
Dynamic Encoder Transducer: A Flexible Solution For Trading Off Accuracy
For Latency

Yangyang Shi, Varun Nagaraja, Chunyang Wu, Jay Mahadeokar, Duc Le, Rohit Prabhavalkar, Alex
Xiao, Ching-Feng Yeh, Julian Chan, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer

Facebook AI
yyshi@fb.com

Abstract
We propose a dynamic encoder transducer (DET) for on-device
speech recognition. One DET model scales to multiple devices
with different computation capacities without retraining or fine-
tuning. To trading off accuracy and latency, DET assigns differ-
ent encoders to decode different parts of an utterance. We apply
and compare the layer dropout and the collaborative learning for
DET training. The layer dropout method that randomly drops
out encoder layers in the training phase, can do on-demand layer
dropout in decoding. Collaborative learning jointly trains mul-
tiple encoders with different depths in one single model. Exper-
iment results on Librispeech and in-house data show that DET
provides a flexible accuracy and latency trade-off. Results on
Librispeech show that the full-size encoder in DET relatively
reduces the word error rate of the same size baseline by over
8%. The lightweight encoder in DET trained with collaborative
learning reduces the model size by 25% but still gets similar
WER as the full-size baseline. DET gets similar accuracy as a
baseline model with better latency on a large in-house data set
by assigning a lightweight encoder for the beginning part of one
utterance and a full-size encoder for the rest.
Index Terms: Transducer, Transformer, Layer Dropout, Col-
laborative Learning

1. Introduction
Due to the ubiquity of voice assistants in smartphones, smart
speakers, and smart wearable devices, privacy is getting more
and more attention. On-device automatic speech recognition
(ASR) [1, 2, 3, 4] performs the speech recognition entirely on
the device. Without streaming audio from the device to the
server, on-device ASR provides better privacy protection than
server ASR system.

Recurrent neural network transducer (RNN-T) [5, 3, 6] has
been widely applied to on-device ASR. Like many other End-
to-end (E2E) models [7, 8, 9, 10, 11, 12], RNN-T directly opti-
mizes the transduction from the acoustic feature sequence to la-
bel sequence by combining acoustic model, pronunciation, and
language model all into one neural network. RNN-T intrinsi-
cally supports online streaming speech recognition. More im-
portantly, RNN-T models have a much lower footprint than hy-
brid systems, which is more suitable for on-device ASR. In this
work, we used an alignment restricted transducer model [13]
which gives faster training and better token emission latency.

Recently better accuracy and real-time factors have been
achieved by replacing LSTM encoder with transformer [14]
and its variants (e.g. Conformer [15], Emformer [16], etc.)
in sequence transducer [17, 18, 15, 19, 20]. In this work, we
adopt the Emformer transducer in on-device ASR for low la-
tency speech recognition. The emformer transducer model ap-
plies a deep structured transformer as the encoder. Each layer

in the encoder contains millions of parameters involving high
computation cost and memory consumption. On-device ASR
often needs accuracy, computation cost, and latency trade-off to
achieve the best user experience for different devices. A high-
end device can support a big model to deliver good accuracy
and a smooth user experience. In contrast, a low-end device
may only support a smaller model with less computation cost
and memory consumption. Trade-off sometimes is also needed
even in decoding a single utterance. In [21], inference com-
putation cost reduction can be achieved by pivoting different
computation pathways for different parts of the utterance.

Neural network model pruning [22, 23, 24], quantiza-
tion [25, 24], low rank matrix factorization [26, 27, 28] and
knowledge distillation [29, 30] have been applied to reduce
the footprint and computation cost without significant accuracy
loss. However, many of these methods involve finetuning or
retraining, which are not flexible. In this work, we propose a
dynamic encoder transducer (DET) for on-device ASR with a
flexible trade-off between computation cost and accuracy.

We apply layer dropout and collaborative learning for DET
training. Layer dropout [31] was originally proposed to sta-
bilize and regularize deep convolution neural network train-
ing. The work [32] applied the layer dropout to train a deep
transformer model for speech recognition. The work [33] used
layer dropout as a structured dropout method to prune the
over-parameterized transformer model for many natural lan-
guage processing tasks. Collaborative learning [34] leverages
the strengths of auxiliary loss, multi-task learning, and knowl-
edge distillation to improve the deep neural classifier’s gener-
alization and robustness to label noise. Our work [35] applied
collaborative learning in transformer transducer to jointly train
the teacher and the multiple students all at the same time from
scratch. The weight sharing among teachers and students im-
proves the teacher model’s performance and all of the student
models.

