple gradient update had been
conducted to adapt the present model to task-specific models.
In other words, MAML intends to learn a good initial model
base on which task-specific models can be easily obtained by
one or a few gradient updates.
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Figure 1: MAML for training a good initial model (a) and ro-
bust MAML for training a domain-invariant model (b). The
green solid line (green block) represents local update, and the
red dash line (red block) represents the meta update.

3. MAML-based domain-invariant
projection

3.1. Robust MAML

The MAML algorithm discussed in the previous section focuses
on a good initial model. This is valuable for many applications
especially those with limited training data. It can be directly ap-
plied to SRE for domain adaptation. Specifically, we can treat

the SRE task on each domain as a particular prior task in the
MAML algorithm, and train an initial model with data from a
couple of prior domains. When deploying to a new domain, a
small amount of training data would be sufficient to adapt the
initial model to a domain-specific model. However, this adap-
tation approach does not meet our original goal of designing a
robust model that works well on any unseen domain. We there-
fore present a robust MAML to deal with the problem.

As shown in Figure 1(b), we have two domainsD1 andD2,
and {Dr

1, D
t
1} and {Dr

2, D
t
2} are the training and test sets for

each of the two domains, respectively. The MAML training is
conducted as usual, but the meta update is based on a mini-batch
whose domain is different from the one used for the local up-
date. Put it formally, the local update is conducted by randomly
choosing a mini-batch in the i-th domain:

θ′ = θ − α∇θL(fθ;mr
i ),

wheremr
i ∼ Dr

i . Note that we have omitted the domain depen-
dency in the loss function L as all the domains share the same
loss function. During the meta update, a mini-batch from the
j-th domain is selected, and the loss function is as follows:

L(fθ′ ;mt
j) = L(fθ−α∇θL(fθ ;mri );m

t
j),

where mt
j ∈ Dt

j , and usually mr
i and mt

i are from different
domains. The meta update is then formulated as follows:

θ ← θ − β∇θL(fθ−α∇θL(fθ ;mri );m
t
j).

Choosing different domains for the local update and the
meta update is important. Assume that the model has converged
to θ∗, it is easy to see that updating θ∗ towards any domain
will result in good performance for all domains. This implies
that θ∗ is a stationary point that works well for all the prior
domains even without any update. The idea that training con-
ducted in one domain and evaluated in other domains aligns
to robust optimization [33]. We therefore denote the new al-
gorithm as robust MAML. Note that a similar idea has been
discussed in [34].

We highlight that with the robust MAML, it is not necessary
that the local update and the meta update use the same set of
speakers, although better performance was found if they do. It
means that SSMC data is not strictly required for MAML train-
ing. This is a key advantage compared to other domain-robust
approaches, for example multi-conditional training.

3.2. Domain-invariant projection net

At the first glance, applying the robust MAML to train domain-
invariant speaker embedding models is straightforward. How-
ever, we found it is not applicable in real situations. A particular
problem is domain imbalance: for most of the existing datasets,
a large proportion of the data are clean and reading speech, and
only a small amount of data are from other domains. With this
imbalanced data, the minor domains will be overwhelmed by
the major domain when conducting the robust MAML training.

To solve this problem, we choose a post-processing scheme.
Firstly, we use a standard large-scale dataset to train the main
embedding model, which is the x-vector model in our experi-
ment. Secondly, we apply the robust MAML algorithm to train
an extra projection net that maps the original x-vectors to a new
vector space where domain invariance is improved. Figure 2
illustrates the entire training procedure.
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Figure 2: Robust MAML-based domain-invariant projection on deep speaker vectors.

