
Developing RNN-T Models Surpassing High-Performance Hybrid Models with
Customization Capability

Jinyu Li, Rui Zhao, Zhong Meng, Yanqing Liu, Wenning Wei, Sarangarajan Parthasarathy, Vadim
Mazalov, Zhenghao Wang, Lei He, Sheng Zhao, and Yifan Gong

Microsoft Speech and Language Group
{jinyli, ruzhao, zhme, yanqliu, wennwei, sarangp, vadimma, zhwang, helei, szhao,

ygong}@microsoft.com

Abstract
Because of its streaming nature, recurrent neural network trans-
ducer (RNN-T) is a very promising end-to-end (E2E) model
that may replace the popular hybrid model for automatic speech
recognition. In this paper, we describe our recent development
of RNN-T models with reduced GPU memory consumption
during training, better initialization strategy, and advanced en-
coder modeling with future lookahead. When trained with Mi-
crosoft’s 65 thousand hours of anonymized training data, the
developed RNN-T model surpasses a very well trained hybrid
model with both better recognition accuracy and lower latency.
We further study how to customize RNN-T models to a new do-
main, which is important for deploying E2E models to practical
scenarios. By comparing several methods leveraging text-only
data in the new domain, we found that updating RNN-T’s pre-
diction and joint networks using text-to-speech generated from
domain-specific text is the most effective.
Index Terms: end-to-end, RNN-T, LSTM, customization, con-
text modeling

1. Introduction
Recently, one of the most significant trends in speech commu-
nity is to replace hybrid models [1] with end-to-end (E2E) mod-
els [2, 3, 4, 5, 6, 7, 8, 9] for automatic speech recognition (ASR).
Different from hybrid systems which have the limitation that
many components such as acoustic model (AM) and language
model (LM) are optimized separately, E2E ASR systems di-
rectly translate an input speech sequence into an output token
sequence using a single network.

Currently, the most predominant E2E approaches for
sequence-to-sequence transduction in ASR are recurrent neural
network transducer (RNN-T) [10] and attention-based encoder-
decoder (AED) [11, 12] (or LAS: Listen, Attend and Spell [3]).
Because of its streaming nature, RNN-T has become a very
promising E2E model in industry to replace the traditional hy-
brid models [8, 13, 14, 15]. In contrast, AED is more powerful
and popular in academia. In [13, 16], a 2-pass E2E system was
proposed to beat the hybrid model by leveraging the RNN-T’s
streaming capability in the first pass and the AED’s modeling
power in the second pass with rescoring.

Different from the 2-pass E2E system, this study fo-
cuses on developing a single RNN-T model surpassing a high-
performance hybrid model [17] which was developed by inte-
grating 3-stage training and advanced acoustic modeling [18].
Our contributions include GPU memory saving strategies for
training, better initialization and advanced modeling which sig-
nificantly improve the recognition accuracy.

Customization is another important requirement for deploy-
ing models into a new scenario which has only text data avail-

able. There are few ways of leveraging text-only data. A
straightforward method is to interpolate the RNN-T model with
an external LM built from the domain-specific text data as shal-
low fusion [19]. The second way is to generate synthetic speech
data using text-to-speech (TTS), and use the text and speech
pair to update the E2E models [20]. Spelling correction [21]
uses TTS data to train a separate translation model to correct
the errors made by E2E ASR models. To our best knowledge
there is no comparison between these methods, especially for
customization. In this study, we use RNN-T as an example to
explore and compare these methods.

2. Improving RNN-T Models
In this section, we first briefly introduce RNN-T models. Then,
we elaborate our efforts on GPU memory saving during training
and on improving the accuracy of RNN-T models with a better
initialization strategy and an advanced model structure.

2.1. RNN-T

RNN-T contains an encoder network, a prediction network, and
a joint network. The encoder network converts the acoustic fea-
ture xt into a high-level representation henct , where t is time
index. The prediction network produces a high-level represen-
tation hpreu by conditioning on the previous non-blank target
yu−1 predicted by the RNN-T model, where u is output label
index. The joint network is a feed-forward network that com-
bines the encoder network output henct and the prediction net-
work output hpreu to generate ht,u which is used to calculate
softmax output.