We apply DET in two scenarios for accuracy and compu-
tation cost trade-off. The first one is flexibility in tuning en-
coder depth as a pruning method for a specific device in model
deployment. The other one is dynamically applying different
encoders in DET for decoding different parts in one utterance,
which is similar to the scenario discussed in [21, 36]. Note the
work [21, 36] is about LSTM based encoder.

2. Dynamic Encoder Transducer
This section introduces the sequence transducer modeling, the
emformer based encoder, the layer dropout method, the collab-
orative learning method and the DET.
2.1. Sequence transducer
The sequence transducer consists of an encoder, a preditor,
and a joiner. Given a sequence of acoustic feature vectors

ar
X

iv
:2

10
4.

02
17

6v
1

 [
cs

.C
L

]
 5

 A
pr

 2
02

1

X = {x1, ..., xT } with length T , the encoder fe generates a
sequence of representations He = {he

1, ..., h
e
T }.

{he
1, ..., h

e
T } = fe(X). (1)

Let Y = {y1, ..., yU} in length U where yu ∈ Y be the
sequence of output units. We define Ȳ = Y ∪ {φ}, where φ
is the blank label. The predictor fp generates a sequence of
representation for the output sequence prefixed with the blank
label as follows:

{hp
1, ..., h

p
u} = fp({φ, y1, ..., yu−1}). (2)

The joiner f j combines the output representations from the
encder and the predictor to generate the logits ht,u.

ht,u = f j(he
t , h

p
u). (3)

A softmax function is applied to produce the posterior distribu-
tion of the next label yu ∈ Ȳ

P (yu|x1:t, y1:u−1) = softmax(ht,u). (4)

Using forward-backward algorithm, the posterior of a se-
quence of output units Y = {y1, ..., yU} where yu ∈ Y as
follows:

P (Y |X) =
∑

A∈B−1(Y)

P (A|X), (5)

where A is one alignment for the sequence of output Y . Each
label in A is from label set Ȳ . B is the operation to remove the
blank from the alignment. The sequence transducer defines the
loss as

LTr = −log(P (Y |X)). (6)

2.2. Emformer based encoder
We use emformer transducer [16] as a basic model architecture
for low latency streaming on-device ASR. The emformer modi-
fies the transformer model with the block processing [37, 38] to
support low latency streaming speech recognition. In training,
the emformer uses an attention mask and a “right context hard
copy” trick to constrain the receptive field for self-attention. In
decoding, the emformer applies a cache method to optimize the
efficiency optimization by saving the computation for the key
and value in self-attention for the left context.

In the emformer transducer, the encoder accounts for most
of the computation cost. The encoder is much deeper than the
predictor (e.g., encoder usually has 10 to 20 layers, predic-
tor only has 2 to 3 layers). More importantly, the sequence
length T in X = {x1, ..., xT } is much longer than U in
Y = {y1, ..., yU}. Reducing the number of layers in the em-
former based encoder saves the computation cost. DET fo-
cuses on using different encoders with various depths for flexi-
ble trade-off accuracy and computation cost in this work.

2.3. Layer dropout
The model becomes robust in decoding with missing layers by
randomly masking out some layers in training. The work [33]
investigated different layer pruning strategies and found that
pruning every other layer performed best in inference.

In this work, we also investigate every other layer of
dropout in the training phase. Rather than applying dropout
to each layer at random, we apply dropout to every other layer,
resulting in a more structured dropout. In decoding, only the
layers dropped out in training are pruned for decoding. Every
other layer dropout provides less flexibility but makes the train-
ing and decoding more consistently.

Figure 1: Collaborative learning for sequence transducer
model for on-device ASR. Two encoders with different depths
are used. E2 shares all its layers with E1 except the last layer.
All the shared nodes by these two encoder are in green.

2.4. Collaborative learning
Figure 1 gives one DET model with two encoders E1 and E2.
The encoder E2 share all its layers with E1 except its last layer.
Given X = {x1, ..., xT }, multiple sequence of acoustic rep-
resentations Hi = {hi

1, ..., h
i
T } are generated from different

encoders i. In Figure 1, i ∈ {1, 2}.

