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Abstract
Contrastive predictive coding (CPC) aims to learn representa-
tions of speech by distinguishing future observations from a set
of negative examples. Previous work has shown that linear clas-
sifiers trained on CPC features can accurately predict speaker
and phone labels. However, it is unclear how the features ac-
tually capture speaker and phonetic information, and whether
it is possible to normalize out the irrelevant details (depending
on the downstream task). In this paper, we first show that the
per-utterance mean of CPC features captures speaker informa-
tion to a large extent. Concretely, we find that comparing means
performs well on a speaker verification task. Next, probing exper-
iments show that standardizing the features effectively removes
speaker information. Based on this observation, we propose a
speaker normalization step to improve acoustic unit discovery
using K-means clustering of CPC features. Finally, we show
that a language model trained on the resulting units achieves
some of the best results in the ZeroSpeech2021 Challenge.
Index Terms: unsupervised speech processing, self-supervised
learning, acoustic unit discovery, spoken language modeling.

1. Introduction
A core goal of zero-resource speech processing is to develop
methods that can learn robust representations of speech without
supervision [1–4]. These representations can be used to bootstrap
training in downstream speech systems and reduce requirements
on labeled data [5–7]. While a range of self-supervised methods
have been developed for speech [6–11], in this paper we focus
on contrastive predictive coding (CPC) [12].

CPC models are trained to distinguish future observations
from a set of negative examples. The idea is that to accurately
identify future speech segments, the model must learn meaning-
ful phonetic contrasts while being invariant to low-level details
such as background noise. Recent studies [12, 13] show that
separate linear classifiers trained on CPC features can accurately
predict both speaker and phone categories. Features that capture
either phonetic or speaker information can be useful depending
on the downstream task. However, it is unclear whether we can
disentangle or discard either component from the CPC features
e.g., if speaker-invariance is required for a specific task.

In this paper, we investigate how speaker information is
represented in CPC features. We qualitatively (Section 2) and
quantitatively (Section 3) show that the per-utterance mean over
CPC features captures a large degree of the speaker informa-
tion. Based on this observation, we propose a simple speaker
normalization step that effectively removes speaker information
(Section 5). We then show that speaker normalization improves
performance on two downstream tasks: acoustic unit discov-
ery [13–16], and spoken language modeling [17, 18]. Specifi-
cally, we improve an acoustic unit discovery system based on
K-means clustering of CPC features (Section 6) and show that

an LSTM-based language model trained on the discovered units
achieves some of the best scores in the ZeroSpeech2021 chal-
lenge [19] (Section 6.2).

Our speaker normalization approach is very simple, mak-
ing it easy to incorporate into current and future CPC speech
models.

2. Analysis of CPC features
2.1. Contrastive predictive coding

CPC models consist of two components: an encoder, and a con-
text network. First, the encoder maps input audio into a sequence
of embeddings (z1, . . . , zT ). Next, the autoregressive context
network summarizes the embeddings (up until time t) into a
context vector ct. Using this context, the model is trained to
discriminate actual future embeddings from a set of negative ex-
amples drawn from other utterances. Specifically, we minimize
the constrastive loss:

Lt := −
1

M

M∑
m=1

log

[
exp(zᵀt+mWmct)∑

z̃∈Nt,m
exp(z̃ᵀWmct)

]
,

where M is the prediction horizon, Wm is a linear classifier, and
Nt,m is a set containing the negative examples along with the
correct future embedding zt+m.

In this paper, we use the CPC-big model from [17] trained
on the LibriLight unlab-6k set [5]. The encoder consists of
five convolutional layers each with 512 channels, kernel sizes
〈10, 8, 4, 4, 4〉, and strides 〈5, 4, 2, 2, 2〉. Given raw audio sam-
pled at 16 kHz, the encoder extracts embeddings with a hop
length of 10 ms. The context network is a stack of four LSTM
layers with 512 hidden units each. Finally, the linear classifier
Wm is replaced with a single-layer transformer. We use the
outputs of the second LSTM layer as speech features since they
gave the best ABX phone discrimination results in [17]. In the
remainder of the paper we refer to these as the CPC features.

