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Abstract 

Depression disorders are a major growing concern worldwide, 

especially given the unmet need for widely deployable 

depression screening for use in real-world environments. 

Speech-based depression screening technologies have shown 

promising results, but primarily in systems that are trained 

using laboratory-based recorded speech. They do not generalize 

well on data from more naturalistic settings. This paper 

addresses the generalizability issue by proposing multiple 

adaptation strategies that update pre-trained models based on a 

dilated convolutional neural network (CNN) framework, which 

improve depression detection performance in both clean and 

naturalistic environments. Experimental results on two 

depression corpora show that feature representations in CNN 

layers need to be adapted to accommodate environmental 

changes, and that increases in data quantity and quality are 

helpful for pre-training models for adaptation. The cross-corpus 

adapted systems produce relative improvements of 29.4% and 

17.2% in unweighted average recall over non-adapted systems 

for both clean and naturalistic corpora, respectively.  

Index Terms: Depression detection, deep learning, domain 

adaption, environmental noise, mental health, smart devices. 

1. Introduction 

Depression is a common and costly condition, affecting 10%-

15% of the global population [1]. To help ease this serious 

health concern, an objective, passive, ubiquitous, convenient, 

and cost-effective device for capturing cognitive-behavioral 

information would be a compelling tool for research and 

clinical practice [2–4]. Currently, over 80% of US adults own 

smart devices (e.g. phone, tablet, watch) [5], speech signals 

from which could be used for depression screening. This 

provides an unprecedented opportunity to expand access to 

much needed medical help for depressed individuals. Although 

research to date has shown considerable potential [5–8], this 

area remains challenging and relatively understudied. 

Speech production involves complex cognitive planning 

and motoric actions that are often impeded by depression in a 

variety of ways [4], e.g. muscle tension disturbances and 

cognitive impairments [9], causing articulatory incoordination 

[10] and abnormal phoneme rates [11]. Accordingly, a few 

effective frameworks have been proposed to exploit speech 

articulation-based information for depression detection, such as 

vowel space area [12], speech landmarks [13, 14],  vocal tract 

coordination (VTC) features [10, 15], and FVTC-CNN (Full 

VTC-Convolutional Neural Networks) [16].  

The effectiveness of features generated from these 

frameworks can be greatly reduced when applied to cross-

corpus data. Often a particular feature set, or model, that 

performs well on one dataset may generalize poorly to others, 

especially if there is a mismatch in how the data were generated. 

This happens, for example, when one data set is collected in real 

life environments and another is collected in a controlled 

laboratory setting. This challenge of cross-corpus evaluation is 

a common one in affective computing, and often results in close 

to chance-level performance on mismatched datasets [17–20].  

In this paper, we investigate domain adaptation based on a 

deep learning framework to bridge the gap for cross-corpus 

experiments. We also compare adaptation from a large dataset 

with more variable ground truth quality with adaptation from a 

small dataset containing high quality ground truth. 

2. Related Work 

Automatic assessment of depression from human voice has 

gained increasing interest recently [21–23]. Many systems have 

been proposed, but there has been a recent shift towards deep 

learning approaches due to strong depression classification 

/prediction results [24–25]. To date, the majority of studies have 

utilized clean speech recordings collected in controlled 

laboratory settings. By contrast, depression screening ‘in-the-

wild’ (i.e. on smartphones in naturalistic environments) remains 

challenging and relatively less explored [28]. Consequently, 

depression screening systems built using clean speech data are 

less likely to generalize well ‘in-the-wild’. This weakness in 

generalization is due to a wide spectrum of variability in real 

life data collections (e.g. demographics, speech tasks, recording 

devices/environments, annotation standards).  

One feasible solution to the cross-corpus discrepancy is 

domain adaptation. The idea originates from transfer learning 

[27], and is not uncommon in speech-related tasks such as 

universal background models in speaker recognition [28]. 

Recently, domain adaptation based on deep learning has 

attracted increasing attention [29–30], because deep learning is 

effective in learning useful feature representations that are 

transferrable across different tasks, e.g. SoundNet in speech, 

AlexNet in image, and BERT in text [29–33].  

