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Abstract
Deep-Neural-Network (DNN) based speaker verification sys-
tems use the angular softmax loss with margin penalties to
enhance the intra-class compactness of speaker embeddings,
which achieved remarkable performance. In this paper, we pro-
pose a novel angular loss function called adaptive margin cir-
cle loss for speaker verification. The stage-based margin and
chunk-based margin are applied to improve the angular discrim-
ination of circle loss on the training set. The analysis on gradi-
ents shows that, compared with the previous angular loss like
Additive Margin Softmax(Am-Softmax), circle loss has flexi-
ble optimization and definite convergence status. Experiments
are carried out on the Voxceleb and SITW. By applying adap-
tive margin circle loss, our best system achieves 1.31%EER on
Voxceleb1 and 2.13% on SITW core-core.
Index Terms: speaker verification, speaker embedding, circle
loss, adaptive margin

1. Introduction
The modern Deep Neural Network (DNN) based speaker ver-
ification systems have achieved remarkable performances than
the traditional i-vector with Probabilistic Linear Discriminant
Analysis(PLDA) systems [1, 2, 3]. It generally consists of three
parts during the training phase, the DNN model for segment-
level speaker feature extraction, the pooling layer for statistics
extraction, and the loss function for classifying [3, 4]. In re-
cent years, more and more advanced model architectures are
proposed for the improvement in ASV performance. Such as
the extensions of the basic TDNN [5] structure like TDNN-
F [6], ECAPA-TDNN [7], e.g., the primary Residual Network
(ResNet) [8], and their subsequent like Res2Net, ResNeXt [9],
e.g.

In speaker verification, the cross-entropy loss function with
softmax is most widely used for training the speaker embedding
model. However, the previous work shows that it is more suit-
able for classification because it only learns features that are not
discriminative enough [10], which causes larger generalization
errors for unseen speakers. To address this issue, Contrastive
Loss [11] and Triplet Loss [12, 13] were first presented to di-
rectly optimize the similarity between the speaker embeddings
so that the distance of the intra-class embeddings is smaller than
the inter-class embeddings over a threshold. Though they per-
formed well by selecting appropriate training samples, the num-
ber of pairs or triplets increases explosively with the number of
training samples, and the performance depends strongly on the
strategy to search effective pairs or triplets.

On the other hand, some angular-based losses are pro-
posed to boost the discriminative power of face representations
in the face recognition field, including SphereFace [10], Am-

Softmax [14], and Arc-Softmax [15], which are also resultful
for ASV task [16, 17, 18, 19]. To ensure that the embeddings
are more distinguishable in the angular direction, they proposed
to normalize the weights and features of the classifier [20] and
add a margin to tighten the decision boundary. However, the
angular-based losses have two drawbacks:(1) after normaliza-
tion, the network will pay more attention to the low-quality
samples [14] and may amplify the impact of noisy samples. (2)
The performance relys on the super-parameter, which needed to
be obtained through brute force search. To address this, [18, 19]
propose to set the super-parameter according to the cosine angle
dynamically. [21] suggest the Sub-center ArcFace for decreas-
ing the influence from noise.

In this paper, we introduce a novel angular-based losses
called adaptive margin circle loss [22] for speaker verification.
Analysis on gradients shows that circle loss has flexible opti-
mization and definite convergence status when compared with
the other angular-based losses. Then we investigate stage-based
and chunk-based strategies to generate adaptive margin, which
can enhance the intra-class compactness of speaker embed-
dings. Experiments on VoxCeleb and SITW show that circle
loss achieves better performance than the original softmax loss
and the common angular-based losses, Am-Softmax and Arc-
Softmax.

2. From original softmax to angular
softmax loss

2.1. Softmax Loss

First, we give a brief review of the original softmax loss. The
widely used softmax loss is defined as:

Ls = − 1

N

N∑
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log
e

wT
yi

xi+byi∑C
j=1 e

wT
j xi+bj

= − 1
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log
e‖wyi‖·‖xi‖·cosθyi∑C
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‖wj‖·‖xi‖·cosθj

(1)

where C and N is the number of speakers and samples in the
mini batch, respectively. xi is the input of the last classify layer
and wj is the j-th column of the weights in the classify layer,
yi is the ground truth label for the i-th sample. For conve-
nience, we omit the bias bj and the logit wTyixi is equivalent
to ‖wyi‖ ‖xi‖ cosθyi , where θyi is the angle between wyi and
xi. In order to reduce Ls, the network tends to:

• Increase the weight norm ‖wyi‖. So the more training
samples in the i-th class, the larger the corresponding
weight norm tends to be [10].
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• Increase the feature norm ‖xi‖, making the simple sam-
ples have greater feature norm [20].