2.2. A visual exploration of the CPC features

Previous work [12,13] has shown that CPC features capture both
phonetic and speaker information. However, it is unclear how the
representation structures this information. We hypothesize that
the per-utterance mean of the features captures a large degree of
the speaker information. This is reasonable under the assumption
that speaker identity remains constant over an utterance with
phonetic content varying over shorter time scales [20].

As a first step towards validating this hypothesis, we explore
the CPC features using UMAP [21]. Figure 1(a) shows the per-
utterance mean of CPC features for six speakers selected from
the LibriSpeech dev-clean set [22]. The different speakers
are clearly separated, showing that the mean does indeed capture
speaker information. In Figure 1(b) we zoom in, visualizing
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Figure 1: UMAP visualizations of CPC features. (a) The per-utterance means of CPC features for six speakers. (b) Per-frame CPC
features for the blue and purple speakersin (a). (c) Per-frame CPC features (standardized per utterance) for the same speakers.

the CPC features as individual frames for two speakers (colored
blue and purple). Although the UMAP embeddings for the
two speakers exhibit similar structure, they are still separated
based on speaker identity. This contrasts with Figure 1(c) which
shows the same features after standardization, i.e. per-utterance
mean and variance normalization of the CPC features. Here the
structures are more aligned and no longer separated by speaker.

3. Speaker verification
In this section, we verify quantitatively that the per-utterance
means of the CPC features capture speaker information. We
show that simply comparing the means performs well on a
speaker verification task. Given a set of enrollment utterances,
the goal of speaker verification is to determine whether a new
utterance belongs to a specific speaker. To set up the task, we ran-
domly select five enrollment utterances for each speaker in the
LibriSpeech dev-clean set, reserving the remainder for test-
ing. We compare three systems across two metrics: classification
accuracy and equal error rate (EER).

The first system is based on the means of the CPC features.
In the enrollment step, we extract CPC features and compute
the mean for each utterance. The means are then aggregated to
find a single speaker embedding. At test time, we use Euclidean
distance to compare the CPC feature mean of an utterance to
the reference speaker embeddings. For classification accuracy,
we select the closest speaker as the prediction. For EER, we
threshold the distance to decide if the test utterance matches a
given speaker.

The second system is a naive baseline that follows the same
approach, but uses Mel-frequency cepstral coefficients (MFFCs)
instead of CPC features. This system should provide a lower
bound on the performance of the CPC-based approach.

The third system is a supervised topline based on the GE2E
loss [23]. We use an open-source implementation trained on
more than 8k speakers.1 This system was specifically trained
for speaker verification using a discriminative loss on a much
larger dataset. Therefore it serves as an upper bound on expected
performance.

Table 1 shows the results for the three approaches. The
CPC-based system clearly outperforms the baseline. While there
is a gap in performance compared to the topline, our goal was to
demonstrate that the per-utterance mean of CPC features results
in discriminative speaker embeddings.

1https://github.com/resemble-ai/Resemblyzer

Table 1: Speaker verification results for the supervised topline
and the CPC- and MFCC-based systems.

EER (%) Accuracy (%)

Topline: GE2E 1.6 98.8
Proposed: Mean of CPC 6.7 95.8
Baseline: Mean of MFCCs 19.8 59.8

4. Speaker normalization
Based on the above observations, we propose standardizing the
CPC features as a simple speaker normalization step. Given an
utterance (or set of utterances) from a single speaker, we remove
speaker information from the CPC features by subtracting the
mean and scaling to unit variance. In the remainder of the paper,
we analyze this speaker normalization step and apply it to two
downstream tasks: acoustic unit discovery, and spoken language
modeling (see Figure 2).

