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Abstract

Any-to-any voice conversion (VC) aims to convert the timbre
of utterances from and to any speakers seen or unseen during
training. Various any-to-any VC approaches have been pro-
posed like AUTOVC, AdaINVC, and FragmentVC. AUTOVC,
and AdaINVC utilize source and target encoders to disentan-
gle the content and speaker information of the features. Frag-
mentVC utilizes two encoders to encode source and target in-
formation and adopts cross attention to align the source and
target features with similar phonetic content. Moreover, pre-
trained features are adopted. AUTOVC used d-vector to extract
speaker information, and self-supervised learning (SSL) features
like wav2vec 2.0 is used in FragmentVC to extract the phonetic
content information. Different from previous works, we pro-
posed S2VC that utilizes Self-Supervised features as both source
and target features for the VC model. Supervised phoneme pos-
teriorgram (PPG), which is believed to be speaker-independent
and widely used in VC to extract content information, is chosen
as a strong baseline for SSL features. The objective evaluation
and subjective evaluation both show models taking SSL feature
CPC as both source and target features outperforms that taking
PPG as source feature, suggesting that SSL features have great
potential in improving VC.

Index Terms: voice conversion, self-supervised learning, repre-
sentation learning, any-to-any

1. Introduction

Self-supervised learning (SSL) [1} 2] has obtained impressive
results these years in different domains, including computer vi-
sion, natural language processing, and speech processing. The
self-supervised training regime does not rely on human annota-
tions of the data, which is expensive to collect and thus benefits
from the use of a large amount of unlabeled data. SSL mod-
els pretrained on speech corpora have been shown to be able to
extract speech representations that can be used in downstream
tasks such as automatic speech recognition, speaker recognition,
and speech translation [3} 4 I5].

VC aims to convert a source utterance to sound like spo-
ken by a target speaker while preserving the original phonetic
content. The conversion can be achieved by disentangling the
content and speaker information from the source and target ut-
terances, respectively, then combining them and synthesizing
the converted utterance. Supervised pretrained representations
have long been used to provide content or speaker information
for VC tasks. Phoneme posteriorgram (PPG) especially is very
popular among VC implementations [6l [7, |8]. PPG is speaker-
independent and suitable for removing the speaker characteris-
tics from the voice to be converted. The speaker representations
pretrained by speaker recognition tasks such as d-vector [9]] and
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x-vector [10] have been widely used to provide speaker informa-
tion.

On the other hand, SSL representations can be utilized for
phoneme recognition and speaker classification 3\ 14} 5], which
indicates that both phonetic and speaker information are heredi-
tary contained in SSL representations and thus make them pos-
sible to be used in the voice conversion (VC) task. Several pre-
vious works have tried to introduce SSL representations to the
VC task. For example, Huang et al. [11] proposed a sequence-
to-sequence VC framework where SSL representations were
used to capture the phonetic information of the source utterance.
However, their approach can only convert the utterance to a pre-
defined target speaker. On the other hand, FragmentVC [12] is
an any-to-any VC model which can convert the speech of an
arbitrary source speaker to any target speaker, even speakers un-
seen during the training time. It also used pretrained SSL models
to extract the content information from the source utterances.

In this paper, we aim to improve any-to-any VC (also called
one-shot VC) [13| [14} [15| 16]], which is one of the most dif-
ficult VC settings, by involving various pretrained SSL repre-
sentations. Different from previous works [11} [12], we extract
not only the phonetic information but also the target speaker
information from the SSL representations. Several different
SSL models, including Autoregressive Predictive Coding (APC)
[3], Contrastive Predictive Coding (CPC) [17], and wav2vec
2.0 [18]], are investigated, and we also compare the performance
of these SSL representations with supervised representations
such as PPG representation El The results show that SSL repre-
sentations achieve comparable and even better performance than
PPG representation on both subjective and objective evaluation.

2. Methods

The overall framework of S2VC is in Fig.[[] As shown in the
figure, we adopt pretrained SSL models to extract source and
target features. In the following subsections, we first introduce
the foundation of this work: FragmentVC [12], an architecture
potential to utilize any kinds of speech representations. Fol-
lowed by the modification we made to FragmentVC to further
improve the performance. Then briefly describe several SSL fea-
tures tested in our framework.

