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Abstract

With the increasing demand for audio communication and on-
line conference, ensuring the robustness of Acoustic Echo Can-
cellation (AEC) under the complicated acoustic scenario includ-
ing noise, reverberation and nonlinear distortion has become a
top issue. Although there have been some traditional methods
that consider nonlinear distortion, they are still inefficient for
echo suppression and the performance will be attenuated when
noise is present. In this paper, we present a real-time AEC ap-
proach using complex neural network to better modeling the
important phase information and frequency-time-LSTMs (F-T-
LSTM), which scan both frequency and time axis, for better
temporal modeling. Moreover, we utilize modified SI-SNR
as cost function to make the model to have better echo can-
cellation and noise suppression (NS) performance. With only
1.4M parameters, the proposed approach outperforms the AEC-
challenge baseline by 0.27 in terms of Mean Opinion Score
(MOS).

Index Terms: Acoustic echo cancellation, complex network,
nonlinear distortion, noise suppression

1. Introduction

Acoustic echo is generated in a full-duplex voice communica-
tion system, where a far-end user receives a modified version
of his/her own voice due to the acoustic coupling between a
loudspeaker and a microphone at near-end point. Acoustic echo
cancellation (AEC) aims to eliminate the echo from the micro-
phone signal while minimizing the distortion of the near-end
speaker’s speech.

Traditional digital signal processing (DSP) based AEC
works by estimating the acoustic echo path with an adaptive
filter [1} 2} 13]. But in practical applications, their performance
may heavily degrade due to issues such as echo path change,
background noise and nonlinear distortion.

Background noise is inevitable in a real full-duplex voice
communication system. However, traditional speech enhance-
ment methods, combined with AEC [4], are not robust enough
to such interference especially the non-stationary noise. Nonlin-
ear distortion commonly caused by low-quality speakers, over-
powered amplifiers and poorly designed enclosures; even mod-
est nonlinear distortion can degrade the performance of linear
AEC models considerably [S]. In general, post-filter meth-
ods [6, 7, 18] are further used in traditional AEC, but these meth-
ods are still inefficient for echo suppression.

Recent advances in deep learning have shown great poten-
tial in acoustic echo cancellation due to its strong non-linear
modeling ability. There are some methods that combine tradi-
tional signal processing with neural networks to deal with the
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Figure 1: Diagram of an acoustic echo scenario.

AEC task. Ma et al. [9]] used adaptive filter processing lin-
ear echo as well as a lightweight LSTM structure for residual
non-linear echo cancellation. Fazel et al. [10] designed a deep
contextual-attention module with frequency domain NLMS to
adaptively estimate features of the near-end speech. Wang et
al. [11]] and Valin et al. [[12] have also achieved competitive re-
sults in the recent AEC-challenge [13]. Zhang and Wang [14]
formulated AEC as a supervised speech separation problem,
where a bidirectional long-short term memory (BLSTM) net-
work was adopted to predict a mask for magnitude of micro-
phone signal. After that, many AEC algorithms based on speech
enhancement/separation network have been proposed. West-
hausen et al. [15] extended DTLN [16] by concatinating the far-
end signal as additional information. Chen et al. [17] proposed a
residual echo suppression (RES) method with convolution net-
work based on the modification of ConvTasNet [18], and Kim et
al. [19]] proposed an auxiliary encoder and an attention network
based on Wave-U-Net [20] to effectively suppressed the echo.

Recent studies [21,22] in speech enhancement have shown
significant benefit of using a complex network, which handles
magnitude and phase simultaneously, leading to superior per-
formance in speech enhancement. Compared with a real-valued
network, a complex network can even achieve better perfor-
mance with much smaller size of parameters [22]]. The supe-
rior performance is mainly attributed to the effective use of the
phase information. Moreover, complex domain based methods
have achieved overall better subjective listening performance in
the Deep Noise Suppression (DNS) Challenge [13].

