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Abstract

Through solving pretext tasks, self-supervised learning
(SSL) leverages unlabeled data to extract useful latent represen-
tations replacing traditional input features in the downstream
task. A common pretext task consists in pretraining a SSL
model on pseudo-labels derived from the original signal. This
technique is particularly relevant for speech data where vari-
ous meaningful signal processing features may serve as pseudo-
labels. However, the process of selecting pseudo-labels, for
speech or other types of data, remains mostly unexplored and
currently relies on observing the results on the final down-
stream task. Nevertheless, this methodology is not sustainable
at scale due to substantial computational (hence carbon) costs.
Thus, this paper introduces a practical and theoretical frame-
work to select relevant pseudo-labels with respect to a given
downstream task. More precisely, we propose a functional es-
timator of the pseudo-label utility grounded in the conditional
independence theory, which does not require any training. The
experiments conducted on speaker recognition and automatic
speech recognition validate our estimator, showing a significant
correlation between the performance observed on the down-
stream task and the utility estimates obtained with our approach,
facilitating the prospection of relevant pseudo-labels for self-
supervised speech representation learning.

Index Terms: Self-Supervised Learning, Speech Representa-
tion Learning.

1. Introduction

Self-supervised learning (SSL) methods usually solve pretext
tasks to learn useful representations, taking advantage of the
available unlabeled data, whether it is text, images[ 1] or audio
samples [2], for better performance on downstream tasks. Thus,
this approach helps improving the results obtained on the con-
sidered task without relying on costly and sometimes imprecise
manual annotations.

For instance, SSL models have recently been proposed to
benefit from large amounts of unlabeled speech data, leading to
state-of-the-art results in various speech processing tasks such
as automatic speech recognition (ASR) or speech enhancement
[3]. Various paradigms have thus been introduced including:

predictive coding [4, 5, 6, 7], pseudo-label learning [8, 9], auto-
encoding techniques [10, 11], generative modelling [12] or con-
trastive learning [13, 14].

Pretext tasks may be defined through a choice of pretext
labels, hereafter referred to as pseudo-labels. The automatic
generation of pseudo-labels is a common technique to conceive
SSL models in many application domains such as computer vi-
sion [ 5], music processing [16] and speech processing [, 17].
In the latter scenario, examples of pseudo-labels include, but are
not limited to, pitch estimators, energy-based features, voicing

state... As a matter of fact, decades of research in signal pro-
cessing offer a wide range of potential features to be considered
as pseudo-labels.

However, the process of selecting the most relevant signal
features among the ones present in the speech processing liter-
ature is still essentially driven by intuition or empirical valida-
tion. Empirical assessment implies a heavy computational load
due to a large number of required pretraining and fine-tuning
steps. This results in a substantial carbon footprint and may lead
to intractability issues. In this work, we aim to provide a clear
procedure for a theoretically motivated and efficient pseudo-
label selection. This is achieved by introducing a function that
estimates the utility of considering a given pseudo-label.

Despite few recent works on the theory of contrastive learn-
ing [18, 19, 20, 21] the literature on the theoretical founda-
tions of pseudo-label-based SSL remains extremely scarce. Lee
and al.[20] proposed a novel approach building a link between
the downstream-task performance and the conditional indepen-
dence (CI) between a pseudo-label and the training samples
given the downstream labels. However, their experiments are
not related to speech and are restricted to pseudo-labels with
an enforced strict conditional independence which is not the
case of traditional speech features. On the other hand, nu-
merous pseudo-labels have been empirically tested to generate
useful latent speech representations [8]. Pascual and al.[8] in-
troduced a novel SSL method for speech referred to as PASE
alongside with a thorough empirical ablation study on the con-
sidered pseudo-labels highlighting the most influential ones. A
similar study has been done on music data for instrument recog-
nition by Hung and al.[16]. Nevertheless, neither works provide
a prior quantitative motivation to justify the pseudo-labels se-
lection that was thus potentially performed with grid or random
searches. In short, and to the best of our knowledge, explaining
and motivating the selection process of pseudo-labels remain
open research questions for SSL on speech data. Therefore, the
main contributions of our work are threefold:

1. Propose a method to compute an estimate of the con-
ditional independence between the pretext task and the
downstream speech samples given the downstream label.

