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Abstract

In this paper, we investigate the feasibility of applying few-shot

learning algorithms to a speech task. We formulate a user-

defined scenario of spoken term classification as a few-shot

learning problem. In most few-shot learning studies, it is as-

sumed that all the N classes are new in a N -way problem. We

suggest that this assumption can be relaxed and define a N+M -

way problem where N and M are the number of new classes

and fixed classes respectively. We propose a modification to the

Model-Agnostic Meta-Learning (MAML) algorithm to solve

the problem. Experiments on the Google Speech Commands

dataset show that our approach1 outperforms the conventional

supervised learning approach and the original MAML.

Index Terms: spoken term classification, few-shot classifica-

tion, meta learning, convolutional neural network

1. Introduction

In recent years, few-shot learning has drawn a lot of attention in

the machine learning community. It tries to tackle a very chal-

lenging task of which the model has to adapt to new tasks with

very few labeled examples. A lot of elegant solutions have been

developed and the most popular solution right now uses meta-

learning. Meanwhile, most of the studies on few-shot learn-

ing are conducted on image tasks. It is worth to investigate the

feasibility of applying few-shot learning algorithms to speech

tasks.

In spoken term classification, the target spoken terms are

usually predefined and known in advance. Given a sufficient

amount of training data, conventional supervised learning could

have solved the problem nicely [1, 2]. However, when it comes

to a user-defined scenario, the system performance degrades

considerably if the user selects rare words. [3] attributes the

degradation to the lack of training data and addresses the prob-

lem by data generation with Text-To-Speech (TTS) techniques.

In most studies of user-defined scenario [4, 5, 6], users can only

define new keywords in the same language which matches the

internal phoneme set.

In this paper, we want to simulate a user-defined scenario

where users can define new spoken terms in any languages by

providing a few audio examples. We formulate this problem as

a few-shot learning problem and investigate the performance of

state-of-the-art model-level few-shot learning solutions.

Meta-learning, also known as ‘learning to learn’, aims to

make quick adaptation to new tasks with only a few examples.

†corresponding author.
1Code is available at: https://github.com/Codelegant92/STC-MAML-PyTorch

Recently many different meta-learning solutions have been pro-

posed to solve the few-shot learning problems. These solutions

differ in the form of learning a shared metric [7, 8, 9, 10], a

generic inference network [11, 12], a shared optimization algo-

rithm [13, 14], or a shared initialization for the model param-

eters [15, 16, 17]. In this paper, we adopt the Model-Agnostic

Meta-Learning (MAML) approach [15] because of the follow-

ing reasons:

• It is a very general framework and can be easily applied

on a new task.

• It is model-agnostic.

• It achieves state-of-the-art performance in existing few-

shot learning tasks.

To the best of our knowledge, there is no prior work of applying

MAML on similar speech tasks.

Few-shot learning is often defined as a N -way, K-shot

problem where N is the number of classes in the target task

and K is the number of examples of each class. In most previ-

ous studies, it is assumed that all the N classes are new. How-

ever, in real-life applications, these classes are not necessary

to be all new. For example, in spoken term classification, the

silence and the unknown (words that not belong to any key-

words) classes are known in prior. Thus, we further define a

N+M -way, K-shot problem where N and M are the number

of new classes and fixed classes respectively. In this task, the

model has to concurrently classify among new classes and fixed

classes. We propose a modification to the original MAML al-

gorithm to solve this problem.

We conduct our experiment on Google Speech Commands

dataset [18] to simulate a user-defined scenario in spoken term

classification. We compare our approach with two baseline ap-

proaches: the conventional supervised learning approach and

the original MAML approach. Experimental results show that

our extended-MAML leads to obvious improvement over the

two baselines.

Here summarizes our contributions in this paper:

• We investigate the performance of MAML, as one of the

most popular few-shot learning solutions, on a speech

task.

• We extend the original MAML to solve a more realistic

N+M -way, K-shot problem.

• We investigate how much a user-defined spoken term

classification system can get close to a predefined one.

The rest of the paper is organized as follows. In Section 2

we present the basic of MAML. In Section 3 we introduce our

http://arxiv.org/abs/1812.10233v3
https://github.com/Codelegant92/STC-MAML-PyTorch


approach for the few-shot spoken term classification problem.