2.1. Baseline: FragmentVC

The overall framework evolves from FragmentVC. FragmentVC
is a deep exemplar-based model consisting of a source encoder, a
target encoder, cross attention modules, and a decoder. The con-
ceptual illustration of cross attention is in Fig. 2} which takes one
output feature from the source encoder (Q) and two output fea-
tures from the target encoder (K, V). The output feature sequence

2We did not compare with the supervised speaker representations be-
cause the recent work [[19]] showed that they are not suitable for deliver-
ing speaker information needed in VC.
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Figure 1: The overall model architecture of S2VC. IN denotes the Instance Normalization.

Figure 2: Conceptual illustration of cross attention.

of the target encoder (K) is then attended by the source encoder’s
output (Q). In this architecture, it is found that the cross atten-
tion module learns to align the source features to the target fea-
tures with similar phonetic content, which is similar to the idea
of exemplar-based VC models. The decoder then produces the
converted Mel spectrogram from the attention-augmented fea-
tures (V). At training time, the same utterance is used as the
input of both the source and the target encoder and the decoder’s
reconstruction target. The encoders automatically learn to dis-
entangle the content and the speaker information without any
explicit constraint.

2.2. Modifications

We try to help the cross attention module to align the source
and target features from the following two perspectives. Self-
attention pooling guides the representation encoded by the
source encoder to be close to that encoded by the target encoder.
Attention information bottleneck removes redundant informa-
tion in both representations encoded in Q and K to make the
attention only consider the phonetic content information.

2.2.1. Self-attention pooling

Safar et al. [20] proposed a self-attention pooling layer and
showed it is good at extracting the time-invariant features infor-
mation. We utilize the self-attention pooling layer to extract the
representation from the target encoder. The extracted represen-
tation is then applied to the source encoder (dotted line in Fig.[I)
to guide the representation encoded by the source encoder closer
to that by the target encoder.

2.2.2. Attention information bottleneck

AdaINVC [14] showed that Instance Normalization is capable
of removing speaker-dependent information from the features,
and AutoVC [15] used a carefully designed hidden dimension of
the encoder layers to extract speaker-independent content infor-
mation. We combined them to the attention layer by applying
Instance Normalization to both the Q and K, followed by a bot-
tleneck layer so as to lower the speaker information encoded in
them.

2.3. SSL representations

Three well-known SSL representations studied in this work are
APC [3} 21], CPC [17, 4] and wav2vec 2.0 [18]]. APC learns
the representation in a way similar to a conventional RNN-based
language model. It takes Mel spectrograms as input, and by pre-
dicting the future input conditioning on the past inputs, APC
learns general speech representations in an auto-regressive way.
On the other hand, CPC and wav2vec 2.0 directly utilize wave-
forms as input. CPC also learns the representation in an auto-
regressive way but the prediction is done in the compact latent
space instead of the input feature space, and the training is to op-
timize a probabilistic contrastive loss. Wav2vec 2.0 further im-
proves on CPC by enlarging the model size and replacing auto-
regressive prediction with masked language model-like predic-
tion similar to BERT.

In the original Fragment VC [12]], the source encoder takes
wav2vec 2.0 representations as inputs to extract a feature se-
quence containing content information of the source utterance,
while the target encoder takes Mel spectrogram of several utter-
ances of the target speaker as inputs. Though only two represen-
tations are studied in FragmentVC, we consider this architecture
and training scheme to be very flexible to incorporate any kinds
of speech representations. This paper takes the representation of
APC, CPC, or wav2vec 2.0 as the input features of source and
target encoders and explores all the combinations.