2. Show that this estimate predicts well the utility of a given
pseudo-label for a given downstream task, as it correlates
highly with the downstream performance on two tasks:
ASR (TIMIT) and speaker recognition (VoxCeleb).

3. Release the code base developed with SpeechBrain [22]
for replication and to encourage further investigations.'

The conducted experiments demonstrate that the proposed
method allows a more intelligent, i.e. better informed, pretext
task selection in self-supervised learning settings.

Uhttps://github.com/salah-zaiem/Pseudo-Label-Selection


https://github.com/salah-zaiem/Pseudo-Label-Selection

2. Conditional Independence Estimation

This section details the computation of the conditional indepen-
dence estimate that we propose as a candidate for the measure
of a pseudo-label utility. First, we motivate this choice with
a precise description of the theoretical background. Then, we
describe the computation steps.

Let X, Y and Z be, respectively, the downstream data
points, the downstream labels and the pseudo-labels which we
decide to learn to predict. Let also C be the set of possible down-
stream classes. As an example, if we consider speaker recogni-
tion as a downstream task, X would be the speech samples, Y
the speaker IDs, C the set of unique speaker IDs, and Z a gen-
erated signal feature, such as the fundamental frequency. Let
X = (®i)ieqo,...,my With M being the cardinal of X. Each
x; is a speech sample, represented as a Mel band spectrogram.
Every sample x; has a corresponding downstream label y; and
an automatically generated pseudo-label z;. In the considered
cases, y; is always discrete, whether it is the speaker ID for
speaker recognition or the phone for ASR. To every x;, cor-
responds one value z;, which is the mean of the framewise
pseudo-label values.

As stated above, Lee and al.[20] linked the utility of a
pseudo-label (Z) to the conditional independence between Z
and X given Y. In other terms, given the labels Y, we want
to quantify how much we can possibly predict the pseudo-labels
Z without knowing much about X . In this work, the authors
demonstrated that under certain assumptions, the downstream
classifier error was bounded by a function of the downstream
training set size, and a measure of the conditional dependence.
More precisely, the main theorem shows that the bounding func-
tion decreases linearly with the downstream-task dataset size
(M) and quadratically with the conditional independence, thus
making conditional independence a potential good estimator of
pseudo-label utility. The principal issue with conditional in-
dependence is the difficulty of computing good estimates of
this quantity on realistic data. For our measure, we choose
to rely on a kernel-based independence criterion: the Hilbert
Schmidt Independence Criterion (HSIC) [23]. HSIC has al-
ready been proven successful for textual data in testing statis-
tical dependence between translated sentences[23]. Our choice
is motivated by the fact that kernel-based techniques facilitate
handling multivariate and complex data, as the estimation then
boils down to the computation of a similarity measure between
speech samples.

Here are the steps to compute our CI estimate of a pseudo-
label Z for a downstream task (X,Y"), inspired by [23], with
further details below:

1. Regroup the samples X by the downstream classes C.

2. Embed the speech samples X into fixed-size representa-
tions.

3. Compute for every downstream class ¢ € C, the kernel
matrices K. and L. containing the similarity measures
for the speech samples, and the pseudo-labels, respec-
tively.

