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Abstract

Speech sound disorder (SSD) refers to a type of develop-
mental disorder in young children who encounter persistent dif-
ficulties in producing certain speech sounds at the expected age.
Consonant errors are the major indicator of SSD in clinical as-
sessment. Previous studies on automatic assessment of SSD
revealed that detection of speech errors concerning short and
transitory consonants is less satisfactory. This paper investi-
gates a neural network based approach to detecting consonant
errors in disordered speech using consonant-vowel (CV) di-
phone segment in comparison to using consonant monophone
segment. The underlying assumption is that the vowel part of
a CV segment carries important information of co-articulation
from the consonant. Speech embeddings are extracted from CV
segments by a recurrent neural network model. The similar-
ity scores between the embeddings of the test segment and the
reference segments are computed to determine if the test seg-
ment is the expected consonant or not. Experimental results
show that using CV segments achieves improved performance
on detecting speech errors concerning those “difficult” conso-
nants reported in the previous studies.
Index Terms: child speech, speech disorder, clinical speech
assessment, consonant-vowel, co-articulation

1. Introduction
In the process of language acquisition, children are expected
to master the language’s speech sounds in stages and be able
to self-correct mistakes when growing up. Yet, a significant
percentage of children may encounter persistent difficulties in
producing certain sounds correctly after the expected age of
acquisition. These children are likely to be diagnosed as hav-
ing speech sound disorder (SSD). If left untreated, the children
would face significant long-term challenges in education and
social life [1]. Early-stage diagnosis is therefore important for
effective intervention and rehabilitation [2]. Traditionally clini-
cal diagnosis of SSD is carried out by qualified speech and lan-
guage pathologists (SLPs). With the long-lasting shortage of
and increasing demand for SLPs, automated detection of speech
disorder is a highly desirable approach to providing timely as-
sessment and/or screening of large population of children.

Detection of SSD is formulated as a task of distinguishing
disordered speech sounds from typical ones based on acoustic
speech signals. Many studies have been focused on consonant
error detection, given that assessment of consonant pronunci-
ation is a major task in clinical diagnosis of SSD. In [3, 4],
constrained lattice was incorporated from an automatic speech
recognition (ASR) system, by which expected ASR outputs
could be preset to facilitate the detection of target consonants.
In [5], goodness of pronunciation (GOP) was used to detect the
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Figure 1: Comparison of Cantonese syllable /l O:/ uttered by (a)
a typically developing speaker; (b) a disordered speaker making
a gliding error by substituting /l/ with /j/.

deviation of pronunciations in disordered speech. The GOP was
computed based on the likelihood ratio of the expected conso-
nant versus other phonemes. In [6], child speech was evaluated
by template matching, where the test segment was compared
with reference segments by cosine distance.

In our recent work [7], Siamese auto-encoder network was
applied to contrast hypothetically disordered consonant seg-
ments against typical ones. It was found that the detection
performance on un-aspirated stop consonants was consistently
less satisfactory than on other consonants. Similar results were
reported in Wang et al. [8]. As an un-aspirated stop conso-
nant is preceded by a long closure (caused by blockage of air
flow), the detection is likely to be interfered by background
noise and hence becomes unreliable. From a different perspec-
tive, contrastive characteristics of consonants are also carried by
the neighbouring vowels, as speech sounds are co-articulated
instead of produced discretely [9]. Given that substitution of
consonants is a prominent indicator of SSD, the co-articulated
vowel segments are expected to exhibit atypical acoustic fea-
tures when SSD occurs. Figure 1 illustrates the impact of SSD,
where the expected consonant /l/ is substituted by /j/ in the dis-
ordered speech. The substituted consonant alters formant tran-
sition in the vowel segment /O:/. Similar observations were re-
ported in [10, 11]. It was suggested that the acoustic realization
of vowels was affected by the place, manner and voicing char-
acteristics of neighboring consonants [10, 11].

The significance of contextual effect motivates us to inves-
tigate the use of consonant-vowel (CV) di-phone segments for
SSD detection in child speech. A common type of SSD can be
presented as the desired consonant being substituted by another
consonant. In the present study, detection of consonant errors in
child speech is formulated as a binary classification problem to
distinguish the desired consonant from other consonants based
on mono-phone segments and/or di-phone segments.
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2. Background Knowledge about Cantonese
This study is focused on Cantonese. It is a major Chinese di-
alect widely spoken in Hong Kong, Macau, Guangdong and
Guangxi Provinces of Mainland China, as well as overseas Chi-
nese communities. Cantonese is a monosyllabic and tonal lan-
guage. Each Chinese character is pronounced as a single syl-
lable carrying a lexical tone. As illustrated in Figure 2, a le-
gitimate Cantonese syllable can be divided into an onset and a
rime. The onset is a consonant. The rime can contain a nucleus
or a nucleus followed by a coda, where the nucleus can be a
vowel or a diphthong, while the following coda can be a final
consonant. Both the onset and the coda are optional in a Can-
tonese syllable. For syllables without an initial consonant, it can
be regarded as a null initial. In Cantonese, there are a total of
19 initial consonants, 11 vowels, 11 diphthongs, 6 final conso-
nants and 6 distinct lexical tones [12, 13]. In the present study
we focus on speech segments that contain an initial consonant
followed by a vowel nucleus.