3. Experimental setup
3.1. Training Setup

We trained all the models on CSTR VCTK Dataset [22] with 44
hours of audios spoken by 109 native speakers. All the audios
were resampled from 48k Hz to 16k Hz before extracting the fea-
tures. The optimizer we used is AdamW [23|] with learning rate
Se-5,and 81 = 0.9, B2 = 0.999. The source encoder is composed
of 4 linear layers with batch normalization. The target encoder
consists of 3 one-dimensional convolution layers. The decoder
is comprised of 3 conformer [24] layers followed by a linear pro-
jection to the Mel spectrogram’s dimension. The dimension of
queries and keys in the cross attention is 4 for the models with
bottleneck, and their dimension is 512 for those without bottle-
neck. The L1 loss between the predicted and the ground-truth
log Mel spectrogram is used. Universal neural vocoding [25]
trained on a combination of LJ-speech [26], LibriTTS-train-
clean-100, and CMU Arctic dataset [27] for 200k steps with
batch size 32 is adopted as the vocoder of all the models.

3.2. Feature Extraction

We extract both PPG and SSL representations via S3PRLE| 28]
speech toolkit, which provides a user-friendly interface to extract
various pretrained representations. The PPG is pretrained on the
TIMIT dataset [29]], achieving 21.7% frame-wise phone error
rate (much more challenging measurement than phone error rate)
on the test set. As for the self-supervised features such as APC
and CPC, the official pretrained checkpoints are used.

3https://github.com/s3prl/s3prl



3.3. Testing scenarios

We evaluate the voice conversion models in the following two
scenarios. The first one is the conversion between speakers in
the training dataset VCTK (s2s). The other one is the conversion
between speakers in the unseen dataset CMU (u2u). For each
scenario, we randomly sampled 400 testing pairs. Each testing
pair contains one utterance from the source speaker and five ut-
terances from the target speaker.

3.4. Objective evaluation

We adopt two automatic assessment systems to evaluate the
quality and the speaker similarity of converted utterances.
MOSNet [30]] is adopted to efficiently assess the quality of the
synthetic utterances. Similar to the Mean Opinion Score (MOS)
scored by human subjects, MOSNet takes an utterance as input
and outputs a score ranging from 1.0 to 5.0, where the higher the
score is, the better the quality is.

A publicly available pretrained speaker verification (SV)
syste is adopted to assess the speaker similarity between a
converted utterance and a target utterance, as done in previous
work [31]]. The SV system first extracts the utterance-level em-
beddings of the converted utterance and the target utterance, and
the cosine similarity between the embeddings is computed as the
similarity score. The SV system accepts a converted utterance if
the similarity score is higher than a pre-defined threshold which
is computed by finding the EER throughout the dataset. The
percentage of converted utterances accepted by the SV system,
which we call SV accuracy, is used as an evaluation metric.

3.5. Subjective Evaluation

To evaluate the perceptual quality of converted utterances, we
conducted Mean Opinion Score (MOS) tests in quality and
speaker similarity. For the quality MOS test, the subjects listen
to an authentic vocoder-reconstructed utterance or a converted
utterance. Then they score it from 1.0 to 5.0 in terms of quality
(1.0 means bad, and 5.0 means perfect). For the similarity MOS
test, the subjects listen to an authentic target utterance and a con-
verted utterance. Then they score it from 1.0 to 5.0 in terms of
speaker similarity (1.0 means very different and 5.0 means abso-
lutely the same) [31]]. For every model considered, we evaluate
the same 40 pairs of real and converted utterances, sampled from
the 400 testing pairs, with each scored by at least 5 subjects. The
scores are reported with the 95% confidence intervals for each
model. Since the u2u scenario is more challenging than that of
s2s, the subjective evaluation is conducted for u2u.

4. Results and analysis
4.1. Objective performance analysis

Five different representations, including Mel spectrogram, PPG,
APC, CPC, and wav2vec 2.0, are used as the source or target
feature of the VC models.

The results of MOSNet predictions are listed in Table [Ta]
In this table, we compare the average MOSNet predictions of
the models with different representations as source features to
see the ability of the representations in providing content infor-
mation. The results show that both APC and CPC outperform
PPG, suggesting that they may be promising to provide content
information for VC. The performances of Mel spectrogram and
wav2vec 2.0 are not ideal in the u2u scenario, showing that they
are relatively not robust to unseen data.