4. Compute the independence test for every split group us-
ing K. and L., and aggregate the estimations.

We start by splitting the speech samples according to the
downstream classes. To obtain the similarity matrices, the sec-
ond step aims to compute fixed-size embeddings for the speech
samples. We wanted to avoid any training for this phase, so we
chose the gaussian downsampling method [24] detailed there-
after. After the Mel spectrogram extraction, a speech sample

becomes a sequence of L input feature vectors of dimension D.
The goal is, for varying L, to obtain fixed size embeddings of
size N x D, with N a fixed hyper-parameter for all the samples.
To do so, the sequence is divided into N parts. In each part, we
compute a Gaussian average of the input frames around the cen-
ter of the considered part with the standard deviation 044 being
another hyper-parameter. This leads for any sample to a N x D
tensor without any training procedure.

Therefore for two speech samples x; and x;, holding two
pseudo-label values z; and z;, the coefficients of our kernel sim-

ilarity matrices are:
K;; = K(xs,z;) = cos(GD(z;), GD(x;)), n
Lz‘j = RBF(Zi, Zj),

with GD(.) the Gaussian Downsampling function, cos(., .)
the cosine similarity, and RBF'(.,.) the Radial Basis Function
kernel defined as:

cos(z, 1) = trace(z’z’)
R o
|z — 2’|

/
RBF(z,2) = exp(—1 1),
with o being the width of the RBF kernel and ¢race(.) being
the sum of elements on the main diagonal.

For each group of samples sharing the same downstream
class ¢ € C, we compute the matrices K. and L.. K. and L.
correspond to the definitions above, but restricted to the points
with ¢ as a downstream label. For each downstream class ¢, and
as in [23] the HSIC value is:

HSIC.(X,Z) = %trace(KchLch), 3)
with He = I, — -~ 1,1, , n. being the number of points with
downstream label ¢ and 1, a vector of ones of size n. x 1.

The HSIC value is used to characterise the independence
of two variables. This value corresponds to the Hilbert norm
of their cross-covariance matrix. Intuitively, the HSIC value is
high if samples similar in K are similar in L. Therefore, the
lower this value is, the more independent the two arguments of
HSIC are. We enforce the condition on Y by splitting by groups
of points sharing the same downstream label.

The final value for a given pseudo label and a downstream
task is a weighted mean taking into account the number of sam-
ples per downstream class. So with M being the total number
of points, and n. being the number of points having c as their
downstream label:

HSIC(X,Z|Y) = % SCHSIC(X, Z) x ne. (4)
ceC

3. Datasets and Experimental Setup

This sections details the experiments validating the CI measure
described above. The estimator is evaluated on two speech
tasks that involve different aspects of the audio signal: au-
tomatic speech recognition (TIMIT) and speaker recognition
(VoxCeleb). Thus, three different datasets are used in this work,
one per downstream task considered and a common one for
the self-supervised pretraining (Common Voice). CI is com-
puted on both tasks for a list of pseudo-labels, mainly related
to prosody and aggregates of spectral descriptors, given in Ta-
ble 1. These features are extracted using the OpenSmile library
[25]. They have been chosen among the features described in
the feature selection literature for various speech tasks.
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Figure 1: lllustration of the entire training pipeline including estimation, SSL and the downstream parts. The three steps are depicted:
1. estimate the pseudo-label utility; 2. SSL training with the candidate pseudo-label; 3. Train on the downstream task with the
pretrained SSL model. The candidate pseudo-label is selected among various candidates based on its conditional independence score.

Table 1: Candidate speech pseudo-labels and descriptions.

Feature Description

Loudness Intensity & approx. loudness

FO Fundamental Frequency

Voicing Voicing Decision

Alpha Ratio [26] Ratio of spectrum intensity % 1000 Hz
Zero Crossing Rate  Zero crossing number per frame
RastaSpec LINorm L1 Norm of Rasta Spectrum [27]

log HNR [28] log of Harmonicity to Noise Ratio

3.1. Datasets

The train set of the English Common Voice dataset (version 6.1)
[29] is used for SSL pretraining (900 hours). Common Voice is
a collection of speech utterances from worldwide users record-
ing themselves from their own devices. Hence, the closeness
to natural settings makes it a suitable choice for self-supervised
learning. We remove from Common Voice the sentences lasting
more than 10 seconds, as they often contain long silence parts
due to open microphones.