In this paper, inspired by the recent advances in complex
network, we address the AEC task by adopting a complex
encoder-decoder structured network. To the best of our knowl-
edge, this is the first work that adopts complex network in the
AEC task. Specifically, we use complex Conv2d layers and
complex Transposed-Conv2d layers as encoder and decoder re-
spectively to model the complex spectra from both far-end and
near-end signal, and complex LSTM layers as the mask estima-
tion module. Inspired by F-T-LSTM [23|, we perform recur-
rence on frequency axis of high-dimensional features extracted



by the encoder. The bi-directional F-LSTM on frequency axis
allows the network to learn better the relationship between fre-
quency bands, and the subsequent T-LSTM scans the time axis,
aiming to remove the echo signal further. We also adopt seg-
mented Si-SNR as the cost function of our network. With only
1.4M parameters, the proposed approach outperforms the AEC-
challenge baseline by 0.27 in terms of Mean Opinion Score
(MOS).

2. Proposed Method
2.1. Problem formulation

We illustrate the signal model of acoustic echo cancellation in
Fig.[T} The microphone signal y(n) consists of near-end speech
s(n), acoustic echo d(n) and background noise v(n):

y(n) = s(n) +d(n) +v(n), (1
where n refers to time sample indexes. d(n) is obtained by the
far-end signal z:(n) as illustrated in Fig. |I|and it also may have
nonlinear distortion caused by speakers. h(n) denotes acoustic
echo path. The acoustic echo cancellation task is to separate
s(n) apart from y(n), on the premise that z(n) is known.
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Figure 2: System flowchart of proposed network. (A) The red
dotted area shows the time delay of between y(n) and x(n).
(B) F-T-LSTM-real and F-T-LSTM-imag are used to model the
real and imaginary parts of the high-dimensional complex fea-
ture, respectively. (C) y(n) and x(n) are converted to' Y, X
through STFT respectively. The estimated signal $(n) is recon-
struct through inverse-STFT.

2.2. Architecture

As illustrated in Fig. 2] our deep complex AEC network con-
sists of three modules: complex encoder-decoder network, F-T-
LSTM and complex LSTM.

For a sequential input w € , where IV is the num-
ber of audio sampling points and 2 denotes two signals — y(n)
stacks with x(n). Performing STFT on the input signal w, we
obtain the complex spectra W = W, + jW;, W € R¥>*T*F,
where input complex matrix W, and W; represent respec-
tively the real and imaginary part of W with same tensor di-
mension R2*T*F T denotes the frame number and F' de-
notes the frequency dimension after STFT. Complex convolu-
tional/deconvolutional filter K is defined as K = K, + j K,
where the real-valued matrices K- and K; represent the real and
imaginary part of a complex kernel, respectively. The complex
operation W ® K defined as:

H= (K «W, —K;i«W;)+j (K, «W; + K; * Wy.). (2)
H = H, + jHi,H € ROM*T H,_and H; € RO*N*T,
C denotes the output channel and M denotes the frequency di-
mension change after convolution/deconvolution, N = M/2.

The F-T-LSTM module for the real spectra can be described

RQXN

Table 1: Configuration of our proposed method. c- stands for
the abbreviation of complex. X2 means real and imaginary part
of a complex kernel.

Layer name Input size | Hyperparameters | Output size
c-conv2d_1 (x2) 4xTx161 | 5x1,(1,2),64 |64 xT x79
c-conv2d_2 (x2) 64 xTx79 [3x1,(1,1),192192 X T x 79
reshape_1 192 x T x 79 - T x 79 x 192
F-LSTM T x 79 x 96 128 T X 79 X 96
reshape_2 T x 79 x 96 - 79 x T x 96
T-LSTM 79 X T x 96 128 79 X T x 96
c-deconv2d.2 (x2) [ 192 x T x 79| 3 x 1,(1,1),64 |64 X T x 79
c-deconv2d_1 (x2) |64 x T x79 | 5x1,(1,2),2 |2xT x 161
Deepfilter 2x T x 161 3x3,(1,1),9 |2xTx 161
¢c-LSTM (x2) 2xTx 161 128, 2 layers 2xTx 161

as follows (imaginary spectra are the same):

S U= [ 0) =1, M]
F-LSTM: { V=H,+ [yreshape , o
| Z= [h (Vreshape [;,i,:}),i: 1,-..,T]

T-LSTM: { o =V reshape 7

where H;cshapc andU € RTXNXC' Urcshapc, Zrcshapc, V and Znut
€ ROXNXT yreshape ang 7 ¢ RVXTXC | £(.) is the mapping
function defined by the F-LSTM, which is always bi-directional
LSTM and is applied to the frequency dimension of H*hPe,
h(-) is the mapping function defined by the T-LSTM, which
scans the time axis. The complex decoder is followed by the
Deepfilter[24] with looking forward one frame, and the 2 com-
plex LSTM layers defined in [22] is finally used to estimate the
complex mask for y(n).

