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Abstract
This paper presents the details of the SRIB-LEAP submission
to the ConferencingSpeech challenge 2021. The challenge in-
volved the task of multi-channel speech enhancement to im-
prove the quality of far field speech from microphone arrays in
a video conferencing room. We propose a two stage method in-
volving a beamformer followed by single channel enhancement.
For the beamformer, we incorporated self-attention mechanism
as inter-channel processing layer in the filter-and-sum network
(FaSNet), an end-to-end time-domain beamforming system.
The single channel speech enhancement is done in log spec-
tral domain using convolution neural network (CNN)-long short
term memory (LSTM) based architecture. We achieved im-
provements in objective quality metrics - perceptual evaluation
of speech quality (PESQ) of 0.5 on the noisy data. On sub-
jective quality evaluation, the proposed approach improved the
mean opinion score (MOS) by an absolute measure of 0.9 over
the noisy audio.
Index Terms: Speech Enhancement, PESQ, STOI, Si-SNR.

1. Introduction
Video conferencing plays a very crucial part in day-to-day so-
cial interactions. However, video conferencing with far-field
microphones in the presence of other noise sources degrades the
audio quality and impedes the efficiency of the voice communi-
cation. In order to facilitate the development of algorithms for
quality improvement in video conferencing setting, Conferenc-
ingSpeech 2021 challenge [1] was initiated. This challenge pro-
vides a platform for bench-marking speech enhancement tech-
niques recorded from real speakers recorded in meeting room
settings of varying sizes.

The conventional method of processing the multi-channel
audio signal involves the spatial filtering performed via beam-
forming [2, 3]. The method of beamforming performs a de-
layed and weighted summation of the multiple spatially sepa-
rated microphones to provide an enhanced audio signal. The
advancements to the basic beamforming using blind reference-
channel selection and two-step time delay of arrival (TDOA)
estimation with Viterbi post processing has been proposed to
improve the beamforming algorithm [4]. An alternate approach
to beamforming using a generalized eigen value (GEV) for-
mulation [5] involves a spatial filtering in the complex short-
time Fourier transform (STFT) domain. The filter is derived
by solving an eigen value problem that maximizes the variance
in the “signal” direction while minimizing the variance in the
“noise” direction [5] or by keeping the variance in the target di-
rection to be unity while minimizing the variance in the other
directions (minimum variance distortionless response (MVDR)

beamforming) [6]. Recently, unsupervised DNN mask esti-
mator based beamforming was also proposed for GEV based
beamforming [7].

Even after beamforming of multi channel speech, the re-
sultant speech signal contains noise and reverberation artifacts,
which can further be reduced. The speech enhancement based
on neural networks has made noticeable progress in the recent
years. The early works by Xu et. al. [8] targeted the en-
hancement of signals corrupted by additive noise where a super-
vised neural network method was proposed to enhance speech
by means of finding a mapping function the noisy signal to the
clean speech. In a similar manner, speech separation (the prob-
lem of separating the target speaker speech from the background
interference) has seen considerable progress using neural meth-
ods with ideal ratio mask based mapping [9]. For reverberant
speech, Zhao et al., proposed a LSTM model to predict late re-
flections in the spectrogram domain [10]. A spectral mapping
approach using the log-magnitude inputs was attempted by Han
et. al [11]. A mask based approach to dereverberation on the
complex short-term Fourier transform domain was explored by
Williamson et. al [12]. A recurrent neural network model to
predict the spectral magnitudes for dereverberation of speech
was also proposed by Santos et. al [13]. Speech enhancement
for speech recognition based on neural networks has been ex-
plored in [14, 15, 16, 17].

In our proposed work for the ConfercingSpeech challenge,
we have used a combination of FaSNet beamformer model [18]
and a single channel enhancement model using convolutional
long short term memory (CLSTM) [19]. The filter-and-sum
network (FaSNet) [20], a time-domain filter based beamform-
ing approach, first learns frame-level time-domain beamform-
ing filters. The model then calculates the filters for all remaining
channels and the filtered outputs at all channels are summed to
generate the final output. The novel contribution of our work is
the incorporation of the self-attention mechanism (A-FaSNet)
to process data along the channel dimension in place of the
transform-average-concatenate (TAC) module in [20].

Following the beamforming, the single channel speech
signal is dereverberated using CNN-LSTM model. The sin-
gle channel enhancement is a variant of work done by Pu-
rushothaman et. al. [19]. The rest of the paper is organized
as follow. Sec. 2 describes the systems that is being used in
the challenge. The experiments and results on ASR tasks are
reported in Sec. 3. A summary of the work is given in Sec. 4.