VoxCelebl [30] is used for the speaker recognition task.
The training set contains 148, 642 utterances from 1251 dif-
ferent speakers. To compute the conditional independence es-
timates, we restricted ourselves, for tractability issues, to the
utterances of 50 different speakers (the detailed list is given in
the released repository?).

TIMIT [31] is considered for the ASR task. It is composed
of a standard 462-speakers training set, a 50-speakers develop-
ment set and a core test set of 192 sentences for a total of 5
hours of clean speech. For the CI estimation, and to get discrete
labels to split on, we cut the sentences at the phone level, using
the official transcripts.

Zhttps://github.com/salah-zaiem/Pseudo- Label- Selection

3.2. Self-supervised training

Based on previous work conclusions [9, 14], apart from the
pseudo-label to be tested, our self-supervised model learns to
reconstruct the input Mel spectrograms, and to compute 40-
dimensioned MFCC feature vectors. These targets are kept
to avoid information loss harming heavily downstream perfor-
mances. Inspired by the PASE model [9, 8], the model consists
of an encoder followed by small predictors limited in capac-
ity. Our pretraining model takes as input the speech samples
as 80-Mel band spectrograms. The frame size is 25ms and hop
size 10ms. The encoder outputs the same number of frames
each corresponding to a 256-dimensional feature embedding.
These new embeddings are the ones that will be subsequently
extracted for the downstream-task retraining. The new features
are then fed to the reconstruction workers and to the pseudo-
label prediction. To facilitate the learning, pseudo-label are
predicted at the frame level. Predictions are made on top of
the encoder with a single linear layer with a PReLu [32] activa-
tion. The final loss is the sum of every predictor’ loss: MSE loss
for the reconstructions, and ¢;-loss for the considered pseudo-
label. The encoder is composed of three distinct parts: a VGG-
like features extractor, a bidirectional LSTM, and a two-layered
dense neural network with leakyRelu activations. The AdaDelta
optimizer is used to update the weights with 1 as a starting learn-
ing rate, p = 0.8 and € = 10~%. For every pseudo-label, the
network is trained for 10 epochs. For the CI estimator, as in the
work presenting the gaussian downsampling method[24], we fix
N = 20 and o4, = 0.07. After a few trials aiming to get
spaced similarity measures, we fixed the RBF kernel width to
o = 0.05. All the architectures details and hyperparameters
can be found in the repository>.

3.3. Downstream Training

After extracting the Mel spectrograms from the downstream
training data, these are fed to the frozen SSL pretrained en-
coder to get the self-supervised features. For the ASR retrain-
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Table 2: EER/PER values when learning to predict multiple
pseudo-labels jointly. “Best” corresponds to the selection of
the pseudo-labels with low CI estimator, ”Worst” for the high
ones. EER is shown for VoxCeleb experiments and PER for
TIMIT. The middle column shows the selected pseudo-labels in
the experiment.

Experiment Pseudo Labels EER/PER

Best VC FO /log HNR / AlphaR 6.40
Worst VC Loud/ZCR/RastaL.1/ Voicing ~ 7.33
Best TIM FO/RastalL1/AlphaR/log HNR  15.35
Worst TIM Voicing/ Loud/ ZCR 16.77

ing, we considered a speech recognition model based on CTC
and attention from the SpeechBrain [22] library. The encoder
is similar to the self-supervised training one. It is combined
with a location-aware attentive recurrent (LiGRU) decoder [33]
jointly trained with the CTC loss [34]. The model is trained for
50 epochs on the official train, dev, and test TIMIT sets. Perfor-
mance is reported in term of Phone Error Rate (PER).