The detailed description of our model configuration is
shown in Tablem The complex Conv2d/Transpose-Conv2d lay-
ers’ hyperparameters are given in (kernel size, strides, out chan-
nels) format. We omit the Dense layer after each LSTM which
keeps the dimension consistent with the input tensor.

2.3. Training targets

We estimate complex ratio mask (CRM) [25]] optimized by sig-
nal approximation (SA). CRM can be defined as:
M = 4
CRM =~ 0 v @
where Y and S denote y(n) and s(n) after STFT respectively.
The final predicted mask of the network M = M, + jM; can
also be expressed in polar coordinates:
Mumag = /M2 + M? )
Myhase = arctan 2 (M;, M) ’
and the estimated clean speech S can be calculated as below:
S = Ymag . ]\4mag . erhase+Mphase ) 6)

2.4. Cost function

The cost function is based on SI-SNR [26], which has been
widely used as an evaluation metric. Instead of computing the
average SI-SNR loss of the whole utterance, segmented SI-SNR
(Seg-SiSNR) split the utterance into different chunks so that it
can distinguish the situation of single-talk and double-talk in a
sentence. And our experiments prove that Seg-SiSNR works



better than SI-SNR in AEC task. Seg-SiSNR is defined as:

Starget = (< 8,8 > 5)/“‘9‘@
Enoise =58—s
|| Starget H 2 (7)
SI-SNR = 10log 10 ( {7 '
€noise || 3

Seg-SiSNR  := 1 37¢ | SI-SNR(Ssegi, Ssegi)

where s and § are the clean and estimated time-domain wave-
form, respectively. < -,- > denotes the dot product between
two vectors and || - ||2 is Euclidean norm (L2 norm). c¢ de-
notes how many chunks are divided from 5 and s. *gg; de-
notes the i-th speech fragment. We calculate Seg-SiSNR loss
for ¢ = 1, 10, 20 and sum them together as the final cost func-
tion.

3. Experiments
3.1. Dataset

We experiment on the AEC-challenge data [13] to validate the
proposed method. In order to train the network, four types
of signals need to be prepared: near-end speech, background
noise, far-end speech and corresponding echo signal.

For near-end speech s(n), the official synthetic dataset con-
tains 10,000 utterances and we select the first 500 utterances as
the test set which does not participate in training. The rest 9,500
utterances, together with the 20,000 utterances (about 70 hours)
randomly selected from LibriSpeech [27] train-clean-100 sub-
set are used for training.

For background noise v(n), we randomly select noise from
the DNS [28] data (about 80 hours), in which 20,000 of them
are used to generate the test set, and the rest is used in training.

For far-end speech x(n) and echo signal d(n), similar to
the near-end situation, the first 500 sentences of the official syn-
thetic dataset are used as the test set. Besides, we use the real
far-end single-talk recordings provided by the AEC-challenge
(about 37 hours), which covers a variety of voice devices and
echo signal delay.

To make a fair comparison with another competitive
method with reproducible codes — DTLN-AEC [15], we also
use the data from the AEC-challenge 2020 only for training and
testing. To distinguish the results on different data, we use the
suffixes *-20 and *-21 to distinguish the datasets used in AEC-
challenge 2020 and 2021 respectively.

3.2. Data augmentation

Online data generation. we prepare the near-end speech s(n),
background noise v(n), far-end speech z(n) and echo signal
d(n) before training, and combine these four signals accord-
ing to randomly selected signal-to-noise ratio (SNR), signal-to-
echo ratio (SER) or other probability factors. In our implement,
SNR € [5,20]dB and SER € [—10, 13]dB. The SNR and SER,
which are evaluated during double-talk periods, are defined as:

SNR = 101log,, [Z s*(n)/ Y _v*(n) 8)

and
SER = 10log,, {Z s*(n)/ > d’ (n):| . )

Other probability factors are set up as follows. There is 30%
probability to set zz(n) and d(n) as zeros, so that it can simulate
the situation of near-end single-talk, and the noise signal (v(n))
is set to 0 with 50% probability. For on-the-fly data generation,

various random factors can ensure the diversity of the training
data, especially when the echo signal dataset is insufficient.