2. Proposed system
The proposed approach consists of two stages - (a) Beamform-
ing based on attention FaSNet model (A-FaSNet) model, (b)
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Figure 1: (left) Single stage FaSNet with self-attention (b) Self-attention module. Here, NCC corresponds to normalized cross correla-
tion and DPRNN corresponds to dual path recurrent neural network.

Single channel neural enhancement. 1

2.1. A-FaSNet Model

FaSNet is a time-domain filter-and-sum neural beamformer that
uses trained filters to denoise and combine multichannel audio.
In this work, inspired by the single-stage FaSNet with TAC ar-
chitecture proposed in [20], we propose using a self-attention
layer in the FaSNet model (shown in Fig. 1).

The proposed architecture has three main components, (i)
context compression, (ii) DPRNN (Dual Path Recurrent Neural
Network), and (iii) context decompression.

2.1.1. Context Compression

The input multi-channel speech passes through an encoder net-
work which consists of a 1-D convolution network followed by
a RNN layer. We considered audio signals of length 4 sec for
training and testing, and the sampling frequency used is 16kHz.
The number of channels is fixed as 8. The input data of dimen-
sion 8×64000 (# Channels× # samples per channel) is passed
to a 1-D convolution block which has 64 convolution kernels
of size 256. The stride used is 128. This encoder network con-
verts the data into a tensor of dimension (8 × 64 × 502). For
each frame of the encoded data, four contextual frames from
either side are added, making the encoder output dimension
(8 × 64 × 5 × 502). By fixing the first encoded channel as
reference, normalized cross correlation (NCC) is calculated be-
tween the reference channel and the other channels. The en-
coded multi-channel data is passed through a LSTM network
and appended with NCC features. The resulting embeddings
are passed to the next phase of the model.

2.1.2. DPRNN With Self-Attention Layer

The embeddings from different channels are passed through a
DPRNN layer (as shown in Fig. 1 (left)). The DPRNN splits a
sequential input into chunks with overlaps.

The A-FaSNet model contains attention layers between all
the DPRNN layers for inter-channel processing. We tailor the
attention scheme similar to the one proposed in [21] which used
multi thread dot product attention. The attention layer combines
DPRNN states of different channels.

Let Z = [z0, ..., zT−1] denote the input tensor, where
zt ∈ Rhsize is the DPRNN state for time t while C denotes

1Contact authors: Rohit Kumar, Jayesh MK.

the number of channels and hidden layer size. Let the number
of attention heads be D. For each attention head, the input fea-
tures are transformed into query (Q), key (K), and value (V )
embedding sub-spaces of dimension E as follows:

Qi
t = W i

Qzt + biQ

Ki
t = W i

Kzt + biK

V i
t = W i

V zt + biV

The matrices Qi
t, Ki

t and, V i
t denote the query, key, and value

matrices, respectively, for the ith attention head at time t.
Within each attention head, a product of the query and key ma-
trices is computed which gives the cross-channel similarity. At
the output of each attention head, a soft-max layer is applied.
The attention matrix is given as,

Ai
t = softmax((Qi

t)
T Ki

t)

The value matrix is multiplied by to give attention matrix give
the inter mediate output yi,

yi
t = V i

t (A
i
t)

T

Each yi is passed through a fully connected network with rec-
tified linear unit (ReLU) activation to generate the attention
layer’s output zi.

2.1.3. Context Decompression

The outputs of each DPRNN channel are overlapped and added
and passed through the LSTM layer, followed by applying a
1-D convolution. These operations will result in tensor which
acts as a beamforming filter as it is multiplied with the context
encoded data of the reference channel to give a beamformed
single channel data. This tensor is passed through a decoder
block consisting of 1-D transposed convolution [22] which will
convert the tensor [1, 64, 502] to [1, 64000] array. This is the
final beamformed signal.

2.1.4. Training of The Model

The training target is kept as non-reverberant clean speech. The
model is trained using the Scale Invariant Signal to Noise Ratio
(SI-SNR) cost function [20].
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Figure 2: Block schematic of the single channel neural enhancement model.