For VoxCeleb, we trained an XVector model[35] for 10
epochs with the frozen SSL features as input. The training
recipe follows the one released within SpeechBrain [22]. The
extracted speaker embeddings are tested on the enrol and test
splits using PLDA [36] as a similarity metric. Performance is
reported in term of Equal Error Rate (EER)

We chose not to use any data augmentation or added noise
during the training to avoid possible interference in our analysis.
As a little variance was observed when changing the random
seeds used for the TIMIT runs (& = 0.20), the results presented
are the mean of three different runs from three different seeds.

4. Results

Figure 2 summarizes the results of the experiment for all the
considered pseudo-labels, reporting the CI estimates and the
downstream performance for each of the two tasks. It shows
the evolution of the conditional independence estimator and the
PER and EER, respectively on TIMIT and VoxCeleb. Despite a
little bump on the loudness pretraining, the two curves seem to
follow the same trajectories.

We are looking for a monotonic relationship between CI
estimates and the downstream error. Two classic assessors of
monotony are considered: Spearman Correlation and Kendall
Tau. When Pearson correlation measures the linear correlation
between the values, Spearman correlation is a Pearson Corre-
lation on the ranks of the values. Kendall T considers all the
pairs of pseudo-labels, and checks whether their order in the CI
estimate is the same for the error rate (i.e. the pair is concordant
). The more concordant pairs there are, the higher Kendall 7 is.

Spearman correlations reach 0.48 for speaker recognition
and a high 0.93 on TIMIT for ASR, while Kendall 7 is respec-
tively 0.41 and 0.81 for the two tasks. The correlations between
CI and the downstream error are logically positive. As the lower
the CI estimate is, the more independent is the pseudo-label
from the speech samples given the label, the lower is the down-
stream error, confirming theoretical insights[20]. Finally, to test
the influence of the downsampling method on our estimate, we
compute the HSIC values based on vectors downsampled with
SVCCA [37]. It led to minor differences with a mean relative
difference of 1.5% on the final CI estimates. This hints to the
robustness of our method to downsampling method variation.
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Figure 2: Left : Phone Error Rate and CI estimate values on
TIMIT for every considered pseudo-label — Right: Equal Error
Rate and CI estimate values on VoxCeleb for every considered
pseudo-label. Error rates appear on the left y axis. We can
observe the monotonic relation between the estimator and the
downstream errors, particularly for TIMIT.

5. Combining Pseudo-labels

Finding the best combination of pseudo-labels certainly in-
volves more than individual estimates as may intervene ques-
tions of shared information. Nevertheless, we wanted to test
our estimator with pseudo-labels regrouped in a naive way. In
a second experiment, for each task, two self-supervised mod-
els are trained to predict two different groups of pseudo-labels.
One learns to predict jointly the ones with the best CI estimator
scores, and one learns the worst pseudo-labels according to our
estimator. The same experimental setup is kept with one slight
change: in this experiment, one of the objectives was to push
further the results. So, the encoder parameters were not frozen
but were updated during the retraining, with an SGD optimizer.

Pseudo-labels selected and results are described in Table 2.
The third column shows EER for the VoxCeleb (VC) experi-
ments, and PER for the TIMIT (TIM) ones. As expected, the
results obtained with the best pseudo-labels are better than the
ones with the worst ones. Besides that, results obtained with the
non-freezed features are better than with freezed ones. This is
probably due to the big distributional shift from the pretraining
dataset (Common Voice) and the downstream ones. Unfreezing
the encoder parameters may allow the encoder to adapt to the
new points’ distribution.

6. Conclusion

In this work, we introduce an estimator of the utility of a
given pretext task as a function of the downstream task to bet-
ter explain and motivate the selection of pretext tasks in self-
supervised learning settings. The estimator evaluates the con-
ditional independence between the pretext label and the speech
samples given the downstream labels, using HSIC as the in-
dependence criterion. The conducted experiments validate the
proposed utility estimator on two tasks: ASR and speaker
recognition. This opens a range of possibilities for finding
and selecting new pretext tasks in self-supervised learning for
speech or other types of data.
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