The delay of the far-end signal. The far-end signal will
undergo various of delays before received by the microphone.
As shown in the Fig.[2] this delay cannot be avoided in real con-
ditions. The hardware performance and processing algorithm
of the device, as well as network fluctuations during the call,
may introduce delays. In the conventional DSP-based method,
a time delay estimation (TDE) module is needed to align the
microphone and the far-end signal. However, due to non-linear
changes and background noise interference, errors easily oc-
cur in the TDE estimation in practice. We randomly delay the
aligned microphone signal from O to 100ms to simulate such
kind of errors.

Gain variations. We apply a random amplification for the
echo signal d(n) and the far-end speech x(n). Specifically, we
randomly select 3s segment between d(n) and z(n) to attenuate
by 20dB to 30dB. The probability of randomly attenuating the
signal is 20%. In addition, through simple maximum normal-
ization, the amplitude range of [0.3, 0.9] is randomly applied to
the two signals, and this variations make the network insensitive
to amplitude changes.

Reverberation for near-end signal. The room impulse re-
sponses (RIRs) are generated using the image method [29]. To
expand data diversity, we simulate 1,000 different rooms of size
a X bx hm for training mixtures, where a € [5,8],b € [3, 5] and
h € [3,4]. We randomly choose 10 positions in each room with
random microphone-loudspeaker (M-L) distance ([0.5, 5]m) to
generate the RIRs. The length of the RIRs is set to 0.5s and the
reverberation time (RT60) is randomly chosen from [0.2, 0.7]s.
In total 10,000 RIRs are created. We use the first 500 RIRs
to generate the test set, and the rest is used for training. For
on-the-fly data generation, RIRs are only used to convolve with
near-end speech s(n) with 50% probability. The far-end speech
z(n) and echo signal d(n) are either already reverberated or
real recordings in different rooms [13]], so there is no need for
reverberation.

3.3. Performance metrics

The proposed method is evaluated in terms of ERLE [30] for
single-talk periods. Perceptual evaluation of speech quality
(PESQ) [31], short-time objective intelligibility (STOI) [32] are
used for double-talk periods. The AEC-challenge also provides
subjective evaluation results based on the average P.808 Mean
Opinion Score (MOS) [33]. In this study, ERLE is defined as:

ERLE = 10log,, [Z v’ (n)/ > §2(n):| . (10)

This variant of ERLE reflects the integrated echo and noise at-
tenuation achieved by system, which is closer to the actual ap-
plication scenario.

3.4. Experimental setup

Window length and hop size are 20ms and 10ms. Then a 320-
point short-time Fourier transform (STFT) is applied to each
time frame to produce the complex spectra. Chunk size of our
training data is set to 10s. Our model is trained with the Adam
optimizer [34] for 100 epochs with an initial learning rate of
le-3, and the learning rate needs to be halved if there is no im-
provement for two epochs. The whole parameters of model are
1.4M, using SI-SNR loss for training or Seg-SiSNR loss if spe-
cially pointed out. Overall delay of the system is 40ms. The real
time factor (RTF) of our network is 0.4385, tested on Intel(R)



Table 2: In the case of double-talk, we evaluate PESQ and STOI using on-the-fly data generation, SER € [—13,10]dB, SNR € [5, 20]|dB.
We evaluate ERLE of the far-end single-talk scenario in the blind test set.