There have been a few studies investigating generalization 

and transferability for domain adaptation [34–38]. For instance, 

it was found that deeper layers in CNNs can capture more task-

specific information [33], and have increased linear separability 



than preceding layers [36]. However, the way in which 

transferrable information is learned by deep learning systems 

remains relatively unexplored in speech-related applications, 

including depression detection. Another under-studied area for 

adaptation is the trade-off between quantity and quality of data 

for pre-training. Quantity-quality trade-offs are to some extent 

inevitable in depression detection, where high quality clinically 

validated data are usually small in size and an ever-increasing 

amount of data can be collected on smartphones. The latter data 

often contains noisy speech data and poor quality labels. 

3. Methods 

3.1. System Overview 

This study investigates domain adaptation for depression 

detection using the FVTC-CNN (full vocal tract coordination – 

convolutional neural networks) framework [16]. FVTC-CNN 

consists of two parts, i.e. an image-like FVTC matrix (Fig. 1) 

and a dilated CNN. The FTVC matrix consists of delayed auto- 

and cross-correlations from feature contours over time (e.g. 

formants). Those correlations were found to be associated with 

motor incoordination of vocal tract activities [10]. As shown in 

Fig. 1, a dilated CNN is used to learn the image-like full VTC 

matrix, which is calculated per audio file. This framework is 

used for three reasons: (1) it captures speech motor coordination 

information could be more robust to various noise and handset 

variability, and therefore performant in naturalistic 

environments [16]; (2) the deep learning framework has higher 

feasibility and potential for domain adaptation than non-deep 

learning frameworks; and (3) the framework contains a 

straightforward structure, which allows interpretability for 

cross-corpus experiments.  

Consider two datasets: 𝐷1 and 𝐷2, each divided into train, 

development and test partitions, i.e. 𝐷𝑖
𝑡𝑟𝑎𝑖𝑛, 𝐷𝑖

𝑑𝑒𝑣, and  𝐷𝑖
𝑡𝑒𝑠𝑡, 

where 𝐷𝑖 ∈ {𝐷1, 𝐷2}. The domain adaptation follows a two-step 

process:  

i. A pre-trained model ℳ𝑖  is built from one corpus 𝐷𝑖  by 

training on 𝐷𝑖
𝑡𝑟𝑎𝑖𝑛 and then optimizing on 𝐷𝑖

𝑑𝑒𝑣. 

ii. Weights in the pre-trained model ℳ𝑖 are then updated on 

the second corpus 𝐷𝑗 by adapting on the training partition 

𝐷𝑗
𝑡𝑟𝑎𝑖𝑛, leading to ℳ𝑖→𝑗. The frozen and adapted layers 

in CNN were controlled by the proposed adaptation 

strategies. The updated model ℳ𝑖→𝑗  is optimized on 

𝐷𝑗
𝑑𝑒𝑣, and tested on the test partition 𝐷𝑗

𝑡𝑒𝑠𝑡.   

This adaptation approach is beneficial, because the resultant 

model ℳ𝑖→𝑗 benefits from additional training data, while also 

containing information from different datasets, which aids in 

mismatch compensation. For instance,  ℳ𝑖→𝑗  can be 

knowledgeable about both clean high-quality depressed speech 

and noisy speech data collected from various devices in 

naturalistic environments. Also, it is observed that ℳ𝑖 offers a 

good starting point for training a model on other datasets. This 

is important as depression corpora are often unbalanced and 

relatively small in size, leading to a higher risk of achieving 

local minima due to poor initializations.  

3.2. Proposed Adaptation Strategies 

In the dilated CNN framework shown in Figure 1, it is 

reasonable to expect that not all the layers are suitable for 

adaptation, since some key layers may carry similar depression-

related information across corpora. Therefore, it is beneficial 

for these layers to remain frozen during adaptation. However, 

how best to perform domain adaptation remains unclear. In this 

study, we propose experimentation using three different 

adaptation strategies, namely layer-wise adaptation and two 

types of accumulative adaptation, FirstN and LastN. 

• Layer-wise adaptation: a single layer with trainable 

weights will be updated. 

• FirstN adaptation: the first N layers are jointly adapted. 

• LastN adaptation: the last N layers are jointly adapted. 