In [8], layer normalization and projection layer for long
short-term memory (LSTM) [22] were reported important to the
success of RNN-T modeling. We denote the layer-normalized
LSTM function with projection layer as

hlt = LSTM(hlt−1, x
l
t), (1)

where hlt is the lth layer output at time t. For the multi-layer
LSTM, xlt = hl−1

t . We use the last hidden layer output hLt and
hMu of the encoder and prediction networks as henct and hpreu ,
where L and M denote the number of layers in encoder and
prediction networks respectively.

2.2. Saving GPU memory

A practical challenge when we train RNN-T with large-scale
data is that we cannot fit too many speech frames in a minibatch,
because there are several 3-dimension tensors which consume
large amount of GPU memories . In [14], we proposed several
ways of reducing GPU memory usage by effectively organizing

ar
X

iv
:2

00
7.

15
18

8v
1

 [
ee

ss
.A

S]
 3

0
Ju

l 2
02

0

the encoder and prediction networks in memory and merging
several network functions.

In this study, we further improve tokenization of word-piece
units (WPUs) [23]. Some studies treated space ($) as an output
token and used it as the delimiter of words [24, 25]. For ex-
ample, a transcription “hey cortana i love gardening” is decom-
posed as “$ hey $ cor tana $ i $ love $ garden ing $”, which has
13 WPUs. This tokenization works well for CTC or AED train-
ing. However, the 3-dimension tensors in RNN-T always has
one dimension as the total number of WPUs decomposed from
the transcription. It is ideal to reduce this decomposition num-
ber. Although some RNN-T work [7] used <space> as the
delimiter, we remove the <space> token and use “ ” as the
word beginning marker instead of a separate token. The exam-
ple transcription can now be decomposed as: “ hey cor tana i
love garden ing”, which has only 7 WPUs. This tokenization

method significantly reduced the GPU memory consumption of
those 3-dimension tensors, hence speeding up RNN-T training
by using larger minibatch size.

2.3. Improving initialization

In this study, we initialize the encoder with either connectionist
temporal classification (CTC) or cross entropy (CE) training.
We don’t initialize the prediction network with a pre-trained LM
as it has proven ineffective [26].

Using WPUs as output units facilitate the initialization with
CTC because no alignment is needed. However, the CE training
needs the time alignment information which is hard to get for
WPUs which don’t have phoneme realisation. Because the time
alignment for words is accurate, we just evenly segment the au-
dio features and assign equal number of frames aligned to each
word piece [27]. For example, if a word has starting time S and
ending time E with K word-piece units, the time alignment of
the kth WPU in the word is: [S + k−1

K
(E − S), S + k

K
(E −

S)], k = 1......K.

2.4. Improving encoder

Incorporating the future context into RNN-T’s encoder structure
can significantly improve the ASR accuracy, as shown in [14].
However, instead of consuming future context frames with a
layer trajectory structure [14] which almost doubles the param-
eters of LSTM, in this study, we propose to only use context
modeling to save model size as

gl−1
t =

τ∑
δ=0

vl−1
δ � hl−1

t+δ (2)

hlt = LSTM(hlt−1, g
l−1
t). (3)

In Eq. (2), the output of LSTM with projection layer at cur-
rent frame (hl−1

t) and future τ frames (hl−1
t+δ, δ = 1......τ) are

transferred to a new vector gl−1
t , which is used as the input in

Eq. (3) to calculate next layer’s LSTM output hlt. Because �
is element-wise product, Eq. (2) only increases the number of
model parameters very slightly. gLt is used as the encoder net-
work output. Because of context expansion, the number of total
lookahead frames with context modeling is Lxτ .

3. Customizing RNN-T models with
text-only data

In this section, we study RNN-T customization with text-only
data from a new domain. While we can directly build an ex-

ternal LM using domain-specific text data, we can also gener-
ate TTS data from this text, and then either adapt the RNN-T
model or add an additional spelling correction model on top of
the RNN-T model.