4. Experiments
4.1. Data

Three datasets were used in our experiments: VoxCeleb [7, 35],
SITW [36] and CNCeleb [22]. More information about these
three datasets is presented below.
VoxCeleb: This is a large-scale audiovisual speaker database
collected by the University of Oxford. The entire database con-
tains 2, 000+ hours of speech signals from 7, 000+ speakers. It
was used to train the x-vector embedding model and the basic
LDA/PLDA scoring model. Data augmentation was applied to
improve robustness, with the MUSAN corpus used to generate
noisy utterances, and the room impulse responses (RIRS) cor-
pus used to generate reverberant utterances.
SITW: This is a standard evaluation dataset excerpted from
VoxCeleb1. In our experiments, the Eval.Core test set, which
contains 3, 658 target trials and 718, 130 imposter trials, was
used for evaluation.
CNCeleb: This is a large-scale free speaker recognition dataset
collected by Tsinghua University. It contains more than 130k
utterances from 1, 000 Chinese celebrities. It covers 11 diverse
domains, and each speaker may have speech samples in multi-
ple domains, therefore is a true SSMC dataset [22]. The entire
dataset was split into two parts: CNCeleb.Train, which covers
7 domains including entertainment, play, vlog, live broadcast,
speech, drama and recitation, and involves 45, 370 utterances
from 800 speakers, was used to train the projection net and the
LDA/PLDA scoring model. CNCeleb.Eval, which covers the
rest 3 domains including singing, movie and interview, and in-
volves 8, 729 utterances from 200 speakers, was used for eval-
uation in unseen domains.

4.2. Embedding models

We built two x-vector embedding models, one is based on
TDNN, and the other is based on ResNet. Both are widely used
in SRE research.
TDNN: This was trained using the Kaldi toolkit [37], follow-
ing the SITW recipe. The acoustic features are 40-dimensional
FBanks. The main architecture contains three components.
The first component involves 5 time-delay (TD) layers to learn
frame-level speaker features. The second component computes
the mean and standard deviation of the frame-level features.
The third component involves 2 full-connection (FC) layers and
outputs the posterior probability over the 7, 185 speakers of the

VoxCeleb dataset. Once trained, the 512-dimensional activa-
tions of the penultimate FC layer are read out as the x-vector of
the input utterance.
ResNet34: The ResNet architecture is similar to the TDNN ar-
chitecture, with two differences: (1) it uses the ResNet-34 struc-
ture to learn frame-level speaker features [38]; (2) it uses the
Additive Angular Marginal Softmax (AAM-Softmax) [39] to
compute the posterior probabilities over the training speakers.
Again, the 512-dimensional activations of the penultimate FC
layer are read out as the x-vector of the input utterance.

4.3. Projection networks

The projection network is designed to transform the raw x-
vectors from the embedding model to a new vector space where
domain invariance is improved.

4.3.1. MAML net

In our experiments, the projection net involves 3 FC layers, and
every layer consists of 512 units. The loss function is the same
as the one used for the embedding model, which is the stan-
dard Softmax for the TDNN model, and the AAM-Softmax for
the ResNet34 model. The projection net can be trained with
CNCeleb.Train, by using the robust MAML algorithm. We de-
note the projection net trained in this way as a MAML net. Once
the training is completed, the domain-invariant x-vectors can be
obtained from the penultimate FC layer.

4.3.2. MCT net

Using the same architecture and the same loss function as the
MAML net, we can train the projection net using the regular
training scheme. Since the training data (CNCeleb.Train) is
SSMC, this is essentially a multi-conditional training (MCT).
We call the MCT-trained projection net as a MCT net. Similar
to the MAML net, the MCT net can improve the domain invari-
ance of speaker vectors. However, the MCT net purely relies
on the SSMC data, while the MAML net relies both the SSMC
data and the robust training scheme.

4.4. Baseline results

We firstly test the performance of the baseline systems, i.e., both
the embedding model and the LDA/PLDA scoring model are
trained with VoxCeleb, without any additional speaker vector



projection. We test the performance on the SITW Eval.Core
test set and also the CNCeleb.Eval test sets, including three
individual domains (singing, movie and interview). The re-
sults in terms of equal error rate (EER) are reported in Ta-
ble 1, where the results with two scoring methods, cosine scor-
ing and LDA/PLDA scoring, are reported, respectively. For the
LDA/PLDA scoring, the x-vectors are firstly pre-processed by
LDA, and then are used to compute scores by PLDA. The di-
mensionality of the LDA projection was set to 128 in our ex-
periments.

Table 1: Performance (EER%) of the baseline systems.

Test Set
TDNN ResNet34

Cosine LDA/PLDA Cosine LDA/PLDA

SITW.Eval.Core 5.139 2.433 3.226 1.968
CNC.Eval.Singing 29.95 26.88 28.47 27.18
CNC.Eval.Movie 26.09 20.24 25.19 21.29
CNC.Eval.Interview 19.68 15.97 19.23 15.47

4.5. Results with domain-invariant projection

In this experiment, we test the MAML net and MCT net on the
CNCeleb.Eval test sets, where the domains are never seen in the
training data of the embedding models, the LDA/PLDA scoring
models and the projection networks.