In Section 4 we describe the details of our experiments. Section

5 is the conclusion and future work.

2. Model-Agnostic Meta Learning (MAML)

2.1. The basic idea

MAML is one of the most popular meta-learning algorithms

which aims to solve the few-shot learning problem. The goal

of MAML is to train a model initializer which can adapt to

any new task using only a few labeled examples and training

iterations[15]. To reach this goal, the model is trained across

a number of tasks and it treats the entire task as a training ex-

ample. The model is forced to face different tasks so that it

can get used to adapting to new tasks. In this section, we will

describe the MAML training framework in a general manner.

As is shown in Figure 1, the optimization procedure consists

of two stages. We will first introduce the meta-learning stage

on the training data then introduce the fine-tuning stage on the

testing tasks.

2.2. The meta-learning stage

Given that the target evaluation task is a N -way, K-shot task,

the model is trained across a set of tasks T where each task Ti
is also a N -way, K-shot task. In each iteration, a learning task

(a.k.a. meta-task) Ti is sampled according to a distribution over

tasks p(T ). Each Ti consists of a support set Si and a query set

Qi.

Consider a model represented by a parametrized function

fθ with parameters θ. θ′
i is computed from θ through the adap-

tation to task Ti. A loss function LSi
(fθ), which is a cross-

entropy loss over the support set examples, is defined to guide

the computation of θ′
i:

LSi
(fθ) = −

∑

(xj ,yj)∈Si

yj logfθ(xj) (1)

A one-step gradient update is as below:

θ
′
i = θ − α∇θLSi

(fθ) (2)

where α is the learning rate which can be a fixed hyperparame-

ter or learned like the Meta-SGD [16]. In practice, the gradient

is often updated for several steps.

Then the model parameters are optimized on the perfor-

mance of fθ′

i
evaluated by the query set Qi with respect to θ.

LQi
(fθ′

i
) is another cross-entropy loss over the query set ex-

amples:

LQi
(fθ′

i
) = −

∑

(x′

u,y′

u)∈Qi

y
′
ulogfθ′(x′

u) (3)

Generally speaking, MAML aims to optimize the model pa-

rameters such that one or a small number of gradient steps on a

new task will lead to maximally effective behavior on that task.

At the end of a training iteration, the parameters θ are updated

as below:

θ
∗ ← θ − β∇θLQi

(fθ′

i
) (4)
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Figure 1: The MAML algorithm learns a good parameter ini-

tializer θ∗ by training across various meta-tasks such that it

can adapt quickly to new tasks.

where β is the learning rate of the meta learner. The loss com-

puted from the query set results in a second-order2 gradient op-

timization on θ.

To increase the training stability, instead of a single task,

usually a batch of tasks is sampled in each iteration. The op-

timization is performed by averaging the loss across the tasks.

Thus, equation (4) can be generalized to

θ
∗ ← θ − β∇θ

∑

i

LQi
(fθ′

i
) (5)

2.3. The fine-tuning stage

A fine-tuning is performed before the evaluation. In a N -way,

K-shot task, K examples from each of the N classes are avail-

able at this stage (the support set of the target task). The model

trained from the previous stage will be fine-tuned according to

equation (2) for a few iterations. Then the updated model will

be evaluated on the remaining unlabeled examples (the query

set of the target task).

3. Few-shot spoken term classification

3.1. Motivation

In section 2, it is assumed that all classes in the target task are

new classes. However, these classes are not necessary to be all

new. In real-life applications, some of the classes are known so

that more examples of these classes can be used in the meta-

learning stage. In this paper, we call them fixed classes as we

later fix their output positions in the neural network classifier.

We call this task, which has to concurrently classify among new

classes and fixed classes, a N+M -way, K-shot problem where

N , M , K are the number of new classes, fixed classes and ex-

amples from each new class for fine-tuning respectively. This

problem of concurrently classifying unseen and seen classes has

not been investigated in the original work of MAML. In our

work, we try to tackle the problem by proposing a modification

to the MAML training framework. We believe that the N+M -

way, K-shot problem is more realistic and our modification to

2Please note that the second-order gradient optimization here is not
equal to performing a first-order gradient optimization twice.
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Figure 2: Framework of our extended-MAML approach for few-

shot spoken term classification.