In FVTC-CNN, there are eight trainable layers of interest, 

i.e., six convolutional layers (i.e., Conv-1, Conv-2, Conv-3, 

Conv-4, Conv-5, and Conv-6) and two fully connected layers 

(i.e., FC-1 and FC-2). The batch normalization layers are kept 

frozen during adaptation based on preliminary findings of no 

gain, as in [37]. The ‘Conv’ layers learn feature representations, 

whereas ‘FC’ layers learn classification models. This raises an 

interesting question regarding the CNN substructure: should we 

update the weights for only the feature representation or for 

only the classifier models? This question will be answered by 

investigating the proposed adaptation strategies. 

 Layer-wise adaptation examines the effectiveness of 

adapting particular informative layers that mitigate mismatches 

between different corpora. FirstN adaptation examines the 

cumulative effect of levels of feature learning. LastN adaptation 

examines the cumulative effect of levels of classifier learning. 

Investigating the three proposed adaptation strategies can 

provide novel insights into to cross-corpus generalizability. 

4. Results 

4.1. Experimental Settings 

The experiments were conducted on two corpora recorded in 

very different environments: SH2-FS (Free Speech) [8], [14] 

and Distress Analysis Interview Corpus – Wizard of Oz (DAIC-

WOZ) [38]. The SH2-FS corpus comprises audio recordings in 

 

Figure 1: The FVTC-CNN structure for exploiting vocal tract coordination, reproduced from [16]. Conv-1 to Conv-4 capture vocal tract 

coordination (represented by delayed correlations of feature contours, e.g. formant contours across time) at different time scales, Conv-5 

and Conv-6 learns more abstract depression-specific information, and FC-1 and FC-2 perform classification modelling.  Conv-1, -2, -3, -4, 

-5, -6 and FC-1, -2, can be adapted, either separately or collectively. 

Full VTC (vocal tract  

coordination) matrix 



naturalistic environments (e.g., at home, workplace, vehicle), 

along with corresponding self-reported Patient Health 

Questionnaire (PHQ-9) scores gathered through an interactive 

Android™ smartphone app. This corpus has the same training 

and testing partition as per [13]: 444 files (438 speakers) for 

training and 130 files (128 speakers) for testing.  There are 74 

and 23 depressed speakers in the training and test data partitions 

respectively as a result of using a PHQ-9 threshold of 10 

(suggested by [39]).  

The DAIC-WOZ is a laboratory-based dataset recorded 

during interviews with a virtual human agent via high-quality 

microphones with minimal background noise. Each interview 

produced up to 20 minutes of speech for each participant, and 

an accompanying clinically validate binary label indicating 

whether the participant was depressed or healthy. The database 

has 107 speakers for training and 35 speakers for testing [22]. 

The average speech utterance durations were 20.5 ± 10.2s for 

SH2-FS and 446.9 ± 227.0s for DAIC-WOZ. For both datasets, 

20% of the training data were held-out as a development set for 

optimizing model training or adaptation. 

The input to the dilated CNN, i.e. the FVTC matrix [16], 

consists of delayed correlations calculated from feature 

contours of short-term acoustic features for each audio 

recording. In this study, we employed four sets of acoustic 

features, namely 3 formants, 13 spectral centroid frequencies 

(SCF) [40], 16 MFCCs and 16 delta MFCCs (dMFCC). 

Unvoiced frames were dropped using voice activity detection 

for both corpora. All correlations were centered and scaled to 

unit variance, based on normalization coefficients learnt from 

the training set. 

As for the dilated CNN structure and hyperparameters, we 

adopted the same architecture as per [16], namely the Adam 

optimizer, batch size was set to 64 for both corpora. The dilation 

rates 𝑛  were set to 1, 3, 7, 15 in the first four parallel 

convolutional layers (i.e. Conv 1 to Conv 4) with filter size of 

15×1. Conv-5 and Conv-6 adopt 3×1 filters with a stride of 2. 

Batch normalization, max pooling and dropout were applied as 

shown in Fig. 1. The seed value was set to 0 for all experiments. 

Both training and adaptation was trained up to 200 epochs with 

early stopping based on the top average F1 score (of two classes) 

on the development set. Class weights were empirically set to 

alleviate the class imbalance issue during training. Dropout rate 

was fixed to 0.3 and 𝜆 for ℓ2 normalization was set to 0.01 in 

all experiments unless stated otherwise. 

Classification performances were evaluated using 

Unweighted Averaged Recall (UAR) ∈ [0,1]  calculated for 

speakers, which is a standard metric to evaluate unbalanced 

classification problems (higher UARs are better).  