4.1. Acoustic unit discovery

In contrast to continuous representation learning, acoustic unit
discovery involves finding a set of discrete units correspond-
ing to the phonetic inventory of a language [4, 15]. We in-
corporate speaker normalization into a baseline acoustic unit
discovery system built on K-means clustering applied to CPC
features [17]. Concretely, we cluster the speaker-normalized
features using K-means with 50 clusters. The cluster means
are estimated on speech from a subset of 35 speakers in the
LibriSpeech train-clean-100 set.

4.2. Spoken language modeling

To determine whether the discovered acoustic units capture struc-
ture beyond just the acoustics, we consider the task of spoken
language modeling [17, 18]. For this task, we train an LSTM
language model on the units (top of Figure 2). We use the
language model architecture of [17]: three LSTM layers each
with 1024 hidden units. We train for 100k steps with a batch
size of 32k acoustic unit tokens. To evaluate the quality of
the language model, we use several metrics developed specifi-
cally for the goal of language modeling on speech (Section 6.2).
Most of these metrics rely on a score for how probable a spo-
ken segment is under the language model. To score a spoken
segment, we first encode it into a sequence of acoustic units
(q1, . . . , qN ), based on the trained K-means model. We then
compute the log probability of the sequence using the chain rule,
logP (q1, . . . , qN ) =

∑N
k=1 logP (qk|q1, . . . , qk−1), where

P (qk|q1, . . . , qk−1) is the output of the LSTM.

https://github.com/resemble-ai/Resemblyzer
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Figure 2: We propose a speaker normalization method for CPC
features. We incorporate speaker normalization into an acoustic
unit discovery system (based on K-means clustering) and spoken
language model (trained on the clustered codes).

5. Probing experiments
To evaluate the speaker normalization step and further analyze
the information captured by the CPC features, we conduct a
series of probing experiments. We train a set of classifiers to
predict either phone, speaker, or gender labels given a single
CPC feature frame as input. The classifiers are trained on the
dev-clean subset of LibriSpeech with classification accuracy
reported on a held-out set of 400 utterances (10 per speaker). For
the phone classifier, we use the Montreal Forced Aligner [24] to
extract time-aligned phone labels (from 41 phone classes).

We first train a set of linear classifiers. The results (aver-
aged over 10 runs) are shown at the top part of Table 2. These
classifiers assess the degree to which phone, speaker, and gen-
der classes are linearly separable. In the first row we repeat
the experiments in [12, 13], showing that CPC features linearly
separate phonetic, gender and speaker information. The second
row shows that standardizing the features degrades speaker and
gender classification accuracy, but slightly improves phone clas-
sification. This is reasonable given our observation that the mean
captures speaker identity.

How does standardization affect results for clustered CPC
features? This question is of interest for acoustic unit discovery
(see Section 6). In the third and fourth rows of Table 2, we
repeat the linear classifier experiments but on clustered features
(using K-means with 50 clusters). We see that the clustering
step reduces accuracy across all tasks. In particular, speaker and

Table 2: Probing experiments where phone, speaker and gender
classifiers are trained on CPC features. Clustering is performed
on the CPC features using K-means with 50 clusters.

Accuracy (%)

Standardized Clustered Phone Speaker Gender

Linear classifiers:
7 7 75.7 93.4 96.7
3 7 77.0 14.8 55.3
7 3 46.6 3.4 53.5
3 3 48.5 3.1 50.9

Non-linear classifiers:
7 7 80.1 99.5 99.8
3 7 79.7 89.0 98.1

gender accuracy is reduced almost to the level of chance (2.5%
and 50% respectively). This shows that the clusters primarily
capture phonetic information with standardization improving
performance.