3.1. LM rescoring

We train an LSTM-LM [28] with target-domain text-only data
to rescore each hypothesis generated by the RNN-T model
through a log-linear interpolation between RNN-T and LSTM-
LM scores. The hypothesis with the highest interpolated score
is selected as the final output as follows

n̂ = argmax
n

[
logPRNN-T(y(n)|x) + λ logPLM(y(n))

]
, (4)

where x = {x1, ..., xT } is a test utterance, y(n) =

{y(n)1 , ..., y
(n)

U(n)} is nth hypothesis in theN -best list from RNN-
T beam search decoding, n = 1, . . . , N , y(n̂) is final output of
LM rescoring, and λ is the weight for LM score.

3.2. Adapting RNN-T with TTS data

We use a multi-speaker neural TTS system [29] to generate TTS
data. The TTS system consists of a spectrum predictor with
speaker embeddings and a parallel WaveNet vocoder [30]. The
spectrum predictor with speaker embeddings was trained with
in-house data containing 7000 speakers. Then we use this TTS
system to generate audio from the text-only data in the new do-
main. The TTS audio is used to adapt RNN-T models.

3.3. Spelling correction

A spelling correction model corrects the error patterns in the
output hypotheses of a speech recognizer. [21] first proposes
an attention-based spelling correction model with RNN struc-
ture to correct the output of AED model using TTS data. [31]
introduces a transformer model [32] to correct ASR model out-
put into grammatically and semantically correct text and uses
the weights of a pre-trained BERT [33] to initialize the model.
In this work, we use the transformer with encode-decoder ar-
chitecture [32] for spelling correction. We generate synthetic
audio signals using neural TTS models from text-only data and
decode them using the baseline RNN-T speech recognizer to
generate an erroneous hypotheses to pair with the ground-truth
text at the TTS input. We then train a spelling correction model
on these text pairs to correct potential recognizer errors. To
compensate for the limited target-domain text data, we extract
word-piece embeddings of the erroneous hypotheses from an
RoBERTa [34] pre-trained with a large amount of external text,
and add these embeddings to each layer of the encoder and de-
coder through multi-head self-attention to further improve the
spelling correction. To incorporate local information, we insert
a LocalRNN [35] at the input of the encoder and decoder.

4. Experiments
In this section, we evaluate the effectiveness of all models by
training them with 65 thousand (K) hours of transcribed Mi-
crosoft data. The test set covers 13 application scenarios such
as Cortana and far-field speech, using a total of 1.8 million (M)
words. We report the word error rate (WER) averaged over all
test scenarios. All the training and test data are anonymized
data with personally identifiable information removed.

The feature is 80-dimension log Mel filter bank for every 10
milliseconds (ms) speech. Three of them are stacked together

Table 1: Comparison of hybird models with average WERs on
1.8 M words test sets. The LM decoding graph size is 5 Gb.

acoustic CE MMI T/S parameter
models WER WER WER number lookahead
LSTM 14.75 13.01 11.49 30 M 0
cltLSTM 11.15 10.36 9.34 63 M 480ms

to form a frame of 240-dimension input acoustic feature to the
encoder network. The output targets are 4 K word-piece units.

4.1. Hybrid models

In [17], we reported our best hybrid model which was developed
by integrating 3-stage training and an advanced acoustic model.
We showed WERs of two hybrid models in Table 1. The first
one is with a standard LSTM and the second one is a contex-
tual layer trajectory LSTM (cltLSTM) [18] which 1) decouples
the temporal modeling and target classification tasks with time
and depth LSTMs respectively, 2) incorporates future context
frames to get more information for accurate acoustic modeling.
The input feature is 80-dimension log Mel filter bank for every
20 milliseconds (ms) of speech by using frame skipping [36].
The softmax layer has 9404 nodes to model the senone labels.
Runtime decoding is performed using a 5-gram LM with de-
coding graph around 5 gigabytes (Gbs). The cltLSTM totally
has 24-frame lookahead, which corresponds to 480ms duration.
The training of both models exploit 3-stage training strategy:
from CE to maximum mutual information (MMI) [37], and then
followed by sequential teacher-student (T/S) learning [38]. The
cltLSTM trained with such a strategy improves from the CE
baseline by 16.2% relative WER reduction, and it also improves
from its LSTM counterpart by 18.7% relative WER reduction.
Hence, this cltLSTM model presents a very challenging stream-
ing hybrid model to beat.