2.2. Single Channel Neural Speech Enhacement

Let z(t) denote the output of the A-FaSNet beamformed signal.
The clean reference signal is denoted by x(t). Let X(k, n) and
Z(k, n) denote the short time Fourier transform (STFT) of the
clean reference and the beamformed signal respectively, where
k denotes the frequency bin index and n denotes the frame in-
dex. Then,

R(k, n) = log|X(k, n)| − log|Z(k, n)|, (1)

where R(k, n) is the log magnitude residual STFT.
In the enhancement model shown in Fig. 2, the input is the

log magnitude STFT of beamformed signal. Once this pre-
diction is achieved, the estimate R̂(k, n) can be added to the
beamformed signal Z(k, n) to obtain the clean reference sig-
nal i.e., X̂(k, n). A similar analogy is the spectral subtrac-
tion model where the noise and clean power spectral density
(PSD) gets added in noisy speech PSD. If Gaussian assump-
tions are made for PSD components [23], the Wiener filtering
approach to noisy speech enhancement provides the minimum
mean squared error, where the noisy PSD is multiplied by the
gain of the filter. In a similar manner, we pose the single channel
enhancement problem as an gain estimation problem. The gain
in this case is the ratio of the magnitude STFT of clean signal
to the magnitude STFT of beamformed signal. This gain esti-
mation is achieved using a deep neural network model having a
CLSTM architecture. Following the model training, the speech
enhancement is achieved by multiplying (adding) the estimated
gain with the (log) magnitude STFT of the beamformed signal.

3. Experiments and Results
3.1. Dataset

The clean training speech data is derived from four open source
speech databases: AISHELL-1 [24], AISHELL-3 [25], VCTK
[26], and Librispeech [27]. The speech utterances with SNR
larger than 15 dB are selected for training. The total duration of
clean training speech is around 550 hours. The image method is
performed to simulate room impulse response (RIR). The room
size ranges from 3×3×3 m3 to 8×8×8 m3. The microphone
array is randomly placed in the room with height ranges from
1.0 to 1.5m. This generates a total of around 20, 000 RIRs.

The development test set could be categorized into three
parts: simulated recordings, semi-real recordings, and real
speaker recordings. The 1, 624 clean speech recordings selected
from AISHELL-1, AISHELL-3, and VCTK and the 800 noise
samples selected from music and speech noise (MUSAN) cor-
pus are used for the generation of simulation recordings. The
semi-real recordings consists of 2.35 hours of playback En-
glish speech segments and 2.31 hours of real speaker’s Chi-
nese speech segments. There are more than 200 real record-
ings, which are from 12 real speakers and their ages range from
18− 50 years old.

3.2. Training of A-FaSNet model

The single-stage fasnet model is trained as described in [20]
with self-attention replacing the TAC block. Normalized cross-
correlation (NCC) between channels is used as inter-channel
feature and is fed to the model. The window size of 16ms with
16ms of context on either side is used for each frame with frame
shift of 8ms.

Though the FaSNet model is used for multi speaker speech
separation, for the enhancement task we use single speaker out-
put. Self attention layer implemented across channel dimension
has 64 dimensional embedding spaces and 2 attention heads.

The model is trained for 30 epochs with learning rate set to
0.0001 and weight decay to 1e-5. We use Adam optimization
and a batch size of 4 waveforms with zero padding of the inputs,
implemented in PyTorch version 1.2.0.

3.3. Training of Enhancement Network

The block schematic of the enhancement model is shown in
Fig. 2. The input to the enhancement model is the log mag-
nitude STFT of beamformed speech. The model is trained to
learn the residual gain which is the ratio of the clean magnitude
STFT (clean speech signal) with the beamformed signal mag-
nitude STFT. For training, for every noisy audio file, we have
access to its corresponding clean audio file in simulated setting.
At the input, we use the beamformed output from the FaSNet
architecture and perform STFT with Hanning window of size
320 samples with an overlap of 160 samples, and perform 512
point STFT on those samples.

The architecture of the neural model is based on convo-
lutional long short term memory (CLSTM) networks with 3.2
million parameters. The input 2-D data of sub-band envelopes
are fed to a set of convolutional layers where the first two layers
have 32 filters each with kernels of size of 5 × 21. The next
two CNN layers have 64 filters with 3 × 41 kernel size. All
the CNN layer outputs with ReLU activation are zero padded to
preserve the input size and no pooling operation is performed.
The output of the CNN layers are reshaped to perform time do-
main recurrence using 2 layers of LSTM cells. The first LSTM
layers have 512 cells while the last layer has 257 cells corre-
sponding to the size of the target signal. The training criteria
is based on the mean square error between the target and pre-
dicted output. The model is trained with stochastic gradient de-
scent using Adam optimizer. These enhanced magnitude STFT
is combined with the original phase of the beamformed signal
to perform inverse STFT. This generates the time domain audio
signal back.