4.2. Improved Results using Proposed Domain Adaptation 

The first experiment evaluates the usefulness of domain 

adaptation by comparing three different cases, i.e., within-

corpus experiments and cross-corpus experiments without and 

with adaptation. The learning rate was selected from {1e-3, 1e-

4} for pre-training models and from {5e-3, 5e-4} for adaptation 

in this experiment. The reason for multiple optimum learning 

rates is because the number of trainable parameters varies for 

adapted layers, feature types, and adaptation strategies. It was 

observed that, as expected, for layer-wise adaptation (i.e. less 

parameters), large learning rates are needed whereas for 

cumulative layer adaptation, smaller learning rates often gave 

improved performances. Models were trained and tested either 

on the same datasets (within-corpus) or on different datasets 

(cross-corpus). For the adapted cases, eight possible layer 

combinations (i.e. from Conv-1 to FC-2) were tried, and the top 

results were selected. 

 

 

Figure 2: Comparison of the proposed adaptation strategies 

against systems without domain adaptation for SH2-FS and 

DAIC-WOZ. 

Fig. 2 shows that adaptation consistently yielded 

(sometimes significant) improvements over the within-corpus 

and cross-corpus (without adaptation) cases. This lends support 

to the concept of adaptation, with the biggest gains observed for 

adapt/test on DAIC, although there is no clear adaptation 

strategy winner. Also, layer-wise adaptation performed better 

than or on par with FirstN and LastN on DAIC-WOZ, which is 

however not true for SH2-FS. This suggests that less adaptation 

is needed for DAIC-WOZ. 

4.3. Probing Intermediate Results of the Proposed 

Adaptation Strategies 

This experiment evaluates the respective contributions of 

layer(s) during adaptation to cross-corpus generalizability (i.e. 

which layers need adaptation for better performance?), shown 

in Fig. 3. For layer-wise, each layer was updated separately. For 

FirstN (or LastN), the current layer and its preceding (or 

following) layers were updated.  

 

 

Figure 3: UARs when adapting p layer(s) using proposed 

adaptation strategies for both datasets for both corpora.  

Formants and dMFCC were chosen partly due to their 

strong results in Fig. 2, and partly because they represent two 
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different cases during adaptation: dMFCCs tend to be sensitive 

to channel variability, whereas formants are not. As shown in 

Fig. 3, adaptation involving Conv-5, Conv-6 and FC-1 tended 

to produce better performances over other layers for SH2-FS, 

whereas adaptation involving Conv-1, Conv-3, and Conv-5 is 

beneficial for DAIC-WOZ, albeit slight variations for formant 

and dMFCC. This implies an interesting insight that feature 

representation needs to be re-learned to accommodate the 

environmental changes between clean and naturalistic datasets, 

but the emphasis is different depending on the pre-training 

dataset. If pre-trained on DAIC-WOZ (clean), adaptation of 

Conv-5 or Conv-6 is sufficient for SH2-FS, whereas if pre-

trained on SH2-FS (noisy), apart from Conv-5/Conv-6, detailed 

coordination information (i.e. from Conv-1 to Conv 4) should 

be also adapted for DAIC-WOZ.  

4.4. Impact of Amount of Data for Adaptation 

An important consideration during adaptation is how much data 

are needed for both training and adaption. To investigate this, 

the amount of training or adaptation data was varied from 20% 

to 100%. We selected the adapted system that took formants or 

dMFCC for pre-training and updated Conv-5 (which showed 

good performances for both corpora in Fig. 3). All the 

hyperparameters were identical to previous experiments. 

 

 

Figure 4: Impact of data selection from 20% to 100% (i.e., using 

all data) of either training or adaptation partition on 

depression detection performances for both corpora.  

Results in Fig. 4 show that in general, more data, either for 

pre-training or adaptation, tended to yield better results for both 

datasets, as expected. One exception was for formants, where 

using more than 40% of the data from SH2-FS for pre-training 

did not aid system performances. This is also sensible because 

more noisy data or poor labels (from SH2-FS) are not 

necessarily helpful when tested on DAIC-WOZ.  