{hi
1, ..., h

i
T } = f i(X). (7)

Combining with the exact predictor’s output {hp
1, ..., h

p
u}, the

DET model generates multiple transducer losses LTri by pass-
ing the different encoders’ output through the same joiner.

Similar to the work [39], the collaborative learning [35]
also use the auxiliary supervision based on context-dependent
graphemic state (i.e., chenones) [40] prediction. Let C =
{c1, ..., cT } be the forced alignment label sequence for X . The
posterior distribution of ct from encoder i is obtained as fol-
lows:

P i(ct|xt) = softmax(fpro(hi
t)), (8)

where fpro is a multi-layer perception shared by all encoders.
Given the posterior distribution, we can get the sum of the cross-
entropy losses for all the encoders.

LCE = − 1

T

∑
i

∑
T

log(P i(ct|xt)). (9)

The auxiliary cross-entropy loss introduces the forced
alignment information into DET training and constructs the
bridge to do the knowledge distillation from the full-size en-
coder e1 to the lightweight encoders ei where i > 1. As shown
in Figure 1, Kullback–Leibler divergence loss is used.

LKLD = − 1

T

∑
i>1

∑
T

P e1(ct|xt)log(
P e1(ct|xt)
P i(ct|xt)

). (10)

where e1 the deepest encoder in DET is used as a teacher for all
the rest encoders. Note the gradient from LKLD is not back-
propagated to e1. The final loss L to train DET model is

L = αLCE + βLKLD +
∑
i

LTri , (11)

where α and β are the interpolation weight for the cross-entropy
loss and the Kullback–Leibler divergence loss, respectively.

2.5. Applications of dynamic encoder transducer

Figure 2 illustrates two application scenarios of the DET model.
The figure’s middle part shows a typical pruning process where
one specific depth encoder is selected from the DET. This pro-
cess happens when we need to optimize the on-device ASR
model computation cost for a specific device. The right part
shows the decoding uses two different encoders e1 and e2
jointly to get the representation for acoustic features:

{he
1, ..., h

e
T1} = fe1({x1, ..., xK}), (12)

{he
K+1, ..., h

e
T } = fe2({xK+1, ..., xT }). (13)

Decoding using multiple encoders jointly on one utterance
provides a flexible solution to trade-off accuracy and computa-
tion cost for a selected device. It is helpful to deal with the one-
shot assistant queries with wake words. When a user invokes a
voice assistant with a wake word and then speaks a query, the
on-device ASR often needs to process the user’s query as well
as the wake word. Note audio bursting happens, where the au-
dio corresponding to the wake word is available for the ASR
engine all at once. The user-perceived latency will be improved
if a smaller encoder processes the audio bursting with less com-
putation cost. Additionally, there is a cold-start latency when
users start to interact with the voice assistant in a new session.
The device needs to load the ASR model into memory. Loading
a small encoder initially and gradually loading the rest of the
encoder layers in parallel reduces the on-device ASR engine
cold-start latency.

Figure 2: Two usage scenarios of the DET. The middle part
shows that one specific depth encoder is selected. The right
part shows that different depth encoders are used for decoding.

3. Experiments
To evaluate the performance of DET, we carry out two sets of
experiments one encoder decoding and dynamic encoder de-
coding. One encoder simulates the situation that one specific
encoder needs to be selected to meet a device’s computation ca-
pacity. Dynamic encoder decoding uses multiple encoders in
DET for decoding one utterance.

3.1. Data
The experiments use LibriSpeech corpus [41] and a large in-
house dataset. LibriSpeech is an open-source speech corpus that
contains 1000 hours of speech derived from audiobooks in the
LibriVox project. Approximately 30 hours of data is used for
development and evaluation, which are split into clean subsets
and other subsets.

The in-house dataset consists of data from Voice Assistant
and Open Domain. All data is anonymized with personally
identifiable information (PII) removed. The Voice Assistant
data contains 68k hours of data from human transcribed data

from 20K crowd-sourced workers recorded via mobile devices,
1K hours voice commands, sampled from production traffic and
23k hours of voice command data generated from an in-house
TTS system. The Open Domain data includes 13K hours of data
from public social media English videos that are anonymized
with PII removed and annotator transcribed and 1.5M hours
from the same source with a large offline model’s transcriptions.