MAML is applicable to a variety of different tasks. In this sec-

tion, we will describe our methodology for a few-shot spoken

term classification task.

3.2. Our methodology

Although the N+M -way, K-shot problem can be regarded as

a specific form of the normal N -way, K-shot problem, solving

it with the original MAML framework will lead to a degrada-

tion of performance. By making use of the prior information of

the M fixed classes, we modify the MAML framework in the

following aspects:

• We fix the output positions of the fixed classes in the

neural network classifier.

• The fixed classes occur in every meta-task Ti in the meta-

learning stage.

• The adaptation of fixed classes is not needed in the fine-

tuning stage as they have already been learned in the

meta-learning stage.

The above three extensions to the original MAML make the

framework more effectively applied to real applications.

3.3. Spoken term classification

We formulate the user-defined spoken term classification task

as a N+M -way, K-shot classification task. N is the number

of keywords that users can define and users should define each

keyword by providing K audio examples. M is set to 2 in our

work as we have two fixed classes: silence and unknown. Here,

the unknown class represents words that do not belong to any

keywords.

Figure 2 illustrates the framework of our extended-MAML

approach. The target data contain audio examples from N user-

defined keywords and two fixed classes, while the source data

contain audio examples from totally different keywords except

the two fixed classes. In the meta-learning stage, a number of

N+2-way, K-shot meta-tasks are sampled from source data.

Each meta-task consists of a support set and a query set. The

form of each meta-task is similar to the target task. As we ex-

pect to learn a model initializer which can adapt to the target

task using the user-defined keywords only, we exclude the fixed

classes from the support set in both the meta-learning and the

Algorithm 1 extended-MAML approach for few-shot spoken

term classification

Require: p(T ) : distribution over tasks

Require: X : training keywords set

Require: Sil : silence class set, Unk : unknown class set

Require: Si : support set, Qi: query set

Require: α, β: learning rates

1: Randomly initialize base model parameters θ

2: while not done do

3: Sample a batch of meta-tasks Ti ∼ p(T )
4: for all Ti do

5: Sample a support set Si from X
6: Compute the gradient ∇θLSi

(fθ) using Si and

LSi
(fθ) in Equation (1)

7: Update base model parameters with gradient de-

scent: θ′
i = θ − α∇θLSi

(fθ) ⊲ step 6 and step 7 can be

repeated for several times

8: Sample a query set Qi from the union

{X ,Sil,Unk} ⊲ selected keywords from X inQi and Si
within Ti are the same

9: Compute the loss LQi
(fθ′

i
) using Qi and the up-

dated model fθ′

10: end for

11: Update parameters θ using each Qi and LQi
(fθ′):

θ ← θ − β∇θ

∑
i
LQi

(fθ′

i
)

12: end while

fine-tuning stages. As we can assume availability of more train-

ing examples of the fixed classes, we keep them in the query

set of all meta-tasks in the meta-learning stage. Furthermore, it

can be seen that the positions of the silence and the unknown

classes are fixed to the last of the network output (the yellow

area). Thus, we force the model to “remember” the fixed classes

without the need of adaptation.

Algorithm 1 summarizes the details of our approach. The

algorithm is based on the work of [15] but different in the sam-

pling of the support set and the query set during the meta-

training stage, which is introduced in Section 3.2.

4. Experiment

4.1. Experimental setup

4.1.1. Dataset

We conduct our experiments on Google Speech Commands

dataset (v0.02) [18]. It consists of 105,829 1-second audio clips

of 35 keywords. We formulate two 10+2-way, K-shot tasks

using the same setup as the Audio Recognition tutorial in the

official Tensorflow package [19]. The first task is digits classi-

fication, which uses digits zero to nine as ten user-defined key-

words. The second task is commands classification, which con-

tains 10 user-defined keywords as: yes, no, up, down, left, right,

on, off, stop, and go. For each task, besides 10 user-defined key-

words, we randomly pick 5 keywords to form the unknown class

set and use the remaining 20 keywords to form the training key-

words set. We also generate audio examples of the silence class

by mixing the background noise. In the meta-learning stage, the

training keywords set, unknown class set, and silence class set

are used to form different meta-tasks Ti. The 10 user-defined

keywords are unseen to the meta-learning stage and only K la-

beled examples of each of them are available in the fine-tuning



stage, where the initialized model is fine-tuned on the labeled

examples and evaluated on the unlabeled examples.