Figure 2: Structure of Cantonese syllable. ’*’ denotes optional.

3. SSD Detection System
The design of detection system follows how SLPs perceive con-
sonant errors in disordered speech. In the articulation test for
SSD assessment, the SLPs decide whether the speech produc-
tion of the desired consonant deviates from the typical ones.
When the mismatch between the expected and the actual speech
sound occurs, a phoneme, typically a consonant which is best
described to substitute the expected consonant is used to anno-
tate the consonant error. The classification of the error patterns
is performed by the SLPs in the analysis of the assessment re-
sults. For instance, /ph/ substituted by /p/ is classified as a
de-aspiration error, while /s/ articulated as /ts/ is an affrica-
tion error, while a distorted /s/ is a distortion error, etc. In the
present study, we focus on a set of initial consonants in Can-
tonese, which are deemed indicative of child speech acquisition.

Towards the automatic assessment of SSD, the proposed
system aims to determine if a consonant error occurs in the test
speech segment. As illustrated in Figure 3, the test segment con-
tains a specific consonant (C), or a consonant-vowel (CV) con-
catenation as part of the test word. For consonant error detec-
tion, the test segment is compared, in a pairwise manner, with
one or multiple reference segments that represent the expected
phone. The reference segments are obtained from the speech of
typically developing (TD) speakers. The comparison between
a pair of segments is carried out based on speech embedding,
which is a fixed-dimension representation that encodes acous-
tic information of speech segments into a low-dimension space.
It allows flexible modeling and processing of speech segments
of variable length for different downstream tasks, e.g., spoken
term detection and discovery [14], pathological speech classifi-
cation [15], prediction of speech intelligibility score [16], etc.
A similarity or distance score can be calculated on each pair of
embeddings. Using a pre-defined threshold, a test segment can
be classified as typical or disorder speech.

Figure 3: Speech sound disorder (SSD) detection system.

The embedding extractor is a trainable bidirectional gated
recurrent unit (Bi-GRU) [17]. The Bi-GRU is able to handle
variable-length speech input with a simpler network structure.
Two extractors are trained separately for mono-phone C seg-
ments or diphone CV segments. The training is done with
a multi-task approach. The tasks comprises a softmax-based
multi-class classification task and a binary classification task
with cross-entropy objective functions. The design of the ex-
tractors was motivated by the relation classifier used in com-
puter vision and speaker verification systems [18, 19, 20], and
the inter- and intra-class relationship between speech segments
are considered concurrently. Let xt and xr denote the embed-
ding of test segment and that of reference segment respectively.
The cosine similarity score and the binary relation score are
given as,

scorecos =
xt · xr

‖xt‖‖xr‖
(1)

scorebinary = σ(W ((xt − xr)⊗ (xt − xr)) + b) (2)

where W and b are the weight matrix and bias that transform
the embedding to binary relation score. σ denotes the Sigmoid
function. The two scores are combined as,

scoreC/CV = λ ∗ scorecos + (1− λ) ∗ scorebinary (3)

where the scalar weight λ ∈ [0, 1]. For C and CV segments
respectively, the combined scores are denoted as scoreC and
scoreCV . The two scores can be fused to leverage the compli-
mentary information from mono-phone and di-phone segments,
i.e.,

scoreFINAL = w ∗ scoreC + (1− w) ∗ scoreCV (4)

where the weight w ∈ [0, 1]. Both λ and w are determined
experimentally.

4. Experimental Setup
4.1. Speech data

Experiments on consonant error detection in child speech
are carried out with a large-scale speech database named
CUCHILD [21]. CUCHILD was developed to support the re-
search on automatic assessment of SSD as well as clinical stud-
ies of SSD in Cantonese-speaking children. It contains speech
data from 1, 986 kindergarten children aged 3 to 6 whose first
language is Cantonese. All child subjects were formally as-
sessed with the Hong Kong Cantonese Articulation Test (HK-
CAT) [22]. As a result, 230 children in the database were found
to have SSD. Speech recordings were made in a number of



Table 1: Number of C / CV segments for training and test.