In evaluation, we use assi and dict dataset. The assi is
13.6K manually transcribed de-identified utterances from in-
house volunteer employees, which begin with a wake word.
The dict is 8 hours open domain dictation from crowd-sourced
workers recorded via mobile devices. All the evaluation data
is anonymized with personally identifiable information (PII) re-
moved. For both Librispeech and in-house dataset, we gener-
ate forced alignment using a context and positional dependent
graphemes (i.e., chenones) [40] based hybrid system.

3.2. Experiment Setting
In all the experiments, we use 80-dimensional log Mel filter
bank features at a 10ms frame rate. To increase the training
robustness, SpecAugment [42] without time warping are used.
For the Librispeech experiment, we map the 80-dimensional
features by a linear layer to 128 dimension vectors. A 512-
dimensional vector is formed by concatenating four continuous
128-dimensional vectors, which is the input to Emformer. For a
large in-house dataset, a 480-dimensional superframe is formed
by concatenating six continuous features. A linear layer maps
the superframe to a 512-dimensional vector.

Each Emformer uses eight heads of self-attention with input
dimension 512. The output from the self-attention goes through
a feed-forward layer with dimensionality 2048. We set dropout
0.1 for all layers across all experiments. The segment sizes are
160ms in LibriSpeech experiment and 300ms for in-house data
experiments. The left context sizes are 1.2s for Librispeech and
1.8s for in-house data. The 40ms and 60ms look-ahead con-
texts are used for LibriSpeech and in-house experiments, re-
spectively. The 512-dimensional output from the stack of Em-
former layers goes through a layer norm followed by a linear
layer. Finally, the output from the encoder in the transducer
model is a 1024-dimensional vector.

The predictor consists of a 256-dimensional embedding
layer, three LSTM layers with 512 hidden nodes, and a linear
projection layer with 1024 output nodes. The combined 1024
dimensional embeddings from the encoder and the predictor go
through a Tanh activation and then another linear projection to
the final output with 4096 sentence pieces [43].

All models are trained with the adam optimizer [44] us-
ing warming-up updates. The learning rate is 1e-3 for all the
experiments. In Librispeech experiments, the last checkpoint
from 120 epoch training is for evaluation. For large in-house
data, we use the checkpoint from 800K updates for evaluation.
In collaborative training, we set both α and β to 0.5. In layer
dropout, the optimal dropout rate for each layer is 0.1 obtained
by grid search.

All the model training uses 32 Nvidia V100 GPUs. We
evaluate the latency by the real-time factors (RTFs) and speech
engine perceived latency (SPL). SPL measures the time from
speech engine gets the last word from user utterance to speech
engine transcribes the last word and gets the endpoint sig-
nals. For in-house data experiment, the SPL evaluation uses the
in-house static endpointer, neural endpointer, and transducer’s
end-of-sequencing symbol. We use low-end android device for
latency evaluation. We sample 100 utterances from clean and
assi for latency evaluation for Librispeech and in-house data,

respectively.

arch # layers clean other #params
base 20 3.62 9.86 77M

base pruned 14 31.42 49.50 58M
base 14 3.87 10.35 58M

random 20 3.75 9.38 77M
6-16:2 14 4.80 12.45 58M
1-16:3 14 4.35 11.56 58M
group 20 3.97 10.09 77M
1-16:3 14 4.32 11.38 58M

cl 20 3.54 9.04 77M
cl 14 3.66 9.60 58M

Table 1: WER and RTFs on LibriSpeech data for DET. “base
pruned” directly prunes the full size encoder. “random”
dropout each layer randomly. “group” dropout layer 1, 4, 7,
10, 13 and 16 as a group randomly. “6-16:2” dropouts every
2 layers from layer 6 to layer 16. “1-16:3” dropouts every 3
layers from layer 1 to layer 16. “cl” denotes the DET trained
using collaborative learning.

arch #layers dict assi RTFs SPL
baseline 20 16.40 3.83 0.47 756
baseline 14 17.56 4.04 0.40 697
random 20 16.21 3.95 0.47 766
1-16:3 14 19.29 6.74 0.39 688

cl 20 17.41 4.01 0.45 732
cl 14 18.87 4.53 0.38 685

Table 2: WER, RTFs and SPL on in-house data for DET
trained by layer dropout and collaborative learning. “random”
dropout each layer randomly. “1-16:3” dropouts every 3 layers
from layer 1 to layer 16. “cl” denotes the DET trained using
collaborative learning.