4.2. Surpassing hybrid models

Now, we report how the RNN-T models can be improved to
exceed the accuracy of hybrid models. We denote all RNN-T
models’ encoders as MpN FxL, where M is number of cells
in LSTM, N is the projection layer size, F is the number of
lookahead frames at each layer, and L is the number of layers.
For simplicity, the prediction network always uses 2 layers of
LSTM with the same structure as the encoder’s LSTM without
any lookahead. That is to say when the encoder’s structure is
MpN FxL, the prediction network structure will be MpNx2.
The decoding is beam search using 5 as the beam size.

We first examine the impact of initialization for RNN-T
by using the encoder structure 1600p800 4x6 in Table 2. This
model has 1600 LSTM memory cells and the output is projected
to 800. The encoder has 6 layers and has context modeling
with 4 frames lookahead at each layer. The CTC initialization
slightly improves the RNN-T model with random initialization,
while the CE initialization improves from the random initial-
ization by 11.6% relative WER reduction. The CTC initializa-
tion makes the encoder emit token spikes together with lots of
blanks while CE initialization enables the encoder to learn time
alignment. Given the gain with CE initialization, we believe the
encoder of RNN-T functions more like an acoustic model in the
hybrid model. Because CTC training doesn’t need any align-
ment information while CE training needs, the result indicates
learning alignment information for the encoder may help RNN-

Table 2: WERs of initialization methods for RNN-T.

models Random CTC CE
1600p800 4x6 10.55 10.40 9.33

Table 3: Comparison of RNN-T models.

encoder parameter encoder
network WER number lookahead
1280p640x6 11.25 62 M 0 ms
1280p640 4x6 9.81 62 M 720 ms
1600p800 4x6 9.33 94 M 720 ms
2048p640 4x6 9.27 87 M 720 ms
2048p640 4x8 9.28 119 M 960 ms
2560p800 4x6 8.88 147 M 720 ms
2560p800 2x6 9.05 147 M 360 ms

T training to focus more on reasonable forward-backward paths
instead of all the paths.

In Table 3, we compare all RNN-T models with different
setups in terms of WER, parameter number, and the encoder
lookahead. The encoders of all models are initialized with CE
training. The first model, 1280p640x6, uses standard layer-
normalized LSTM with projection layers as in most literature
[8, 13]. This model has 6 layers and the LSTM at each layer has
1280 memory cells with the output projected to 640 dimensions.
It has 62 M parameters and 0 ms encoder lookahead. It obtained
11.25% WER on the 1.8 M word test sets, about 2.1% relative
WER reduction from the T/S trained LSTM hybrid model in
Table 1 which also has 0-frame encoder lookahead.

Next, by looking ahead 4 future frames at each layer with
context modeling (Eqs. (2) and (3)), the model 1280p640 4x6
significantly reduced the WER from 11.25% to 9.81%, about
12.8% relative WER reduction. The model size is the same as
1280p640x6, but has 720 ms (6x4x30 ms) encoder lookahead.

Next, we increased the model size to 94 M with model
1600p800 4x6, and got further WER reduction to 9.33%. An-
other model, 2048p640 4x6, with 87 M parameters obtained
slightly better WER as 9.27%. Then we increased the model
to 8 layers as 2048p640 4x8. Surprisingly we didn’t get any
gain although the model size and encoder lookahead are both
increased. From this set of experiments, it seems that in our
context modeling setup, it is better to enlarge memory cell sizes
of LSTMs instead of going too deep.

Encouraged by our observation, we further increased the
memory cell of LSTMs to 2560, and the projection dimension to
800. The model, 2560p800 4x6, obtained 8.88% WER, which
is 4.9% relatively better than the T/S trained hybrid model cltL-
STM model in Table 1 which has 480 ms lookahead. Finally, we
reduced the lookahead at every layer from 4 to 2 frames, gen-
erating model 2560p800 2x6 which has 360 ms (6x2x30 ms)
encoder lookahead. Such model obtained 9.05% WER, which
has 3.1% relative WER reduction from the T/S trained hybrid
model cltLSTM model in Table 1.