“https://github.com/resemble-ai/Resemblyzer

The results of SV accuracies are listed in Table [Ibl Here
we compare the average SV accuracies of the models with dif-
ferent representations as target features to examine their capabil-
ity in terms of providing speaker information. The results show
that Mel spectrogram is the best choice for extracting speaker-
dependent information; however, some models with CPC (with
underline in table) achieve comparable or better performance
than those with Mel spectrogram, showing that CPC is also good
at providing speaker-dependent information for VC.

As the performance in the u2u scenario is considered more
critical than s2s, Fig. [B|plots the overall objective results for u2u.
Each model is denoted as A+B, which means taking A as the
source feature and B as the target feature. The points of the
two figures are the same, but with different colors. In the left
and right figures, the colors represent the same source feature
or target features are used, respectively. The closer to the upper
right means a better model, which achieves better performance
in terms of MOSNet prediction and SV results.

Among all models, we can see that the CPC+CPC performs
the best, so we select it for the subjective analysis to further ex-
plore its ability. Aside from the CPC+CPC, three models are se-
lected as the baselines in the following subjective analysis. The
first one is Mel+Mel, as the Mel spectrogram has long been used
in speech synthesis tasks and showed great performance in VC.
The second one is PPG+Mel, because the PPG is believed to
be a better choice in providing content information needed for
VC than Mel-spectrogram and performed well in previous PPG-
based VC. The last one is wav2vec 2.0+Mel, which is adopted
in FragmentVC and showed excellent performance in VC.
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Figure 3: The overall objective results of MOSNet prediction and

Speaker Verification for u2u scenario. W2V denotes wav2vec
2.0.

4.2. Subjective performance analysis

Subjective evaluation for quality and speaker similarity on the
u2u scenario is conducted. The following four models, includ-
ing CPC+CPC, Mel+Mel, PPG+Mel, and wav2vec 2.0+Mel are
evaluated.

The results are listed in Table[2} suggesting that CPC+CPC
outperforms other baseline models on both quality and speaker
similarity, verified that CPC is suitable for providing both con-
tent and speaker information needed in VC. The converted audio
samples are on the demo pageﬂand the source code will be pub-
licly available

Shttps://howard1337.github.io/S2VC/
Shttps://github.com/howard1337/S2VC



Table 1: The overall objective results of MOSNet prediction and Speaker Verification

(a) The objective results of the MOSNet predictions on both s2s and u2u
scenarios.

Source
Target ) PPG APC CPC w2v
Mel 3.36/2.74 3.00/2.84 3.05/2.94 325/2.81 3.44/2.93
PPG  2.94/2.90 2.46/2.82 3.06/3.09 3.30/3.19 2.95/2.80
APC  3.07/3.01 3.06/2.87 2.97/2.83 3.41/3.25 3.03/2.83
CPC  3.29/2.96 3.16/3.19 2.83/3.14 3.36/3.07 3.08/2.68
W2V 2.95/2.55 2.99/3.04 3.12/3.10 3.30/3.05 2.93/2.63

Average 3.12/2.83 2.93/2.95 3.01/3.02 3.32/3.07 3.09/2.77

(b) The objective results of the speaker verification accept rate (%) on both
s2s and u2u scenarios.

Target
Source ) PPG APC CPC w2v
Mel 93.0/97.3 12.3/20.8 69.0/92.3 98.8/98.0 14.3/58
PPG 78.8/95.3 14.5/20.3 81.3/96.0 78.8/88.3 69.0/73.8
APC  69.5/89.0 11.8/21.8 66.5/92.3 53.5/81.5 19.3/28.5
CPC  98.8/99.5 19.3/10.8 90.0/59.0 97.8/96.8 68.0/35.3
W2V 96.3/99.5 63/48 383/11.5 41.3/24.8 31.5/7.0

Average 87.3/96.1 12.8/15.7 69.0/70.2 74.0/77.9 40.4/32.1

A/B:’A’ and "B’ are the result for s2s and u2u respectively. W2V: wav2vec 2.0.

Table 2: The MOS on unseen-to-unseen conversion.

MOS Mel+Mel Auth.