The experiments above investigated linear separability, but
to what extent do the features capture phone, speaker and gender
properties more generally? To answer this question, we train
non-linear classifiers on the CPC features. Specifically, we use
multi-layer perceptrons with one hidden ReLU-layer containing
1024 units. Results are shown at the bottom of Table 2. Overall
the non-linear classification scores are higher than their linear
counterparts. However, standardization still reduces speaker clas-
sification accuracy (by over 10% absolute). On the other hand,
phone and gender accuracies remain similar. This indicates that
while standardization removes speaker and gender information
in the linear case, these characteristics are still present in the
features (albeit non-linearly).

6. Results on downstream tasks
6.1. Acoustic unit discovery

ABX phone discrimination tests. In this section, we use ABX
phone discrimination tests [25] to evaluate the acoustic unit
discovery system. These tests ask whether triphone X is more
similar to triphone A or B. Here A and X are instances of the
same triphone (e.g. “beg”), while B differs in the middle phone
(e.g. “bag”). For the within-speaker test, A, B, and X , are all
taken from the same speaker. The across-speaker test aims to
measure speaker-invariance by taking A and B from the same
speaker, but X from a different speaker. ABX is reported as an
aggregated error rate over pairs of triphones. For the similarity
metric between encoded segments, we use the average cosine
distance along the dynamic time warping alignment path.

Table 3 shows ABX results on the dev-clean and
dev-other subsets of LibriSpeech. Without clustering (rows
one and two), speaker normalization slightly improves ABX
scores. For the clustered CPC features (rows three and four),
ABX is performed over one-hot encoded cluster codes. In this
case, speaker normalization improves ABX by more than 13%
relative on both the within and across speaker tests.

Clustering metrics. To further analyze the discovered
acoustic units, we compute four metrics used to evaluate clus-
tering quality. By mapping each unit to the overlapping phone
label in the forced alignment, we evaluate the clustering quality
in terms of the adjusted rand index (ARI), adjusted mutual infor-
mation (AMI) [26], homogeneity, and completeness [27]. All
these metrics are in the range [0, 1], where higher is better.

Table 4 shows the results on the dev-clean subset of Lib-
riSpeech. Standardization gives consistent improvements across
the metrics. However, the clustering scores are relatively low

Table 3: ABX error rates for CPC features and MFCCs.

Within (%) Across (%)

Standardized Clustered clean other clean other

CPC features:
7 7 3.41 4.85 4.18 7.64
3 7 3.41 4.81 4.12 7.49
7 3 6.38 10.22 8.26 14.86
3 3 5.38 8.80 6.56 12.79

Baseline: MFCCs 10.95 13.55 20.94 29.4



Table 4: Clustering metrics calculated on the K-means clustered
CPC features, with and without prior standardization.

Standardized ARI AMI Homogeneity Completeness

7 0.221 0.450 0.477 0.425
3 0.255 0.488 0.517 0.462

overall. This indicates that despite good phone discrimination
scores, there is still a large gap between the discovered acoustic
units and the ground-truth phonetic transcriptions.

Number of clusters. Next, we study the effect of the num-
ber of clusters on ABX score. Table 5 reports ABX score (av-
eraged over dev-clean and dev-other) for different num-
bers of clusters. In contrast to the findings in [17] (where 50
clusters gave the best results), we observe that increasing the
number of clusters can improve ABX error rates.

Feature selection. Finally, we investigate feature selection
to improve acoustic unit discovery. The idea is that speaker infor-
mation might primarily be captured in a few specific dimensions
of the CPC features. To test this, we train a random forest to
predict speaker labels for each frame of the CPC features. We
then prune the dimensions according to their importance rank-
ing i.e., removing the dimensions that are most predictive of
the speaker first. Table 6 shows ABX results (averaged over
dev-clean and dev-other) as a function of the number of
retained dimensions. We can see that ABX scores improve while
pruning up to half of the feature dimensions.

6.2. Spoken language modeling

Lexical: Spot-the-word. To evaluate language models at the
lexical level, we use the spot-the-word task from [30]. In this
task, models are presented with pairs comprising of an existing
word and a similar non-word (e.g., “brick” and “blick”). The
goal is to distinguish the word from the non-word by assigning
it a higher probability. An average classification accuracy is
calculated over all word/non-word pairs. Table 7 reports spot-
the-word results on the sWUGGY [17] test set. The set consists
of 40k word/non-word pairs, generated using WUGGY [31] and
synthesized using Google Cloud Text-to-Speech.