3.3. One encoder decoding
In one encoder decoding, both layer dropout and collaborative
learning are used as prune methods to select one encoder that
meets one specific device’s requirement. Table 1 and Table 2
gives the word error rate (WER) for DET on Librispeech data
and in-house data, respectively. In Table 1, we can see that
the 20-layers encoder trained by the layer dropout and collab-
orative learning reduces the WER of the same size baseline on
other by 5% and 8%, respectively. “base pruned” shows that
directly pruning the 20 layers baseline model to 14 layers does
not work. In Table 1, the best-pruned model with 14 layers is
from collaborative learning, which gets the on-par accuracy as
the full-size model. The pruned models from both the “ran-
dom” and “group” dropout method are worse than re-training
the same size model from scratch. Note the results from collab-
orative learning in Table 1 is different with [35], in this paper,
each student encoder shares its layers except the last one.

Table 2 shows that the pruned model trained by collabora-
tive learning is more accurate than the one trained from layer
dropout. However, neither of the pruned models outperforms
the same size baseline model trained separately. For in-house
data, the full-size encoder trained by layer dropout performs
similarly as same size baseline with a slight improvement on
dict and slight degradation on assi.

3.4. Dynamic encoder in decoding
Table 3 and Table 4 show the experiment results using multiple
encoders in decoding one utterance on Librispeech data and in-
house data, respectively. For Librispeech data, we compare the

layer dropout and the collaborative learning. For in-house data,
we only use the layer dropout method. The full-size encoder
in DET trained by the layer dropout is more accurate than the
same-size encoder trained by collaborative learning.

Both tables show that by adjusting the audio’s length to be
decoded by the small encoder in DET, we can do a trade-off
between accuracy and latency. Table 3 shows that decoding us-
ing DET trained by collaborative learning gives better WER and
RTFs trade-off than layer dropout. Using a small encoder for the
beginning 0.8s audio, the DET gets 6% relative WER reduction
and over 10% RTFs reduction.

arch time clean other #layers RTFs
base - 3.62 9.86 20 0.63
base - 3.87 10.35 14 0.47
drop 6.4s 4.18 11.07 14/20 0.51
drop 3.2s 4.04 10.45 14/20 0.52
drop 1.6s 3.90 10.02 14/20 0.57
drop 0.8s 3.84 9.49 14/20 0.60

cl 6.4s 3.75 9.63 14/20 0.51
cl 3.2s 3.76 9.52 14/20 0.54
cl 1.6s 3.72 9.45 14/20 0.55
cl 0.8s 3.62 9.27 14/20 0.56

Table 3: WER and RTFs on LibriSpeech data for DET trained
by layer dropout and collaborative learning. “time” column
denotes the length of the beginning part of audio decoded by
the small encoder. “drop” and “cl” denotes the DET trained
using layer dropout and collaborative learning, respectively.

Table 4 shows that using multiple encoders for one utter-
ance decoding achieves advantages from each encoder. In the
experiment, we use multiple encoders decoding for assi which
has a wake word at the beginning for each utterance. We use the
full-size encoder for dict which does not have wake word. The
bottom line in Table4 shows that using a small encoder for the
beginning 1.5s audio gives slight WER degradation with better
RTFs and SPL.

arch time #layers dict assi RTFs SPL
baseline - 20 16.40 3.83 0.47 756
baseline - 14 17.56 4.04 0.40 697

drop 3.0s 14/20 16.21 4.04 0.41 700
drop 1.5s 14/20 16.21 3.99 0.44 714

Table 4: WER, RTFs and SPL on in-house data for DET trained
by layer dropout. “1-16:3” dropouts every 3 layers from layer
1 to layer 16. “drop” denotes the DET trained using layer
dropout. “time” column denotes the length of the beginning
part of audio decoded by the small encoder.

4. Conclusions
This paper proposed a dynamic encoder transducer as a flex-
ible on-device ASR model for accuracy and latency trade-off.
Two application scenarios were discussed: pruning encoder to
fit device computation limit and decoding different parts of one
utterance using different encoders. We applied layer dropout
and collaborative learning for DET model training. The layer
dropout method that randomly masked some encoder layers in
training makes DET flexible and robust in dropping layers in
decoding. The collaborative learning jointly trained multiple
encoders with different depths using weight sharing, auxiliary
tasks, and knowledge distillation. On Librispeech data, experi-
ments showed that the DET model outperformed the baseline in
accuracy and latency for both scenarios. In-house data experi-
ments showed that DET gets on par accuracy as baseline model
but with better RTFs and latency.