In Figure 1, we look at the gap (in frames) between ground
truth word alignment obtained by force alignment with a hybrid
model and the word alignment generated by greedy decoding
from three RNN-T models in Table 3. They are 1280p640x6,
2560p800 2x6, and 2560p800 4x6 with 0, 360 ms and 720 ms
encoder lookahead, respectively. As shown in Figure 1, the
1280p640x6 model with zero lookahead in the encoder net-
work, plotted in the right most curve, has larger delay than

Figure 1: The gap (in frames) between ground truth word align-
ment and the word alignment from 1280p640x6, 2560p800 2x6,
and 2560p800 4x6 RNN-T models.

the ground truth alignment. The average delay is about 11
input frames, which corresponds to 330 ms. In contrast, the
2560p800 2x6 model with 360 ms lookahead is plotted in the
center curve and has less alignment discrepancy, with average
1 input frame delay. This is because its encoder has total 12
frames lookahead, which provides more information to RNN-T
so that it makes decision much earlier than the zero-lookahead
model. The average latency of this 2560p800 2x6 model is
(12+1)*30 ms = 390 ms. Finally, the 2560p800 4x6 model
which has totally 24 frames lookahead is plotted in the left most
curve and has even -2 frames latency, and the average latency
of this model is (-2+24)*30 ms = 660ms. The 2560p800 2x6
RNN-T model has clear advantages, surpassing the very well
trained cltLSTM model with smaller WER and latency.

4.3. Customization

In this section, we evaluate RNN-T customization in a new do-
main using text-only data with 1280p640x6, 2560p800 4x6 and
1600p800 4x6 RNN-T models which have the highest, lowest,
intermediate WERs respectively in Table 3 when evaluated with
those related test sets. Reported in Table 4, 1600p800 4x6 in-
stead of 2560p800 4x6 has the best WER in this new domain,
indicating the good performance of an E2E model extremely
well trained with even 65 K hours data may not generalize to
an unseen test set. On the other hand, both 1600p800 4x6 and
2560p800 4x6 still significantly outperformed 1280p640x6,
which is consistent with the results in Table 3.

The text data in this new domain contains 1.5 M sentences.
Based on this text, about 1.5 K hours of audio was synthesized
from randomly selected 300 speakers in TTS training data. We
did data augmentation by adding noise and room impulse re-
sponse as in [39] to the original TTS audio. The final audio is
about 3000 hours. The test data is collected in this new domain.

Then, we used the TTS audio to adapt RNN-T models by
updating all parameters of RNN-T models. We obtained sig-
nificant degradation which is not a surprise because the RNN-
T encoder was updated to fit those 300 TTS speakers, re-
sulting in bad generalization to speakers in this new domain.
Clearly, the domain-specific text-only data should benefit the
LM related component in RNN-T. Therefore, we updated only
prediction and joint networks in RNN-T models. We ob-
tained 16.04%, 13.69%, and 13.88% WERs for 1280p640x6,
1600p800 4x6, and 2560p800 4x6 models respectively, repre-
senting 7.9%, 7.2%, and 9.8% relative WER reduction respec-
tively. Although the largest relative WER reduction was ob-
tained with the 2560p800 4x6 model, it still didn’t outperform
the corresponding 1600p800 4x6 model. Therefore, in the fol-
lowing experiments, we mainly investigate the effectiveness of
customization methods using 1280p640x6 and 1600p800 4x6

Table 4: Comparison of customization methods.

1280p640 1600p800 2560p800
x6 4x6 4x6

baseline 17.41 14.75 15.39
TTS only

update all 22.97 19.72 19.63
update Pre+Joint 16.03 13.69 13.88

speech + TTS 16.31 13.91 -
Spelling correction

w/o RoBERT 16.78 14.31 -
w/ RoBERT 16.03 13.85 -

LM rescoring 16.73 14.51 -

models, which have the highest and lowest WERs respectively
in the new domain.

We tried to mix 20 K hours original speech data to-
gether with the TTS audio, and then update the prediction and
joint networks of RNN-T models. The results are shown as
(speech+TTS) in Table 4. It doesn’t improve the adaption with
TTS only audio. This means that if we have enough text-only
data, and we don’t need to regularize the adaptation with origi-
nal speech training data.