• Decrease θyi . Assuming that θyi belongs to [0, π
2

].
However, the weight norm ‖wyi‖ and the feature norm ‖xi‖ are
generally useless in the open-set recognition problem. So the
authors [14, 15] proposed to normalize the weight and feature
vectors(making ‖wyi‖=‖xi‖=1), ensuring that the embeddings
xi are more distinguishable in the angular direction.

2.2. Angular Softmax Loss

The general formula of the Angular Softmax Loss function can
be summarized as:

Las = − 1

N

N∑
i=1

log
es·ψ(θyi )

es·ψ(θyi ) +
∑C
j=1,j 6=i e

s·cos(θj)

ψ(θyi) = cos(m1θyi +m2)−m3

(2)

where s is the scale factor that makes the lower bound of Las
close to 0. The m1, m2 and m3 are used to tighten the deci-
sion boundary. When m1, m2, and m3 are used individually,
the losses are denoted as angular softmax (A-Softmax), addi-
tive angular margin softmax (Arc-Softmax), and additive mar-
gin softmax loss (Am-Softmax), respectively.

Without loss of generality, we analyze the gradients of Am-
Softmax under the toy scenario where there are only a single sp
and sn:

Lam−s = −log es·(sp−m)

es·(sp−m) + (C − 1)es·sn
(3)

where sp = cosθyi and (C − 1)es·sn =
∑C
j=1,j 6=i e

s·cos(θj).
sp and sn refer to the positive pairs similarity and negative pairs
similarity, notice that generally, both sp and sn belong to [0, 1].
The gradients of Lam−s with respect to sp and sn are derived
as follows:

∂L

∂sp
= (1− es·(sp−sn−m)

es·(sp−sn−m) + (C − 1)
) · s

∂L

∂sn
= (

(C − 1)

es·(sp−sn−m) + (C − 1)
) · s

(4)

As shown in Figure 1(a), the gradients with both sp, sn are the
same to each other and only depend on (sp − sn). For some
noisy training samples, if sp is small and sn already close to
0(such as A(0.2, 0.2)), both sp and sn still get a large gradi-
ent, which means that the loss function keeps on penalizing sn
with a large gradient though sn has reach optimum. So angular
softmax loss will amplify the impact of noise samples.

3. Adaptive Margin Circle Loss
3.1. Circle loss

In [22], the author provided a self-paced weighting strategy to
enhance the optimization flexibility. The proposed Circle loss
is defined as

Lcircle = −log
es·αp·(sp−∆p)

es·αp·(sp−∆p) +
∑C
j=1,j 6=i e

s·αj
n·(s

j
n−∆n)

αp = Op − sp, αjn = sjn +On
(5)

where αp, αn are the self-paced weight, and Op, On are the
optimum for sp, sn, respectively. ∆p and ∆n are the between-
class and within-class margins. When sp deviates far from Op

or sn deviates far from On, sp or sn will get effective update
with large gradient. If sp or sn has reached its optimum, they
will get no gradient update. Then the authors proposed to re-
duce the hyper-parameters by setting Op = 1 + m, On=-m,
∆p=1-m, ∆n=m. Consequently, the circle loss finally becomes:

Lcircle = −log
es·(m

2−(1−sp)2)

es·(m
2−(1−sp)2) +

∑C
j=1,j 6=i e

s·((sjn)2−m2)

(6)
where the decision boundary is (1− sp)2 + s2

n = 2m2, the arc
of a circle so that the loss function is referred as circle loss. It
aims to optimize sp to 1 and sn to 0. Similar to the assumption
of equation(3), the gradients of circle loss under the toy scenario
can be denoted as:

∂L

∂sp
= (1− es·(2m

2−(1−sp)2−s2n)

es·(2m
2−(1−sp)2−s2n) + (C − 1)

) · 2s · (1− sp)

∂L

∂sn
= (

(C − 1)

es·(2m
2−(1−sp)2−s2n)) + (C − 1)

) · 2s · sn

(7)

(a) Am-Softmax Loss

(b) Circle Loss(m=0.40)

(c) Circle Loss(m=0.35)

(d) Circle Loss(m=0.25)

Figure 1: The gradients of the loss functions. (a)Am-Softmax.
(b,c,d) Circle loss with different margin.

