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Abstract
Achieving super-human performance in recognizing human
speech has been a goal for several decades as researchers have
worked on increasingly challenging tasks. In the 1990’s it was
discovered, that conversational speech between two humans
turns out to be considerably more difficult than read speech
as hesitations, disfluencies, false starts and sloppy articulation
complicate acoustic processing and require robust joint han-
dling of acoustic, lexical and language context. Early attempts
with statistical models could only reach word error rates (WER)
of over 50% which is far from human performance with shows
a WER of around 5.5%. Neural hybrid models and recent
attention-based encoder-decoder models have considerably im-
proved performance as such contexts can now be learned in an
integral fashion. However, processing such contexts requires an
entire utterance presentation and thus introduces unwanted de-
lays before a recognition result can be output. In this paper, we
address performance as well as latency. We present results for a
system that can achieve super-human performance, i.e. a WER
of 5.0% on the Switchboard conversational benchmark, at a
word based latency of only 1 second behind a speaker’s speech.
The system uses multiple attention-based encoder-decoder net-
works integrated within a novel low latency incremental infer-
ence approach.
Index Terms: ASR, Sequence-to-sequence, Online, Streaming,
Low Latency, Human Performance

1. Introduction
Sequence-to-sequence (S2S) attention-based models [1, 2] are
a currently one of the best performing approaches to end-to-
end automatic speech recognition (ASR). A lot of research has
already been dedicated to boost the performance of S2S mod-
els. Several works [3, 4, 5, 6, 7] have successfully pushed
up the state-of-the-art performance records on different speech
recognition benchmarks and proved the superior performance
of S2S models over conventional speech recognition models in
an offline setting. As so, the next research trend is to apply
S2S speech recognition in practice. Many practical applications
need to work ASR systems in real-time run-on mode with low-
latency [8, 9].

Early studies [10, 11, 12] pointed out that the disadvantage
of an S2S model used in online condition lies in its attention
mechanism, which must perform a pass over the entire input
sequence for every output element. [11, 12] have dealt with
this disadvantage by proposing a so-called monotonic attention
mechanism that enforces a monotonic alignment between the
input and output sequence. Later on, [13, 14, 15] have addi-
tionally resolved the latency issue of bidirectional encoders by

using efficient chunk-based architectures. More recent works
[16, 17, 18, 19, 20, 21] have addressed these latency issues for
different S2S architectures.

While most of the studies focus on model modifications to
make S2S models capable of online processing with minimal
accuracy reduction, they lack thoughtful research on the latency
aspect. In this work, we analyze the latency that the users suf-
fer while interacting with an online speech recognition system,
and propose to measure it with two separate terms computation
latency and confidence latency. While computation latency re-
flects the common real-time factor (RTF), confidence latency
corresponds to the time an online recognizer needs to confi-
dently decide its output. We show that with the support of new
computing hardware (such as GPUs), the computation latency
of S2S models is relatively small (even for big models), and the
confidence latency is a more critical criterion which, for the first
time, we address thoroughly.

To optimize for confidence latency, we consider the online
processing of S2S models as an incremental speech recogni-
tion problem. We propose an incremental inference approach
with two stability detection methods to convert an S2S model
to be used in online speech recognition and to allow to trade-off
between latency and accuracy. Our experimental results show
that it is possible to use a popular Long Short-Term Memory
(LSTM) [22] or self-attention based S2S ASR model for run-on
recognition without any model modification. With a delay of
1.8 seconds in all output elements, all the experimental mod-
els retain their state-of-the-art performance when performing
offline inference. Our best online system, which successfully
employs three S2S models in a low-latency manner, achieves a
word-error-rate (WER) of 5.0% on the Switchboard benchmark.
To the best of our knowledge, this online accuracy is at par with
the state-of-the-art offline performance. We also demonstrate
that it is possible to achieve human performance as measured in
[23, 24] while producing output at very low latency.

2. Sequence-to-sequence Based
Low-latency ASR

In this section, we first describe different sequence-to-sequence
ASR architectures investigated in this paper. We then present
the proposed incremental inference with two stability detection
methods.

2.1. Models

There have been two efficient approaches for making S2S ASR
systems. The first approach employs LSTM layers in both
encoder and decoder networks, while the second follows the
Transformer architecture [25] which uses solely self-attention
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Figure 1: Incremental inference for low-latency S2S ASR

modules to construct the whole S2S network. In this work,
we investigate both of the S2S architectures for the online low-
latency setting.