Name of subset No. of
segments (C/CV)

No. of
speakers

Training
(Child, speed augmented) 84,842 153

Training (Adult) 207,190 68
Test (Child, TD) 3,664 19

Test (Child. Atypical) 1,384 31

kindergartens in Hong Kong. A digital recorder was placed at
20-50 centimeters in front of the child. Each child was guided to
produce a total of 130 words in Cantonese. The word length is
1 to 4 syllables. Detailed data processing and annotation work
on the entire CUCHILD database are ongoing. In the present
study, a subset of speech data from 172 TD children and 31
children with SSD are used in the experiment. All audio data
are sampled at 16kHz and represented by 16-bit PCM.

In addition to CUCHILD, a large-vocabulary database of
adult speech, named CUSENT, was used to provide additional
training data for the proposed detection system. CUSENT con-
tains about 20 hours of speech, with 20, 000 utterances from 76
adult speakers [12].

4.2. Data pre-processing

C and CV speech segments are extracted from TD, atypi-
cal child speech and adult speech by forced alignment using
GMM-HMM triphone acoustic models (AM). The AMs of child
speech and adult speech are separately trained by the Kaldi
speech recognition toolkit [23].

The child speech model is trained on speech data from
153 TD children of age 4 to 6. The acoustic features for
GMM-HMM training consist of 13-dimensional Mel-frequency
cepstral coefficients (MFCC) and their first- and second-order
derivatives extracted at every 0.003 second. The choice of step
size aims to obtain more precise alignment of C and CV speech
segments. Linear discriminant analysis (LDA), semi-tied co-
variance (STC) transform and feature space Maximum Likeli-
hood Linear Regression (fMLLR) are applied to the triphone
AM training [24, 25, 26]. The training of adult AM follows
the same recipe using speech data from 68 adults in CUSENT.
The child AM achieves a syllable error rate (SER) of 25.53% in
free-loop syllable recognition of test speech from 19 TD chil-
dren. An SER of 11.66% is obtained from the adult AM in the
recognition of test speech from 8 adults using a bi-gram lan-
guage model.

Speed augmentation is applied to increases the amount of
child speech training data by 3-fold. This is done by altering
the speed to 90% and 110% of the original speech rate [27].
The number of speech segments obtained by forced alignment,
and the number of speakers used in the experiment, are listed as
in Table 1.

4.3. Training of embedding extractors

The Bi-GRU in each extractor consists of 3 hidden layers, 400
hidden units in each layer. An embedding of 128 dimensions is
extracted from the last hidden layer of Bi-GRU with a fully-
connected layer. The networks are built using PyTorch [28]
and are trained by the Adam optimizer [29]. The joint objec-
tive function is composed by a multi-class cross-entropy and
a binary cross-entropy. The cross-entropy is computed on 19
output targets in the C embedding extractor and 173 in the CV

Table 2: Detection performance using different embeddings.

Training
Data Type Weight EER AUC

Child
C λ = 0.9 0.142 0.918

CV λ = 0.2 0.153 0.909
C+CV w = 0.4 0.120 0.932

Child +
Adult

C λ = 1.0 0.126 0.935
CV λ = 0.1 0.129 0.928

C+CV w = 0.5 0.109 0.945

embedding extractor. These are defined in accordance to the
number of initial consonants in Cantonese and the consonant-
vowel combinations in the corpora. The binary cross-entropy is
calculated by randomly pairing with 4 speech segment for each
training sample. The network training setup includes a batch
size of 256, a learning rate of 0.001, a dropout rate of 0.5, and
a weight decay of 0.0005. The inputs to the Bi-GRUs are 80
dimensional Filter-bank features with global mean and variance
normalization. The epoch of network training is empirically set
to 5 to prevent overfitting.

4.4. Evaluation metrics

The detection performance are evaluated by two metrics,
namely the equal error rate (EER) and the area under curve
(AUC). The EER represents the point where the false positive
rate (FPR) equals to the false negative rate (FNR). It has been
widely used in the biometetric security system. We define a pair
of input segments to be positive if they are from the same C /
CV category, and negative if the pair from different categories.
A lower EER indicates the system achieves less misclassifica-
tion in both TD and atypical speech. On the other hand, the
AUC measures the overall performance of a binary classifier
operating at varying decision thresholds. It is computed from
the curve of FPR vs. true positive rate (TPR). A higher AUC
suggests the detection system is capable to achieve higher TPR
with across various operating thresholds. In the assessment of
SSD, low FPR is important in the first place, since missing any
atypical speech is undesirable. If the user tunes the threshold
to suppress the FPR, a detection system of high AUC can still
reliably classify the TD speech.