Clean Noisy Blind test
Method #Params (M) PESQ STOI PESQ STOI ERLE
Orig - 1.31 0.83 1.26 0.82 -

WebRTC-AEC3 - 1.16 0.63 1.16 0.61 17.40
BLSTM-20 8.09 1.64 0.88 1.51 0.87 21.29
Baseline—ZlE] 1.30 1.66 0.89 1.47 0.88 18.97
DTLN-AEC-2 10.42 2.04 0.58 1.88 0.57 31.99
DC-C-T-LSTM-CLSTM-20 1.35 1.80 0.90 1.68 0.89 23.98
DC-F-T-LSTM-CLSTM-20 2.12 0.93 1.94 0.92 30.43
+ Dataset-21 1.41 2.08 0.93 1.91 0.92 30.06
+ Seg-SiSNR 2.13 0.93 1.95 0.92 33.39

(a) Microphone signal

ik

(d) DC-F-T-LSTM-CLSTM-20

(b) Baseline-21

(¢) DC-F-T-LSTM-CLSTM-21

(c) DTLN-AEC-20

ik

(f) DC-F-T-LSTM-CLSTM-21+Seg-SiSNR

£

Figure 3: Comparison of different models on real double-talk sample of blind test.

Table 3: Subjective ratings in terms of MOS for the blind test
set of the AEC-challenge. The confidence interval is 0.02 (ST
= single-talk, DT = double talk, NE = near-end, FE = far-
end, DT-ECHO means more associated with residual echo, DT-
Other means more related to other degradations).

ST-NE ST-FE DT-ECHO DT-Other

from LibriSpeech. We notice that PESQ gets worse with the use
of more real data, this is because some invalid far-end single-
talk clips, which contain near-end speech, are not eliminated.
Even with these invalid clips, using Seg-SiSNR as cost func-
tion shows improvement and achieves the best results. Fig. 3]
exhibits the improvement of our methods under the same train-
ing dataset and better ability to suppress residual noise using

Method - “vios pmos  pmos — pmos  Overall Seg-SiSNR loss.
Baseline  4.18 3.82 4.04 3.45 3.87 Table[3]shows that our method significantly outperforms the
Ours 3.78 4.44 4.44 3.90 4.14

Xeon(R) CPU E5-2640@2.50GHz with single-core. Some of
the processed audio clips can be found in this pag

3.5. Results and Analysis

In Table[2] we compare different methods in the AEC-challenge
datasets. Because of non-linear distortion and noise inter-
ference, WebRTC-AEC3 does not work well in the view of
PESQ and STOI. Our method outperforms the BLSTM [14] (4
BLSTM layers with 300 hidden units) and AEC-challenge base-
line [13] (2 GRU layers with 322 hidden units) in all conditions.
Besides the DC-F-T-LSTM-CLSTM which recurrents in fre-
quency as well as time axis, we tried DC-C-T-LSTM-CLSTM
which recurrents in channel and time axis for comparison. With
almost the same amount of parameters, our experiment proves
that doing recurrence in the frequency axis is more effective.
Compared with DTLN-AEC-20 , DC-F-T-LSTM-CLSTM-20
clearly brings better performance with less parameters. Dataset-
21 means AEC-challenge 2021 dataset and 60h near-end speech

Uhttps://github.com/microsoft/ AEC-challenge
Zhttps://github.com/breizhn/DTLN-aec
3https://echocatzh.github.io/Demo-of-DeepComplex AEC

AEC-challenge baseline except for the ST-NE condition. The
overall MOS improvement is as high as 0.27. The ST-NE case
may be caused by narrow range of SER ([—13,10] dB) and
SNR([5, 20] dB) when generating the training data on-the-fly,
resulting in insufficient data coverage of ST-NE scenario (high
SNR/SER scenario) and leading to perceivable speech distor-
tion in this scenario. We will solve this problem in the future.

4. Conclusions

This study has shown that our proposed neural AEC system —
DC-F-T-LSTM-CLSTM, with smaller size of parameters and
lower runtime delay, can achieve better echo cancellation and
noise suppression performance compared with the competitive
methods. We verify that the magnitude and phase information
can be more effectively used with the complex operation and
the F-T-LSTM module. With Seg-SiSNR as the cost function,
the residual echo and noise can be suppressed further. Experi-
mental results in double-talk scenarios, background noise situ-
ations and real recordings were also reported, proving that our
method is effective in challenging acoustic echo conditions In
future work, we will optimize the data generation strategy for
adapting to the real acoustic environment better, and consider
lower complexity and hybrid DSP/Neural network methods.
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