We visualize the gradients of circle loss with different mar-
gin in Figure 1, from which we obtain the following observa-
tions:

• Compared with Am-Softmax, circle loss gives gradually
attenuated gradients on sp and sn. As they gradually



reach their optimal, the gradients correspondingly decay,
reducing the influence of noisy samples. For instance,
point A(0.2, 0.2) gets larger gradients on sp and smaller
gradients on sn, on the contrary point B(0.8, 0.8) gets
larger gradients on sn and smaller gradients on sp.

• In Figure 1(d), if the margin is too small, the gradient
will degenerate into a linear function, and the loss func-
tion keeps on penalizing both sp and sn. In Figure 1(b),
a larger margin allows sp and sn to converge easily, but
the gradient quickly approaches 0 if sp and sn cross the
decision boundary, which means the loss function will
not optimize sp and sn.

Based on the above analysis, we investigate two strategies
to generate an appropriate margin that balances convergence
speed and discrimination of sp and sn.

3.2. Stage-based margin

After training with fixed margin circle loss, we randomly sam-
ple 10% training samples and calculate the mean of sp−mean
and sn−mean of them. The mean radius for each epoch is
defined as: rmean =

√
(1− sp−mean)2 + (sn−mean)2. As

shown in Figure 2 and Table1, with a lower margin m, such as
m = 0.25, it has a lower mean radius and better angle discrim-
ination in the training set. However, its performance is much
worse than the system with m = 0.40. With the unreachable
decision boundary, the circle loss keeps on optimizing sp and
sn and eventually causes the model to overfit the noisy sam-
ples. So that we propose the stage-based margin for circle loss,
which initializes a larger margin for m and decreases it in the
different training stages. The model can converge quickly and
reasonably in the first training stage under loose constraints, and
the constraints on the model become stricter when the model
has learned identification information, making the model have
better angular discrimination when converging.

Figure 2: The change of mean radius during different training
stage with fixed margin circle loss. The number 1, 2 and 3 rep-
resent three stages, from left to right.

3.3. Chunk-based margin

Inspired by [23], the authors propose an adaptive mechanism
based on the magnitude which can measure the quality of the
given sample. This prevents models from overfitting on noisy
low-quality samples. In ASV tasks, we generally randomly
cropped or extended the training sample to L frames, while L is
randomly sampled from the interval [Lmin, Lmax]. The train-
ing sample is harder for the model when L is smaller, so we

propose an adaptive margin based on the chunk width. The for-
mulation is:

m = (1− λ L− Lmin
Lmax − Lmin

)m0 (8)

where λ is hyper-parameters and m0 is the original margin. Pa-
rameter λ controls the effect of chunk width on the margin.
When L is close to Lmax, the margin is smaller and the con-
straints on the model become stricter.

4. Experimental setup
4.1. Dataset

We run experiments on the VoxCeleb dataset [24, 25] and
SITW [26]. The development set of VoxCeleb2 (5994 speak-
ers) is used for training. The whole VoxCeleb1 and SITW are
used as the evaluation set with four publicly available test trails:
VoxCeleb1-O-clean, VoxCeleb1-E-clean, VoxCeleb1-H-clean,
and core-core from SITW.

The equal error rate (EER) and minimum detection cost
function with Ptarget equal to 0.01 are presented to demon-
strate the performance.

4.2. Training details

In our experiments, the input features are the 64-dimensional
log Mel-filterbank energies with cepstral mean and variance
normalization. No voice active detection (VAD) or data aug-
mentation is applied to the training data.

Following the previous work in [8, 27], we use the standard
ResNet-34 architecture to extract speaker embeddings. The ini-
tial number of channels is set to 32, and only the mean of the
frame-level features is used as statistics. Besides, no dropout is
applied in our networks.

All models are trained using the stochastic gradient descent
(SGD) optimizer with momentum 0.9 and weight decay 1e-3.
The learning rate is started with 0.1 and is reduced by 10x when
the training loss reaches stability. Mini-batch size is set to 64.

For every training step, a chunk-width L is randomly sam-
pled from the interval [L1,L2] and each training sample in the
mini-batch is randomly cropped or extended to L frames. We al-
low L1 and L2 to increase when the learning rate drops. Accord-
ing to [28], with a large initial learning rate, the model learns
hard-to-generalize, easily fit patterns. So we give the model
fewer features by applying a smaller chunk-width L to prevent
overfitting in the first training stage. The finally used interval is
set to [200,400], [300,500], and [400,600] in the three training
stages.