The proposed spelling correction transformer model has 6
layers in the encoder and decoder. The attention layer has 8
heads with a hidden dimension size of 512 and the hidden size
in the feed forward layers is set to 2048. The hidden dimension
of LocalRNN is 256 with a local window of size 6. We applied
this spelling correction model on top of RNN-T models, and
obtained 3.6% and 3.0% relative WER reduction from baseline
1280p640x6 and 1600p800 4x6 models, respectively. With pre-
trained RoBERTa, we obtained further improvement, with 7.9%
and 6.1% relative WER reduction from baseline 1280p640x6
and 1600p800 4x6 models, respectively.

At last, we also built an LSTM-LM with the new-domain
text. With 1 hidden layer and 512 hidden units, the LSTM-LM
predicts the posteriors of 4k word pieces at the output layer.
Each word piece is encoded as a 512-dim vector before feed-
ing into the LM. Rescoring RNN-T with LSTM-LM gave 3.9%
and 1.6% relative WER reduction for baseline 1280p640x6 and
1600p800 4x6 models, respectively.

5. Conclusions
In this paper, we elaborated our efforts of developing high-
quality RNN-T models and evaluated with 65 K hours Mi-
crosoft training data. The CE initialization of RNN-T encoder
significantly reduced WER by 11.6% relatively and the model
with future context improved from the zero-lookahead model
by 12.8% relatively. Thanks to all these methods, an RNN-T
model with 6-layer encoder using 2-frame lookahead at each
layer surpasses the best hybrid model trained with delicate 3-
stage optimization and advanced modeling technology by 3.1%
relative WER reduction. This RNN-T model also has 120 ms
less encoder lookahead latency than the best hybrid model.

We further investigated how to leverage text-only data to
adapt RNN-T models to a new domain. Adapting RNN-T mod-
els’ prediction and joint networks using the TTS audio gener-
ated from the domain text was shown to be more effective than
either spelling correction or LM rescoring, which needs to intro-
duce additional networks during runtime while adaption doesn’t
need.

6. References
[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[2] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end
speech recognition using deep RNN models and WFST-based de-
coding,” in Proc. ASRU. IEEE, 2015, pp. 167–174.

[3] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. ICASSP. IEEE, 2016, pp. 4960–
4964.

[4] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and
N. Jaitly, “A comparison of sequence-to-sequence models for
speech recognition,” in Proc. Interspeech, 2017, pp. 939–943.

[5] E. Battenberg, J. Chen, R. Child, A. Coates, Y. G. Y. Li, H. Liu,
S. Satheesh, A. Sriram, and Z. Zhu, “Exploring neural transducers
for end-to-end speech recognition,” in Proc. ASRU. IEEE, 2017,
pp. 206–213.

[6] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, K. Gonina et al., “State-
of-the-art speech recognition with sequence-to-sequence models,”
in Proc. ICASSP, 2018.

[7] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures,
data and units for streaming end-to-end speech recognition with
RNN-transducer,” in Proc. ASRU, 2017.

[8] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez,
D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang et al., “Stream-
ing end-to-end speech recognition for mobile devices,” in Proc.
ICASSP, 2019, pp. 6381–6385.

[9] J. Li, Y. Wu, Y. Gaur, C. Wang, R. Zhao, and S. Liu, “On the
comparison of popular end-to-end models for large scale speech
recognition,” in Proc. Interspeech, 2020.

[10] A. Graves, “Sequence transduction with recurrent neural net-
works,” CoRR, vol. abs/1211.3711, 2012.

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[12] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in NIPS,
2015, pp. 577–585.

[13] T. Sainath, R. Pang, and et. al., “Two-pass end-to-end speech
recognition,” in Proc. Interspeech, 2019.

[14] J. Li, R. Zhao, H. Hu, and Y. Gong, “Improving RNN transducer
modeling for end-to-end speech recognition,” in Proc. ASRU,
2019.

[15] M. Jain, K. Schubert, J. Mahadeokar et al., “RNN-T for la-
tency controlled ASR with improved beam search,” arXiv preprint
arXiv:1911.01629, 2019.

[16] T. N. Sainath, Y. He, B. Li et al., “A streaming on-device end-to-
end model surpassing server-side conventional model quality and
latency,” in Proc. ICASSP, 2020, pp. 6059–6063.