Our LSTM-based S2S model employs two time-delay neu-
ral network (TDNN) layers [26, 27] with a total time stride
of four for down-sampling followed by several bidirectional
LSTM layers to encode the input spectrogram. In the decoder,
we adopt two layers of unidirectional LSTMs for modeling the
sequence of sub-word labels and the multi-head soft-attention
function proposed in [25] to generate attentional context vec-
tors. In detail, the LSTM-based model works as the following
neural network functions:

enc = LSTM(TDNN(spectrogram))

emb = LSTM(Embedding(symbols))

ctx = SoftAttention(emb, enc, enc)

y = Softmax(ctx+ emb)

In the Transformer model, the down-sampling is handled
by a linear projection layer on four consecutive stacked fea-
ture vectors. The rest of the model architecture is similar to
the Transformer approach proposed for speech recognition in
[6]. We also adopt the layer stochastic technique to efficiently
employ more self-attention layers in both encoder and decoder.

For more details of the model architectures and offline eval-
uations, we would refer the readers to [7] and [6].

2.2. Incremental Inference

Figure 1 illustrates our proposed architecture that allows S2S
models to produce incremental transcriptions on a speech
stream. In the architecture, we handle the two tasks of infer-
ence and stability detection by two separate components in a
processing pipeline. The first step in the pipeline is to wait for a
chunk of acoustic frames with a predefined length (i.e., 200ms),
which is then sent to the inference component. The inference
component needs to accumulate all the chunks received so far
and extend the current stable hypothesis to produce a set of new
unstable hypotheses. This unstable set is then provided to the
stability detection component for detecting a longer stable hy-
pothesis.

As the stability detection is handled separately, we are able
to involve multiple models for the inference to improve recog-
nition accuracy. The involved models can be S2S models with
different architectures or language models trained on different
text data. All of these models can be uniformly combined via
the ensemble technique.

2.3. Stability Detection

Stability detection is the key to make the system work in the
incremental manner and to produce low latency output. For
an HMM based speech recognition system, stability conditions
can be determined incrementally during the time-synchronous
Viterbi search [28, 29, 30]. Due to lack of time alignment in-
formation and unstable internal hidden states (e.g., of a bidirec-
tional encoder), it is not straightforward to apply the same idea
to S2S models. In this work, we investigate a combination of
two stability detection conditions for incremental S2S speech
recognition:

• Shared prefix in all hypotheses: Similar to the immor-
tal prefix [28, 30] in HMM ASR, this condition happens
when all the active hypotheses in the beam-search share
the same prefix. However, different from HMM ASR,
this condition may not strongly lead to an immortal par-
tial hypothesis due to the unstable search network states
in S2S beam-search.

• Best-ranked prefix with reliable endpoint: Since it
may require a long delay for a shared prefix to happen,
we also consider a different approach to improve the la-
tency. We make use of the observation from [29] for
HMM ASR, that the longer a prefix remains to be part of
the most likely hypothesis, the more stable it is. Applied
to S2S models, we need a method to align a prefix with
audio frames, and so be able to find its endpoint in time.
We follow the approach in [18] for the estimation of a
prefix endpoint. First, this approach requires to train a
single-head attention LSTM-based S2S model with the
attention-based constraint loss [18]. Then, the endpoint
of a prefix C is estimated during incremental inference
by finding a time tc such that the sum of all attention
scores from the covering window [0, tc] is at least 0.95.
After that, we can measure ∆ as the difference between
the estimated endpoint and the end of the audio stream.
∆ will be used as the single input to decide the prefix C
is reliable enough and considered to output.

3. Measure of Latency
Latency is one of the most important factors that decide the us-
ability of an user-based online ASR system. A latency measure
needs to reflect the actual delay that the users perceive so that
the improvement of latency can lead to better usability. Strictly,
the latency observed by a user for a single word is the time dif-
ference between when the word was uttered and when its tran-
script appeared to the user and will never be changed again. We
formulate this complete latency as follows.



Let’s assume a word w has been uttered, i.e., completely
pronounced, at time Uw. Let Cw be the time that the ASR sys-
tem can start to process the audio of w and that the ASR system
can confidently infer w after a delay of Dw, the time needed to
perform the inference. The user-perceived latency with regard
to w is then:

Latencyw = Cw +Dw + Tw − Uw

where Tw presents the transmitting time for audio and text data.
Tw is usually small and can be omitted.