4.5. Optimized Results Compared with Existing 

Results/Approaches 

This experiment compares the optimized results with existing 

results on the two adopted datasets. Instead of the fixed 

hyperparameters used in previous experiments, for the adapted 

FVTC-CNN results, a grid search was performed for three 

hyperparameters: pre-training learning rate from {1e-3, 5e-4, 

1e-4} (for better pre-trained models), adaptation learning rate 

from {1e-2, 5e-3, 1e-3, 5e-4, 1e-4} (which is crucial for 

optimized adaptation), dropout rate from {0.3, 0.4} (for 

regularization), alongside three adaptation strategies. Similarly, 

for non-adapted FVTC-CNN results (i.e. within-corpus and 

cross-corpus), grid search was done for three hyperparameters: 

batch size from {64, 128}, learning rate from {1e-2, 1e-3, 1e-4, 

1e-5} (for optimization), and dropout rate from {0.2, 0.3, 0.4}. 

Table 1: Optimized adapted results compared with non-

adapted results and existing published results. F1 scores 

for depression (D) and healthy (H) were also presented. 

 SH2-FS DAIC-WOZ 

 F1 (D/H) UAR F1 (D/H) UAR 

chance-level 0.26/0.62 0.5 0.29/0.61 0.5 

eGeMAPS [13] 0.32/0.79 0.58 0.29/0.82 0.55 

acoustic [8]/[22] 0.33/0.74 0.59 0.41/0.58 0.64 

DepAudioNet [24] - - 0.52/0.70 0.77 

speech landmark [13] 0.47/0.78 0.73 0.86/0.97 0.91 

FVTC-CNN: 

best within-corpus 0.41/0.71 0.66{fmt} 0.63/0.89 0.79{fmt} 

best cross-corpus 0.32/0.78 0.58{dmfcc} 0.50/0.90 0.68{fmt} 

Adapted FVTC-CNN: 

Formants 0.46/0.85 0.68{*, conv-5} 0.62/0.91 0.75{*, conv-5} 

SCF 0.39/0.88 0.63{†, conv-4} 0.57/0.89 0.73{*, conv-1} 

MFCC 0.37/0.76 0.62{†, conv-2} 0.67/0.86 0.88{†, fc-1} 

dMFCC 0.40/0.77 0.65{†, conv-2} 0.67/0.91 0.80{*, conv-4} 

Optimized system configuration was mentioned in {}, in which ‘*’, ‘†’, 

‘‡’ represents layer-wise, firstN, and lastN adaptation. ‘fmt’ means 

formants. 

Many interesting results can be observed from Table 1. For 

instance, all of the optimal results involve adapting 

convolutional layers, i.e. feature representation. Furthermore, 

similarly to Fig.2, when adapting on DAIC-WOZ, layer-wise 

adaptation is preferred, whereas when adapting on SH2-FS, 

more layers (firstN) need to be adapted. This makes sense, since 

for the latter case, information related to the noisy conditions 

and handset variability needs to be learnt. An interesting insight 

can also be drawn from comparing formants and MFCCs, 

namely that more layers need adaptation for MFCC due to its 

sensitivity to handset variability, whereas for formants, only the 

Conv-5 layer needs to be adapted. The adapted results 

outperform the non-adapted cases as well as most existing 

results, confirming the effectiveness of the proposed adaptation. 

The adapted systems yielded relative improvements of 17.2% 

and 29.4% in UAR over non-adapted cross-corpus systems, and 

3.0% and 11.4% over non-adapted within-corpus systems, for 

SH2-FS and DAIC respectively. Finally, the relatively strong 

results in the adapted systems for both datasets suggest that both 

quantity (SH2-FS) and quality (DAIC-WOZ) of data matter for 

pre-training models. 

5. Conclusions 

This study has investigated domain adaptation based on a deep 

learning framework to enhance cross-corpus generalizability. 

Three different adaptation strategies were proposed to adapt 

individual or joint layers, which yielded a boost in performance 

over systems without adaptation. Apart from the effectiveness 

of adaptation, contributions of intermediate CNN layers and 

impact of data needed for training/adaptation were studied, 

finding that it is important to re-learn the feature representation 

to accommodate environmental changes, and that adaptation 

benefits from more training data. Moreover, more layers need 

to be adapted when it comes to noisy conditions, whereas one 

adapted layer may be sufficient when it comes to clean 
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conditions. As future work, this framework can be coupled with 

generative adversarial networks (GANs) to learn environmental 

invariant features that are robust to noise and handset 

variabilities for speech-based depression detection. 
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