[17] J. Li, R. Zhao, E. Sun, J. H. Wong, A. Das, Z. Meng, and Y. Gong,
“High-accuracy and low-latency speech recognition with two-
head contextual layer trajectory LSTM model,” in Proc. ICASSP,
2020.

[18] J. Li, L. Lu, C. Liu, and Y. Gong, “Improving layer trajectory
LSTM with future context frames,” in Proc. ICASSP, 2019, pp.
6550–6554.

[19] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-C. Lin,
F. Bougares, H. Schwenk, and Y. Bengio, “On using mono-
lingual corpora in neural machine translation,” arXiv preprint
arXiv:1503.03535, 2015.

[20] K. C. Sim, F. Beaufays, A. Benard et al., “Personalization of end-
to-end speech recognition on mobile devices for named entities,”
in Proc. ASRU, 2019.

[21] J. Guo, T. N. Sainath, and R. J. Weiss, “A spelling correction
model for end-to-end speech recognition,” in Proc. ICASSP, 2019,
pp. 5651–5655.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] M. Schuster and K. Nakajima, “Japanese and Korean voice
search,” in Proc. ICASSP. IEEE, 2012, pp. 5149–5152.

[24] J. Li, G. Ye, A. Das, R. Zhao, and Y. Gong, “Advancing acoustic-
to-word CTC model,” in Proc. ICASSP, 2018.

[25] Y. Gaur, J. Li, Z. Meng, and Y. Gong, “Acoustic-to-phrase models
for speech recognition,” Proc. Interspeech, pp. 2240–2244, 2019.

[26] M. Ghodsi, X. Liu, J. Apfel, R. Cabrera, and E. Weinstein, “RNN-
transducer with stateless prediction network,” in Proc. ICASSP,
2020, pp. 7049–7053.

[27] H. Hu, R. Zhao, J. Li, L. Lu, and Y. Gong, “Exploring pre-
training with alignments for RNN transducer based end-to-end
speech recognition,” in Proc. ICASSP, 2020.

[28] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks
for language modeling,” in Thirteenth annual conference of the
international speech communication association, 2012.

[29] Y. Deng, L. He, and F. K. Soong, “Modeling multi-speaker la-
tent space to improve neural tts: Quick enrolling new speaker and
enhancing premium voice,” ArXiv, vol. abs/1812.05253, 2018.

[30] A. v. d. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. v. d. Driessche, E. Lockhart, L. C. Cobo,
F. Stimberg et al., “Parallel wavenet: Fast high-fidelity speech
synthesis,” arXiv preprint arXiv:1711.10433, 2017.

[31] O. Hrinchuk, M. Popova, and B. Ginsburg, “Correction of auto-
matic speech recognition with transformer sequence-to-sequence
model,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 7074–7078.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, 2017, pp.
6000–6010.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[34] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A
robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[35] Z. Wang, Y. Ma, Z. Liu, and J. Tang, “R-transformer: Re-
current neural network enhanced transformer,” arXiv preprint
arXiv:1907.05572, 2019.

[36] Y. Miao, J. Li, Y. Wang, S. Zhang, and Y. Gong, “Simplifying
long short-term memory acoustic models for fast training and de-
coding,” in Proc. ICASSP, 2016.

[37] P. C. Woodland and D. Povey, “Large scale discriminative train-
ing of hidden Markov models for speech recognition,” Computer
Speech and Language, vol. 16, no. 1, pp. 25–47, 2002.

[38] J. H. Wong and M. J. Gales, “Sequence student-teacher training
of deep neural networks,” in Proc. Interspeech, 2016.

[39] J. Li, R. Zhao, Z. Chen et al., “Developing far-field speaker sys-
tem via teacher-student learning,” in Proc. ICASSP, 2018.

	1 Introduction
	2 Improving RNN-T Models
	2.1 RNN-T
	2.2 Saving GPU memory
	2.3 Improving initialization
	2.4 Improving encoder

	3 Customizing RNN-T models with text-only data
	3.1 LM rescoring
	3.2 Adapting RNN-T with TTS data
	3.3 Spelling correction

	4 Experiments
	4.1 Hybrid models
	4.2 Surpassing hybrid models
	4.3 Customization

	5 Conclusions
	6 References