For a speech utterance S consisting of N words w1, w2,..
wN , we are interested in the average latency:

LatencyS =

N∑
i

(Dwi + Cwi − Uwi)/N

=

N∑
i

Dwi/N +

N∑
i

Cwi/N −
N∑
i

Uwi/N

=

N∑
i

Dwi/N +

N∑
i

Cwi/N −
N∑
i

(Uwi − δ)/N + δ

= Davg + Cavg − Uavg−δ + δ

In the final equation, the first term represents the computational
delay. If we normalize this term by length of the decoding audio
segments, then we obtain the real-time factor of the ASR sys-
tem. The second term indicates how much acoustic evidence
the model needs to confidently decide on its output. This la-
tency term makes the difference in calculating the latency for
online vs. offline processing. For offline processing, it is always
a constant for a specific test set, since all the offline transcripts
are output at the end of the test set.

To estimate the third term, we usually need to use an ex-
ternal time alignment system, e.g. a Viterbi alignment using an
Hidden Markov Model (HMM) based acoustic model. It is in-
convenient to re-run the time alignment for every new transcript.
To cope with this issue, [18] introduced a fixed delay δ for all
the outputs, and proposed to pre-compute a set of Uavg−δ for
different δ. Later on, only the calculation of Cavg is required
as the average delay can be found by comparing Cavg with the
pre-computed set.

The latency improvement requires the optimization of both
termsDavg and Cavg which we refer to as computation latency
and confidence latency. While computation latency can be im-
proved by faster hardware or improved implementations for the
search, confidence latency mainly depends on the recognition
model.

4. Experimental Setup
Our experiments were conducted on the Fisher+Switchboard
corpus consisting of 2,000 hours of telephone conversation
speech. The Hub5’00 evaluation data was used as the test set,
reporting separate performance numbers for the Switchboard
(SWB) and CallHome (CH) portions.

All our models use the same input features of 40 dimen-
sional log-mel filterbanks to predict 4,000 byte-pair-encoded
(BPE) sub-word units. During training, we employ the com-
bination of two data augmentation methods Dynamic Time
Stretching and SpecAugment [7] to reduce model overfitting.
Adam with an adaptive learning rate schedule is used to per-
form 200,000 updates. The model parameters of the 5 best
epochs according to the perplexity on the cross-validation set
are averaged to produce the final model.
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Figure 2: Confidence latency conversion.

4.1. Latency Evaluation

We evaluate our systems with the decomposed latency terms
from Section 3. Computation latency is measured every time
when incremental inference is performed, while for confidence
latency we adopt a similar approach to [18] to estimate the terms
Cavg and Uavg . First, we build a good HMM-based force-
alignment system and use it to find time alignment for the test
set transcripts. Uavg is calculated as the average of the ending
times of all the transcript words found by the alignment system.
To normalize Uavg between 0 and 1, all the time alignment in-
dexes are divided by their utterance lengths. We then shift the
time indexes to the right with different δ (the delay term) to
compute Uavg−δ . This results in a conversion chart illustrated
in Figure 2. Later on, Cavg is computed the same way for the
systems, and the corresponding delay is extracted from the con-
version chart.

Table 1: Experimental systems and their offline accuracy. The
optimal beam size of 8 was found for all the systems.

ID Model Type #Params SWB CH
S1 6x2 LSTM-1024 162M 5.8 11.8
S2 6x2 LSTM-1536 258M 5.3 11.5
T1 24x8 Transformer 111M 5.8 11.9
E1 S1 + S2 420M 5.3 10.9
E2 S1 + S2 + T1 531M 5.0 10.1

5. Results
5.1. Models and Offline Accuracy

We constructed two LSTM-based models with different model
sizes. The smaller one uses 1-head attention and was trained
with the attention-based constraint loss proposed in [18] to pre-
vent the attention function from using future context, while the
bigger uses 8-head attention and produces better accuracy. The
smaller model S1 can be used either for inference or to extract
the endpoint of a hypothesis prefix following [18]. Addition-
ally, we experiment with a transformer model which has 24
self-attention encoder layers and 8 decoder layers.

Table 1 shows the offline performance of all the investigated
S2S models in this work. The big LSTM model achieved the
best WER performance while the transformer performs worse.
However, the transformer is very efficient to supplement the
LSTM models in the combination. The ensemble of 3 models
(labeled as E3) results in a single system that achieved a 5.0%
WER on the SWB test set, which is on par with the state-of-the-
art performance on this benchmark.



Table 2: Computation and confidence latency when using
shared prefix condition.