5. Results and Discussion
In the consonant error detection, each segment from TD and
atypical speech is paired up with other TD test segments of
the same category. The efficacy is compared between C and
CV embeddings. For each type of embedding, we find the
best combination of the two similarity scores of scorecos and
scorebinary . In addition, we evaluate the detection perfor-
mance of combining scoreC and scoreCV computed from each
test word. The joint use of adult and child speech in the model
training is also validated. The performance of binary detection
on all test data is reported in Table 2, and Figure 4 illustrates
how performance of the extractors change as the weights λ and
w shift from 0 to 1 in the step-wise manner.

Despite the acoustic mismatches between adult and child
speech due to the physiological differences, the experimental
results suggest the direct mixing of adult and child speech is
able to boost the detection performance without the use of trans-
fer learning techniques [30][31]. It is noted that C embeddings
outperforms CV embeddings as they are used independently in



Table 3: Detection performance on individual target consonants. Bold indicates best result.

Consonant
Number EER AUC

TD Atypical C CV C+CV C CV C+CV
/f/ 205 75 0.079 0.105 0.077 0.967 0.946 0.965
/k/ 261 65 0.196 0.176 0.154 0.896 0.915 0.925
/kh/ 204 160 0.168 0.160 0.137 0.904 0.907 0.925
/kwh/ 66 41 0.161 0.086 0.094 0.916 0.972 0.956
/kw/ 133 23 0.110 0.129 0.085 0.954 0.918 0.958
/l/ 204 36 0.183 0.138 0.138 0.872 0.876 0.911

/ph/ 145 93 0.118 0.118 0.097 0.950 0.929 0.946
/s/ 317 222 0.084 0.130 0.093 0.956 0.925 0.951
/t/ 211 63 0.220 0.158 0.173 0.844 0.887 0.871
/th/ 267 240 0.116 0.170 0.120 0.943 0.896 0.942
/ts/ 200 101 0.107 0.097 0.097 0.949 0.951 0.961
/tsh/ 243 235 0.067 0.075 0.050 0.974 0.967 0.975

Figure 4: Score fusion vs. detection performance. Top, middle
and bottoms figures denote the performance using the embed-
dings of C, CV, both C and CV, respectively.

the detection.
By varying λ, we observe the detection using CV embed-

dings relies more on scorebinary . C and CV embedding extrac-
tors are trained using different numbers of classification targets
(19 consonants vs. 173 CV units). Given the same amount of C
and CV segments, each output class of the CV embedding ex-
tractor is trained with less speech segments. On the contrary, the
binary relation classifier with single output node is trained by all
training segments. We reckon the insufficient data in the train-
ing of multi-class CV classification is likely to make the em-
bedding focus on more the binary relation instead of the global
relationship between different CV units. As the two similarity
scores of scoreC and scoreCV are combined, best performance
is delivered with 0.109 EER and 0.945 AUC, where the C and
CV extractors are equally contributing to the final score with w
equal to 0.5.

It remains questionable whether CV embeddings are con-
sistently surpassed by C embeddings across different conso-
nants, and how score fusion improves the detection perfor-
mance. The test speech segments are thus divided into 12 sub-
sets by consonants, and the detection performance is evaluated
on individual subset. The available TD and atypical test seg-

ments in each subset and the detection performance are reported
in Table 3. Using CV embeddings achieves lower EER and
higher AUC in the detection of consonant errors in /k/, /kh/,
/kwh/, /l/, /t/ and /ts/. The results suggest that CV embeddings
deliver a more satisfactory performance in detecting the errors
in unaspirated stops of /k/ and /t/. These are the consonants
not detected reliably in the previous studies [7, 8]. As the C and
CV similarity scores of are combined, the system yields the best
EER and AUC in most target consonants. The combined use of
C and CV embeddings is able to amend the misclassification
caused by either one type of embedding. In addition, we manu-
ally examine the misclassified test segments of which the score
fusion does not help. It is found that some misclassifications is
caused by the misalignment of segments, i.e. the consonant is
aligned to the vowel segment or background noise. This gives
unreliable measurement of similarity scores and harms the de-
tection outcomes.

6. Conclusion
We propose and demonstrate the use of consonant-vowel seg-
ments in automatically detecting consonant errors in disordered
speech at the embedding level. It has been shown that us-
ing consonant-vowel segments improves the detection perfor-
mance on the challenging unaspirated stop consonants. The
approach also achieves comparable performance on detecting
other consonants compared to the conventional approach re-
lying on consonant segments. Calibration of similarity scores
computed from both consonant and consonant-vowel segments
are investigated. The score fusion is shown to improve the per-
formance across most of the target consonants. Besides, direct
mixing of adult speech in training of embedding extractor is
able to boost the detection performance. Future works include
the in-depth acoustical analysis of consonant-vowel interaction
in child speech and the subject-level detection of disordered
speech.
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