5. References
[1] X. Lei, A. Senior, A. Gruenstein, and J. Sorensen, “Accurate and

compact large vocabulary speech recognition on mobile devices,”
in Proc. INTERSPEECH, 2013.

[2] I. McGraw, R. Prabhavalkar, R. Alvarez, M. G. Arenas, and Oth-
ers, “Personalized speech recognition on mobile devices,” in Proc.
ICASSP, 2016.

[3] Y. He, T. N. Sainath, R. Prabhavalkar, and Others, “Streaming
End-to-end Speech Recognition for Mobile Devices,” in Proc.
ICASSP, 2019.

[4] J. Li, R. Zhao, H. Hu, and Y. Gong, “Improving RNN transducer
modeling for end-to-end speech recognition,” in Proc. ASRU,
2019.

[5] A. Graves, “Sequence Transduction with Recurrent Neural Net-
works,” arXiv preprint arXiv:1211.3711, 2012.

[6] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures,
data and units for streaming end-to-end speech recognition with
RNN-transducer,” in Proc. ASRU, 2018.

[7] A. Graves and N. Jaitly, “Towards End-To-End Speech Recogni-
tion with Recurrent Neural Networks,” in Proc. JMLR, 2014.

[8] D. Amodei, R. Anubhai, E. Battenberg, C. Case, and Others,
“Deep Speech 2: End-to-End Speech Recognition in English and
Mandarin,” arXiv preprint arXiv:1512.02595, 2015.

[9] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end
speech recognition using deep RNN models and WFST-based de-
coding,” in Proc. ASRU, 2016.

[10] S. Zhang, M. Lei, Y. Liu, and W. Li, “Investigation of Modeling
Units for Mandarin Speech Recognition Using Dfsmn-ctc-smbr,”
in Proc. ICASSP, 2019.

[11] Y. Shi, M.-Y. Hwang, and X. Lei, “End-To-End Speech Recog-
nition Using A High Rank LSTM-CTC Based Model,” in Proc.
ICASSP, 2019.

[12] A. Das, J. Li, R. Zhao, and Y. Gong, “Advancing Connection-
ist Temporal Classification With Attention Modeling,” in Proc.
ICASSP, 2018.

[13] J. Mahadeokar, Y. Shangguan, D. Le, and Others, “Alignment re-
stricted streaming recurrent neural network transducer,” in Proc.
SLT, 2021.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Proc. NIPS, 2017.

[15] A. Gulati, J. Qin, C. C. Chiu, and Others, “Conformer:
Convolution-augmented transformer for speech recognition,” in
Proc. INTERSPEECH, 2020.

[16] Y. Shi, Y. Wang, C. Wu, C.-F. Yeh, and Others, “Emformer: Ef-
ficient Memory Transformer Based Acoustic Model For Low La-
tency Streaming Speech Recognition,” in Proc. ICASSP, 2021.

[17] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo,
and S. Kumar, “Transformer Transducer: A Streamable Speech
Recognition Model with Transformer Encoders and RNN-T
Loss,” in Proc. ICASSP, 2020.

[18] C.-F. Yeh, J. Mahadeokar, K. Kalgaonkar, Y. Wang, D. Le,
M. Jain, K. Schubert, C. Fuegen, and M. L. Seltzer,
“Transformer-Transducer: End-to-End Speech Recognition with
Self-Attention,” arXiv preprint arXiv:11910.12977, 2019.

[19] C. F. Yeh, Y. Wang, Y. Shi, C. Wu, F. Zhang, and Others, “Stream-
ing attention-based models with augmented memory for end-to-
end speech recognition,” in Proc. SLT, 2020.

[20] Y. Wang, Y. Shi, F. Zhang, and Others, “Transformer in action: a
comparative study of transformer-based acoustic models for large
scale speech recognition applications,” Proc. ICASSP, 2020.

[21] J. Macoskey, G. P. Strimel, and A. Rastrow, “Bifocal Neural Asr:
Exploiting Keyword Spotting For Interence Optimization,” Proc.
ICASSP, 2021.