Model Beam Size Comp. Conf. SWB
S1 8 0.10 1.50 5.8
S2 8 0.13 1.55 5.6
T1 8 0.19 1.50 5.8
T1 6 0.16 1.35 5.9
T1 4 0.12 0.70 6.6
E1 8 0.18 1.55 5.3
E2 8 0.29 1.50 5.0
E2 6 0.25 1.30 5.1
E2 4 0.20 0.80 5.7

5.2. Latency with Shared Prefix

We use an audio chunk size of 300ms to perform incremental
inference with the systems in Table 1. All inferences were per-
formed on a single Nvidia Titan RTX GPU. Table 2 shows the
WERs for SWB, computation latency and confidence latency
(see Section 3) for different beam sizes when only using the
share prefix strategy for stability detection.

As can be seen, the confidence latency is much larger than
the computation latency in all the experiments and shown to
be a more critical factor for final latency improvement. The
systems involving multiple S2S models require more compu-
tational power, however, they obtain better confidence latency
and accuracy due to the reduction of model uncertainty.

When using a high beam size (e.g., 8), all the experimental
systems can achieve their offline accuracy. This result reveals
interesting observations for making online S2S ASR systems.
First, as this condition is reliable among different S2S architec-
tures, it shows that all S2S ASR models may share the same
characteristic in which they tend not to use further context for
the inference of a given prefix at a particular time. This obser-
vation is consistent with the finding in [18] for the LSTM-based
S2S model. Secondly, it proves that the use of bidirectional en-
coders in online conditions is possible and even results in the
same optimal accuracy as in offline inference. Lastly, it reveals
a unified approach to build online ASR for different S2S ar-
chitectures. As an attractive advantage, this approach does not
require model modifications.

The best system using the shared prefix condition achieved
a WER of 5.0% and suffered an average delay of 1.79 seconds
which is slightly slower than the one with lowest latency.

5.3. Trade-off for Better Latency

To further improve the latency, we use both the stability detec-
tion strategies from Section 2.3. We do the combination via a
logical OR which means the stability is detected as soon as one
of the conditions applies. At the end, we can trade-off latency
against accuracy as the function of the term ∆ – the delay time
needed to finalize the endpoint of a prefix. Figure 3 presents
the trade-off curves for two systems, S1 and E2. In both sys-
tems, the model S1 is used for detecting the best-ranked prefix
condition.

As can be seen, both systems can achieve much better la-
tency (of only 1.30 seconds) with only a slight increase in WER
(e.g., 0.1% absolute). The ensemble system E2 achieves a la-
tency of 0.85 seconds while yielding the same accuracy as S1.
Human performance (5.5%) can be reached with an average de-
lay of only 1 second. Note that, the WER for human perfor-
mance was extracted as the average of the two studies [23] and

Figure 3: Trade-off between latency and accuracy. Beam size of
8 is used for both systems.

[24].

5.4. Compared to Other Works

Table 3 presents the WER performance from recent studies for
online and offline conversational speech recognition systems.
Human WER performance was obtained in 2016 with a com-
bination of different HMM hybrid ASR systems. While until
2019 and 2020, new records on offline conversational speech
was set with end-to-end sequence-to-sequence ASR systems.
We found only a few attempts [31, 32] that make streaming ASR
for this benchmark. In these studies, the accuracy between of-
fline and streaming conditions was shown to be in clear margins.
In a different manner, we show the offline accuracy can be pos-
sibly reached with our proposed low-latency S2S system. Our
best achieved online WER is slightly behind the state-of-the-art
offline performance on the Switchboard benchmark.

Table 3: Results from other works on SWB test set.

Model Train. Data Condition WER
Hybrid [24] (2017) SWB+Fisher Offline 5.5
Hybrid [33] (2018) SWB+Fisher Offline 5.1
S2S [7] (2019) SWB+Fisher Offline 5.2
S2S [34] (2020) SWB+Fisher Offline 4.9
S2S [35] (2020) SWB+Fisher Offline 4.8
CTC [31] (2019) SWB Streaming 9.1
Transducer [32] (2020) SWB Offline 12.8
Transducer [32] (2020) SWB Streaming 17.0
Ours SWB+Fisher Low-latency 5.0

6. Conclusion
We have shown a unified approach to construct online and low-
latency ASR systems for different S2S architectures. The pro-
posed online system employing three S2S models works either
in an accuracy-optimized fashion that achieves state-of-the-art
performance on telephone conversation speech or in a very low-
latency manner while still producing the same or better accuracy
as the reported human performance.
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