When training with the angular sofmtax loss, we follow
the best set in [17], m = 0.2 and s = 30 for Am-Softmax,
m = 0.25 and s = 30 for Arc-Softmax. As to circle loss, s is
set to 60. The cosine similarity is used as the back-end scoring
method.

5. Results
Table 1 summarizes the results with different loss functions.
The first row shows the performance of our baseline system,
which is consistent with the results reported in [27]. Compared
with softmax loss, the second and third row shows that ArcSoft-
max and Am-Softmax achieve a similar improvement in all test
sets. The performance of the circle loss is exhibited in the fol-
lowing sections of Table 1.

We investigate the influence of different margins for circle



Table 1: The results on the VoxCeleb1 test set, the extended and hard test sets (VoxCeleb1-E and VoxCeleb1-H, repsectively), and the
evaluation set of SITW Core. The cleaned trial lists are used for Voxceleb.

Loss VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H SITW Core

EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF EER(%)

Softmax 1.77 0.192 1.79 0.202 3.23 0.306 3.25

Arc-Softmax s=30, m=0.25 1.64 0.170 1.63 0.177 2.91 0.273 2.52

Am-Softmax s=30, m=0.20 1.71 0.161 1.65 0.183 2.83 0.263 2.46

Circle s=60, m=0.25 1.68 0.200 1.74 0.194 2.96 0.275 2.46
s=60, m=0.30 1.75 0.160 1.74 0.189 3.02 0.286 2.52
s=60, m=0.35 1.44 0.161 1.58 0.170 2.72 0.258 2.36
s=60, m=0.40 1.45 0.133 1.56 0.166 2.64 0.240 2.27

Circle-Chunk m: 0.40 1.41 0.145 1.55 0.162 2.67 0.253 2.19

Circle-Stage m: 0.40, 0.35, 0.30 1.35 0.144 1.54 0.165 2.65 0.251 2.24
m: 0.40, 0.35, 0.32 1.31 0.135 1.51 0.163 2.61 0.250 2.13

loss in the fourth row. It is clear that the larger the margin m,
the better the performance of circle loss. And it achieves the
best result when m = 0.40, which reduces 11.6% and 21.8%
in terms of EER and MinDCF in Voxceleb1-O compared with
Arc-Softmax. Besides, there is a performance gap between
m = 0.40 and m = 0.25. As shown in Figure 2, it is help-
ful for circle loss to get better performance by training with the
reachable decision boundary.

(a) The change of sp and sn values during the three training stage.

(b) The cosine similarity distributions for the same
and different speaker spaces in test set.

Figure 3: (a)The similarity distributions during training. (b)The
similarity distributions in test set.

We visualized the positive and negative similarity distribu-
tions of all training epochs in Figure 3(a) and the similarity dis-
tributions of the test set in Figure 3(b). In Figure 3(a), the cir-
cle loss with m = 0.40 (the green one) has a lower positive
similarity but higher performance than Am-Softmax (the black
one), from which we can infer that circle loss with a suitable
margin achieves a more reasonable and favorable convergence
state. Though the performance of circle loss with m = 0.25
(the yellow on) is not goodd as m = 0.40, it achieves the best
angle discrimination of training samples, which is better than
Am-Softmax. Besides, Circle-Stage (the blue one) gets similar
best angle discrimination with m = 0.25 in the last training
stage and maintains good performance in the test set. The per-
formance of Circle-Chunk is slightly worse than Circle-Stage in
our experiments.

As shown in Figure 3(b), the negative similarity distribu-
tions of circle loss and Am-Softmax loss are similar, but cir-
cle loss has better positive similarity distributions than Am-
Softmax loss, especially in the area framed by the dotted line.
The area is enlarged in the figure below, from which we can find
that the false alarm of circle loss is smaller than Am-Softmax,
and the value is the area of the gray area. So that the EER of
circle loss is much lower than Am-Softmax.

6. Conclusions
In this paper, we propose a novel angular-based loss called
adaptive margin circle loss for speaker verification. Circle loss
has flexible optimization and definite convergence status than
the other angular-based losses like Am-Softmax. By select-
ing a fixed appropriate margin, circle loss can achieve promis-
ing results. In addition, we explore two strategies, stage-
based and chunk-based, to generate a more suitable margin,
which can enhance the intra-class compactness of speaker em-
beddings. With adaptive margin circle loss, our best system
achieves 1.31%EER on Voxceleb1 and 2.13% on SITW, core-
core, which is competitive among the existing reported results.
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