Sim. 2.9740.19 3.054+0.20 3.1640.20 3.334+0.21 -
Nat. 2.6240.153.214+0.18 2.6940.16 3.524+0.17 4.38+0.17

PPG+Mel W2V+Mel CPC+CPC

A+B: model with A as source feature and B as target feature.
W2V: wav2vec 2.0.
Auth.: vocoder-reconstructed authentic utterances.

4.3. Speaker information probing analysis

As the CPC+CPC model performs well in both objective and
subjective evaluation, here we conduct the speaker information
probing analysis on the query(Q), key(K), and value(V) for mod-
els taking CPC as source feature or as target features. The
speaker classification (SC) task is adopted on the VCTK dataset
as the probing task for speaker information. We randomly sam-
pled 90% of the VCTK as the training set of SC and the rest 10%
as the development set, and we adopt a linear layer after the ex-
tracted feature to classify the speakers. The training objective for
the query feature is to predict the source speaker, while the ob-
jective for key and value features is to predict the target speaker.
Both source and target encoder will be used in this analysis, and
the source and target feature are ensured to be from different
speakers to simulate the inference scenario.

The results are listed in Table The SC accuracy of the
query and key features are extremely low, showing that the In-
stance Normalization and the bottleneck layer can effectively re-
move the speaker-dependent information. As for the SC accu-
racy of the value feature, the models taking CPC as target fea-
ture perform better against other models taking PPG, APC, or
wav2vec 2.0, showing that CPC can provide rich speaker infor-
mation needed for VC.

Table 3: Speaker information probing for model taking CPC an
source or target feature.

SC (Query) SC (Key) SC (Value)

Source Target

Dev(%) Dev(%) Dev(%)
PPG 2.83 319 9187
APC 2.6 368 9125
cerc CPC 33 3.6 92.08
w2V 331 377 9136
PPG 274 2.00 7.15
APC 272 512 9025
CPC pc 236 326 9208
w2y 225 211 70.29

W2V: wav2vec 2.0.

4.4. Ablation analysis

We conduct the ablation analysis on the CPC+CPC model. The
SOTA approach FragmentVC [12] is considered as a baseline
here.

The ablation results are listed in Table [i] It suggests that
CPC+CPC outperforms FragmentVC on all metrics considered.
Rows (c) (d) (e) (f) (g) are respectively for removing the self-
attention layer, removing the bottleneck layer, removing the in-
stanceNorm layer, removing both bottleneck and instanceNorm
layer, and removing cross attention, namely the decoder directly
take the output (Q) of the source encoder. The results verified
that all of them are essential for the framework.

Table 4: Ablation study on the self-attention pooling, bottleneck
layer, Instance Normalization and cross attention.

MOSNet SV
Models
S2S U2U S2S(%) U2U(%)
(a) *FragmentVC [12] 3.14 3.00 89.00 91.75
(b) *Proposed 3.36 3.07 97.75 96.75
(c) *-SAP 3.21 2.78 97.00 95.00
(d) *-Bottleneck 290 2.49 88.00 93.25
(e) *-InstanceNorm 3.26 277 98.75 95.25
(f) *-Bottleneck, InstanceNorm 2.91 2.48 88.5 95.00
(g) *-Cross attention 3.55 322 31.25 25.75

FragmentVC here uses the officially released checkpoint from
https://github.com/yistLin/FragmentVC.

5. Conclusion

We investigated several SSL representations to improve VC. We
found that the model taking CPC as both source and target fea-
tures outperform the baseline models on both subjective and ob-
jective evaluation, including a strong baseline model using PPG
as source feature and Mel spectrogram as target feature. The re-
sults suggest that SSL representation CPC is suitable for provid-
ing both content and speaker information needed in VC. Further-
more, the ablation analysis showed that the proposed framework
achieves comparable or even better performance than the SOTA
approach FragmentVC [12] on objective evaluation. What will
happen if we concatenate several different features like PPG and
CPC as source feature and with other combinations of represen-
tations as target feature are yet to be investigated. We believe
that different representations complement each other and pro-
vide richer information for both content and speaker information
to gain further improvement.
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