4.1.2. Model Setting

The 1-second clips are sampled at 16kHz. We use Mel-

Frequency Cepstral Coefficient (MFCC) features. For each clip,

we extract 40 dimensional MFCCs with a frame length of 30ms

and a frame step of 10ms. CNN is adopted as the base model

which contains 4 convolutional blocks. Each block comprises a

3 × 3 convolutions and 64 filters, followed by ReLU and batch

normalization [20]. The flattened layer after the convolutional

blocks contains 576 neurons and is fully connected to the out-

put layer with a linear function. The models are trained with a

mini-batch size of 16 for 1, 5, 10, 15, 20, 30-shot classification

and 4 for 50, 100-shot classification. We set the learning rate α

to 0.1 and β to 0.001.

4.1.3. Baselines

We compare our proposed approach with two baseline ap-

proaches: the conventional supervised learning approach which

trains the model on the support set of the target task only, and

the original MAML which treats the 10+2-way problem as a 12-

way problem. In the evaluation, we sample K examples from

each class for fine-tuning the model and 100 examples for eval-

uation. We do 100 times random tests and evaluate different

approaches on accuracy.

4.2. Results and discussions

4.2.1. Few-shot spoken term classification performance

We compare our approach with two baselines. Table 1 and Ta-

ble 2 list the performance of digits classification and commands

classification respectively on 1, 5, 10-shot tasks. First of all, the

overall accuracy on digits classification is better than that on

commands classification3. This implies that, in a user-defined

spoken term classification, the system performance will be af-

fected by the keywords users define. Not surprisingly, MAML

based approaches perform much better than conventional super-

vised learning in a few-shot situation. Our proposed approach

outperforms the original MAML. We attribute the improvement

to the use of prior information of the fixed classes.

Table 1: Accuracy with 95% confidence intervals on digits clas-

sification

Methods 1-shot 5-shot 10-shot

Superv. L. 18.14 ± 0.44 24.83 ± 0.38 28.07 ± 0.34

MAML-ori 44.60 ± 0.98 60.88 ± 0.58 65.18 ± 0.62

MAML-ext 47.42 ± 0.96 63.22 ± 0.71 69.48 ± 0.47

Table 2: Accuracy with 95% confidence intervals on commands

classification

Methods 1-shot 5-shot 10-shot

Superv. L. 17.03 ± 0.48 22.42 ± 0.33 25.6 ± 0.26

MAML-ori 33.35 ± 0.80 50.31 ± 0.50 57.34 ± 0.41

MAML-ext 39.54 ± 0.62 52.20 ± 0.51 59.36 ± 0.39

3This observation is consistent with [21].
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Figure 3: Accuracy with changing shot on digits classification.

4.2.2. User-defined vs. predefined

We take the result in [21] as a reference to the predefined sce-

nario of the same task which has an average of about 3000 train-

ing examples per class. We further increase the number of shot

in our approach to see if the performance of a few-shot system

can get close to a predefined system. Figure 3 summarizes the

results. It can be seen that the performance of our approach

(78.48%) gets much closer to the 3000-shot system (91%) than

that of the conventional supervised model using few-shot. How-

ever, there is still a performance gap between the two. In the fu-

ture, we will try to narrow the gap by incorporating more prior

information to the meta-learning stage and applying data aug-

mentation techniques [22, 23, 24].

5. Conclusions and Future work

In this paper, we formulate a user-defined scenario of spoken

term classification as a few-shot learning problem. We define

it as a N+M -way, K-shot problem and propose a modifica-

tion to the Model-Agnostic Meta Learning (MAML) algorithm

to solve the problem. Experiments conducted on the Google

Speech Commands dataset show that our approach performs

the best compared to the baselines. We observe that there is

a performance gap between a user-defined system and a prede-

fined system. In the future, we will try to narrow the gap with

a combination of both the data augmentation techniques which

are promising in improving model robustness and the few-shot

learning models. Furthermore, our current experiments are a

simulate of the user-defined scenario. In the future we will con-

duct more experiments which resemble more realistic situations

such as mixing keywords with different languages.
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