4.5.1. Performance with cosine scoring

First look at the performance with the cosine scoring. Since the
complex back-end scoring models are not used, we can eval-
uate the true quality of the speaker vectors. The results on
CNCeleb.Eval test sets are presented in Table 2. For conve-
nience, the baseline results are presented in the ‘Base’ columns.

It can be observed that in all the test conditions, both the
MCT net and MAML net can substantially improved the system
performance, and the MAML net offers more significant im-
provement. This demonstrates that the multi-conditional train-
ing scheme with SSMC data is an effective way to improve do-
main invariance (MCT vs. Ori), and the robust MAML train-
ing scheme can provide additional and substantial contribution
(MAML vs. MCT).

Table 2: Performance (EER%) with cosine scoring.

Cosine TDNN ResNet34

Domain Base MCT MAML Base MCT MAML

Singing 29.95 30.85 29.86 28.47 28.40 27.08
Movie 26.09 25.46 24.27 25.19 24.92 24.21
Interview 19.68 17.51 16.82 19.23 16.92 16.87

To give a better comparison between the MCT scheme and
the MAML scheme, Figure 3 shows their performance along
with the training process. It can be seen that for both the MCT
net and the MAML net, the EER continuously reduces. More-
over, the MAML net delivers better performance than the MCT
net. Compared the two ResNet34 curves in both pictures, we
observe that the MCT net seems overfitting after 4k iterations,
while the MAML net is generally healthy.

4.5.2. Performance with LDA/PLDA scoring

We finally test the performance with LDA/PLDA scoring. In
this experiments, all the LDA/PLDA scoring models were

Figure 3: Performance (EER%) on two unseen domains during
the training process of MCT net and MAML net.

trained with CNCeleb.Train. For the baseline system, we re-
trained the LDA/PLDA models with the raw x-vectors from
the embedding model. For the MCT and MAML systems, the
LDA/PLDA models were trained with the x-vectors produced
by the MCT net and MAML net. Again, the dimensionality
of the LDA projection was set to 128. Since the training data
(CNCeleb.Train) is SSMC, this training scheme of LDA/PLDA
is essentially a multi-conditional training (MCT), and therefore
should be robust against domain variance in a way.

The results are shown in Table 3. Firstly, compared to
the results in Table 1, it can be observed that the MCT-based
LDA/PLDA models offer dramatic performance improvement
on the test data. Secondly, the contributions of the MCT net
and the MAML net are both marginal. This is not surprising,
as the x-vectors for LDA/PLDA training and MCT/MAML nets
training are duplicated. From the perspective of practitioners,
this is a good thing as it implies that domain invariance could
be largely attained by retraining the LDA/PLDA scoring model
with SSMC data. On the other hand, it suggests that the MAML
training scheme should be extended to the scoring model, other-
wise its contribution on the speaker vectors will be diminished.

Table 3: Performance (EER%) with LDA/PLDA scoring.

LDA/PLDA TDNN ResNet34

Domain Base MCT MAML Base MCT MAML

Singing 25.67 25.50 25.35 23.83 23.66 23.53
Movie 19.63 18.74 18.85 18.19 17.75 17.75
Interview 13.63 13.47 13.58 12.05 11.85 11.85

5. Conclusions
This paper proposed a domain-invariant projection to improve
the generalizability of speaker vectors. We presented a ro-
bust MAML algorithm to train the projection net, which pro-
motes domain invariance not only by the SSMC data, but also
by the robust training scheme. Experimental results on the
CNCeleb dataset demonstrated that the speaker vectors pro-
duced by MAML-based projection are more domain-invariant
compared to the raw x-vectors and the speaker vectors produced
by a multi-conditional trained projection. This leads to sig-
nificant performance improvement with cosine scoring. How-
ever, when the scoring model is an LDA/PLDA that was trained
with SSMC data, the contribution of the projection net seems
marginal. Future work will investigate the MAML-based train-
ing for the LDA/PLDA scoring model, and investigate the light-
weighted MAML-based adaptation.
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