3.4. Performance Metrics

The main aspects of interest for speech enhancement is quality
and intelligibility. The speech quality is largely subjective [28]
and can be defined as the result of the judgement based on the



Table 1: Comparison of various objective speech evaluation metrics across models.

Dev set (simulated data) Array PESQ STOI Si SNR

Single MA

Circular

Noisy 1.514 0.824 4.566

Enhanced (baseline) 1.990 0.888 9.248

A-FaSNet (Proposed method) 1.841 0.853 7.71

A-FaSNet + Neural Enhancement (Proposed method) 1.972 0.863 7.71

Linear uniform
Noisy 1.534 0.829 4.720

Enhanced (baseline) 2.035 0.893 4.720

A-FaSNet (Proposed method) 1.863 0.857 7.89

A-FaSNet + Neural Enhancement (Proposed method) 1.995 0.867 7.88

Linear nonuniform
Noisy 1.515 0.823 4.475

Enhanced (baseline) 1.999 0.888 9.159

A-FaSNet (Proposed method) 1.850 0.854 7.74

A-FaSNet + Neural Enhancement (Proposed method) 1.984 0.864 7.74

Table 2: The subjective evaluation results on Eval Data set for
the proposed method (submitted for the challenge), the base-
line system and the noisy signal in terms of mean opinion score
(MOS), S-MOS, dMOS, N-MOS and, CI .

Eval set (real data) MOS S-MOS N-MOS 95%CI
Noisy 2.56 2.93 3.03 0.02

Baseline 3.43 3.55 3.48 0.03
Proposed 3.45 3.38 3.36 0.04

characteristics that allow to perceive speech according to the
expectations of a listener. The intelligibility can be considered
a more objective attribute, because it refers to the speech con-
tent [29]. We use MOS (Mean Opinion Score) for subjective
scoring which is a 5 point scale ranging 1 (highly distorted) to
5(excellent).

The MOS results are tabulated in Table 2. The table con-
tains the following subjective measures:

• MOS: Determination of subjective global MOS.

• S-MOS: Determination of subjective speech MOS (S-
MOS) where the listener is asked to attend only to the
speech signals.

• N-MOS: Determination of subjective noise MOS (N-
MOS) where the listener is asked to attend only to the
background.

Table 2 also contains CI (Confidence Interval) of MOS score.
As seen in the Table 2, the proposed approach yields significant
improvements over the baseline system published by the orga-
nizers. In particular, the global MOS score improves by an ab-
solute measure of 0.9 on the subjective evaluation over the noisy
audio. This proposed model involving A-FaSNet based beam-
forming with the single channel enhancement pipeline also fares
well when comparing with the enhanced baseline. The results
are also consistent in other metrics like S-MOS and N-MOS.

For objective score evaluation, the perceptual evaluation of
speech quality (PESQ) [30], short-time objective intelligibility
measure (STOI) [31] and scale invariant-signal to noise ratio
(SI-SNR) are used as metrics. We would like to note here that
many of these objective quality metrics are more suited for noise

suppression objective (additive noise) as supposed to reverber-
ation artifacts in far-field speech (convolutive noise).

The objective quality measurement results are given in Ta-
ble 1. Here, we have computed the PESQ score on the develop-
ment data shared by the organizers. We observe that, with the
proposed A-FaSNet model, we obtain some gains in the PESQ
score over the noisy signal, and there are further improvements
that can be seen when we apply single channel enhancement
on that. Also one thing to observe is that, even though our pro-
posed model’s PESQ score is less than the baseline development
set which is composed of simulated data, it is performing better
than the baseline model on evaluation set based on the subjec-
tive scores shared by the organisers. As mentioned previously,
eval dataset composed of only real recordings, so we can infer
that our proposed system is performing better than the baseline
system in dealing with real scenarios.

3.5. Model Parameters And Real time factor

FaSNet with Attention Model has 4 million parameters, while
the single channel enhancement residual network has 3.76M
parameters totalling to 7.76M parameters. The the average time
required by a Tesla V100 SXM2 with 32GB RAM to process
1 second audio is 6ms whereas the same for single channel en-
hancement module is 2.6ms. Thus, the proposed methods are
about 100 times real time.

4. Conclusions
The proposed FaSNet with attention gave promising results
for beamforming task. This approach combined with the sin-
gle channel enhancement methods further improved the speech
quality. Several objective and subjective evaluation results high-
light the benefits from the proposed modeling framework. This
research work has been done only for study purpose.
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