Syntactic: Acceptability judgments. At the syntactic
level, we use grammar acceptability judgments to test the lan-
guage models. This is similar to the spot-the-word task, but the
goal is to distinguish grammatical from ungrammatical sentences
(for example, “the dogs eat meat” versus “the dogs eats meat”).
Table 7 reports classification accuracy on sBLIMP [17], a spoken
version of the BLIMP [32] benchmark. The sBLIMP test set con-
sists of 64k sentence pairs covering 12 grammar categories, e.g.,
anaphor agreement, island effects, and subject-verb agreement.

Table 5: ABX results for different numbers of K-means clusters.

# clusters 50 100 150 200

Within 7.09 6.73 6.74 6.68
Across 9.68 9.15 9.20 9.09

Table 6: ABX results after pruning the CPC dimensions that are
least informative for predicting speaker.

# features 64 128 192 256 320 384 512

Within 8.88 7.74 7.05 6.88 6.79 7.04 7.09
Across 11.90 10.62 9.97 9.64 9.44 9.49 9.68

Table 7: Results on the lexical, syntactic, and semantic spoken
language modeling tasks.

Semantic

Lexical Syntactic Synth. Libri.

Topline:
Forced Align 92 63 8.5 2.4
Phone 98 67 12.2 20.2
RoBERTa 96 82 33.2 27.8

High budget:
BERT baseline 68 56 6.3 2.5

Low budget:
LSTM baseline 61 53 7.4 2.4
LSTM speaker-norm 65 54 9.2 -1.1
Chorowski et al. [28] 64 53 5.2 -0.9
Maekaku et al. [29] 61 54 7.0 -1.2

Semantic: Similarity judgments. We use human similarity
judgments between word pairs to assess the semantic informa-
tion captured by the language models. First, human evaluators
score pairs of words (e.g., “abduct” and “kidnap”) based on their
semantic similarity. Next, we extract a fixed-dimensional rep-
resentation for each word by pooling the outputs of a hidden
layer of the language model. Specifically, we follow [17] by
applying min-pooling to the outputs of the second LSTM layer.
Finally, we compute the cosine similarity between the two rep-
resentations and evaluate how well it compares to the human
similarity scores with results reported as the Spearman’s rank
correlation coefficient. Table 7 reports semantic similarity scores
on the sSIMI benchmark [17], a combination of 13 existing se-
mantic similarity and relatedness tests including both synthetic
and natural speech.

Results summary. In the bottom section of Table 7, we
compare our approach (LSTM speaker-norm) to the three low-
budget models submitted to the ZeroSpeech2021 challenge [17,
28, 29]. In the low-budget category, the LSTM language model
trained on clustered speaker normalized CPC features scores
the best on the lexical and syntactic tasks. This shows that
better ABX scores (through speaker normalization) translate into
better results on spoken language modeling. However, there
remains a large gap in performance compared to the supervised
topline systems. While the toplines score well on the lexical task,
the syntactic and semantic results show that there is still room
for improvement (despite access to ground-truth transcriptions).
This suggests that syllable- or word-like units may be required
for these tasks. Finally, while our approach doesn’t match the
performance of the high-budget BERT baseline, we expect the
speaker normalization step to benefit this model as well.

7. Conclusion
We proposed a simple speaker normalization method for con-
trastive predictive coding (CPC) models. By analyzing a CPC
model, we found that speaker information is largely captured by
the per-utterance mean of the features. Based on this observation,
we showed that standardizing the features effectively removes
speaker details. We incorporated this speaker normalization step
into systems for acoustic unit discovery and spoken language
modeling, improving the ZeroSpeech 2021 Challenge baselines.
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