[22] M. H. Zhu and S. Gupta, “To prune, or not to prune: Exploring
the efficacy of pruning for model compression,” arXiv preprint
arXiv:1710.01878, 2017.

[23] Y. Shangguan, J. Li, L. Qiao, R. Alvarez, and I. McGraw,
“Optimizing speech recognition for the edge,” arXiv preprint
arXiv:1909.12408, 2019.

[24] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural networks,” in Proc. NIPS,
2015.

[25] Y. Guo, “A survey on methods and theories of quantized neural
networks,” arXiv preprint arXiv:1808.04752, 2018.

[26] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohamadi,
and S. Khudanpur, “Semi-orthogonal low-rank matrix factoriza-
tion for deep neural networks,” in Proc. INTERSPEECH, 2018.

[27] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural network
acoustic models with singular value decomposition,” in Proc. IN-
TERSPEECH, 2013.

[28] R. Prabhavalkar, O. Alsharif, A. Bruguier, and L. McGraw, “On
the compression of recurrent neural networks with an application
to LVCSR acoustic modeling for embedded speech recognition,”
in Proc. ICASSP, 2016.

[29] S. Kim, M. L. Seltzer, J. Li, and R. Zhao, “Improved training
for online end-to-end speech recognition systems,” arXiv preprint
arXiv:11711.02212, 2017.

[30] V. Manohar, P. Ghahremani, D. Povey, and S. Khudanpur, “A
Teacher-Student Learning Approach for Unsupervised Domain
Adaptation of Sequence-Trained ASR Models,” in Proc. STL,
2019.

[31] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” Lecture Notes in Computer Sci-
ence, vol. 9908 LNCS, pp. 646–661, 2016.

[32] N. Q. Pham, T. S. Nguyen, J. Niehues, M. Müller, S. Stüker,
and A. Waibel, “Very deep self-attention networks for end-to-end
speech recognition,” arXiv preprint arXiv:1904.13377, 2019.

[33] A. Fan, E. Grave, and A. Joulin, “Reducing transformer
depth on demand with structured dropout,” arXiv preprint
arXiv:1909.11556, 2019.

[34] G. Song and W. Chai, “Collaborative learning for deep neural net-
works,” in Proc. NIPS, 2018.

[35] V. Nagaraja, Y. Shi, G. Venkatesh, and Others, “Collaborative
Training of Acoustic Encoders for Speech Recognition,” in Proc.
INTERSPEECH, 2021 submitted.

[36] A. Graves, “Adaptive Computation Time for Recurrent Neural
Networks,” arXiv preprint arXiv:1603.08983, 2016.

[37] C. Wu, Y. Shi, Y. Wang, and C.-F. Yeh, “Streaming Transformer-
based Acoustic Modeling Using Self-attention with Augmented
Memory,” in Proc. INTERSPEECH, 2020.

[38] L. Dong, F. Wang, and B. Xu, “Self-attention Aligner: A Latency-
control End-to-end Model for ASR Using Self-attention Network
and Chunk-hopping,” Proc. ICASSP, 2019.

[39] C. Liu, F. Zhang, D. Le, S. Kim, Y. Saraf, and G. Zweig, “Improv-
ing RNN transducer based ASR with auxiliary tasks,” in Proc.
SLT, 2021.

[40] D. Le, X. Zhang, W. Zheng, and Others, “From Senones
to Chenones: Tied Context-Dependent Graphemes for Hybrid
Speech Recognition,” arXiv preprint arXiv:1910.01493, 2019.

[41] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio books,”
in Proc. ICASSP, 2015.

[42] D. S. Park, W. Chan, Y. Zhang, and Others, “Specaugment: A
simple data augmentation method for automatic speech recogni-
tion,” arXiv preprint arXiv:1904.08779, 2019.

[43] T. Kudo and J. Richardson, “SentencePiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural
text processing,” Proc. EMNLP, 2018.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

	1 Introduction
	2 Dynamic Encoder Transducer
	2.1 Sequence transducer
	2.2 Emformer based encoder
	2.3 Layer dropout
	2.4 Collaborative learning
	2.5 Applications of dynamic encoder transducer

	3 Experiments
	3.1 Data
	3.2 Experiment Setting
	3.3 One encoder decoding
	3.4 Dynamic encoder in decoding

	4 Conclusions
	5 References

