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ABSTRACT

One crucial challenge of real-world multilingual speech recognition is the long-
tailed distribution problem, where some resource-rich languages like English have
abundant training data, but a long tail of low-resource languages have varying
amounts of limited training data. To overcome the long-tail problem, in this pa-
per, we propose Adapt-and-Adjust (A2), a transformer-based multi-task learn-
ing framework for end-to-end multilingual speech recognition. The A2 frame-
work overcomes the long-tail problem via three techniques: (1) exploiting a pre-
trained multilingual language model (mBERT) to improve the performance of
low-resource languages; (2) proposing dual adapters consisting of both language-
specific and language-agnostic adaptation with minimal additional parameters;
and (3) overcoming the class imbalance, either by imposing class priors in the
loss during training or adjusting the logits of the softmax output during inference.
Extensive experiments on the CommonVoice corpus show that A2 significantly
outperforms conventional approaches.

1 INTRODUCTION

Deploying a single Automatic Speech Recognition (ASR) model to recognize multiple languages
is highly desired but very challenging for real-world multilingual ASR scenarios due to the well-
known long-tailed distribution challenge, namely, that some resource-rich languages like English
have abundant training data, while the majority low-resource languages have varying amounts of
training data. The recent popular end-to-end (E2E) monolingual ASR architecture (Graves et al.,
2013; Chan et al., 2015; Vaswani et al., 2017) is promising to achieve state-of-the-art performance
for resource-rich languages but suffers dramatically from the long tail of low-resource languages
due to the lack of training data. This paper aims to investigate an end-to-end multilingual ASR
framework where a single model is trained end-to-end from a pooled dataset of all target languages to
improve the overall performance of multilingual ASR tasks, especially for low-resource languages.

The long-tailed data distribution problem makes building an end-to-end multilingual ASR notori-
ously challenging. This imbalanced data setting poses a multitude of open challenges for multi-task
training because the distribution of the training data is very skewed. These challenges stem from
two aspects. First, very limited audio samples are available for low-resource languages, such as
Kyrgyz, Swedish, and Turkish, while simultaneously, vast amounts of data exist from high-resource
languages, such as English, French, and Spanish. Second, graphemes or subword labels follow a
long-tailed distribution in ASR since some labels appear significantly more frequently, even for a
monolingual setting. Furthermore, a multilingual system may include languages with writing scripts
other than the Latin alphabet, such as Chinese or Cyrillic, that further worsen the skewness. To fur-
ther illustrate the long-tail distribution in our study, Figure 1 shows the frequencies of sentence piece
tokens in the curated multilingual dataset from CommonVoice (Ardila et al., 2020).

While a standard end-to-end multilingual training approach can improve overall performance com-
pared with monolingual end-to-end approaches, it does not address the long-tail problem explicitly.

∗Equal Contribution. ‡All work was done while the first author was an intern at Salesforce Research.
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Figure 1: The long-tail distribution of sentence piece tokens in the curated multilingual dataset. The
head classes are tokens with high frequency, otherwise, they are classified as tail classes.

One of the key challenges is the class imbalance issue, which will bias the multilingual model to-
wards the dominant languages. To address this, one straightforward approach is to resample the
training data (Kannan et al., 2019; Pratap et al., 2020) during batch assembly. However, such an
ad-hoc approach does not fully resolve the underlying long-tail distribution problem, and only a
marginal improvement is obtained in practice. Another challenge is how to model the languages
with limited training data robustly. In this paper, the “long-tail problem” is twofold: 1) the long-
tailed class distribution arising from the skewed multilingual data and sentence piece distribution 2)
the robust modelling of languages with limited training data, i.e., tail languages.

To this end, we propose the Adapt-and-Adjust (A2) framework for multilingual speech recognition
using a speech transformer to address the twofold long-tail problem. Firstly, for better language
modeling, a distilled mBERT (Devlin et al., 2019) is converted to an autoregressive transformer
decoder to jointly explore the multilingual acoustic and text space to improve the performance of
low-resource languages. Secondly, to adapt the multilingual network to specific languages with
minimal additional parameters, both language-specific and language-agnostic adapters are used to
augment each encoder and decoder layer. While the language-specific adapters focus on adapting
the shared network weights to a particular language, a common adapter is proposed to learn some
shared and language-agnostic knowledge for better knowledge transfer across languages. Lastly,
to increase the relative margin between logits of rare versus dominant languages, we perform class
imbalance adjustments during multilingual model training or inference by revisiting the classic idea
of logit adjustment (Zhou & Liu, 2006). Class imbalance adjustment (Collell et al., 2016; Cui et al.,
2019; Menon et al., 2020) is applied by adjusting the logits of the softmax input with the class priors.
We conduct experiments and establish a benchmark from the CommonVoice corpus with a realistic
long-tailed distribution of different languages. The extensive experiments show that A2 significantly
outperforms conventional approaches for end-to-end multilingual ASR.

Our key contributions are as follows:

• We propose Adapt-and-Adjust (A2), a novel end-to-end transformer-based framework for
real-world multilingual speech recognition to overcome the “long-tail problem”;

• We demonstrate the effectiveness of utilizing a pretrained multilingual language model as a
speech decoder to improve multilingual text representations and language adapters to better
share the learned information across all languages. To the best of our knowledge, this work
is the first to adapt a pretrained multilingual language model for multilingual ASR.

• We show that incorporating class priors during training or inference is effective and essen-
tial to addressing the long-tail distribution issue in multilingual training.

• We establish a reproducible multilingual speech recognition benchmark with long-tailed
distributions of 11 languages from different language families for the research community.

2 ADAPT-AND-ADJUST FRAMEWORK

2.1 OVERVIEW

Figure 2 gives an overview of the proposed A2 framework for end-to-end multilingual ASR. A2 is
built on a transformer-based sequence-to-sequence model with three key novel contributions: (1)
an mBERT-based decoder, (2) language adapters, and (3) class-imbalance adjustments. Firstly, the
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Figure 2: Overview of the Adapt-and-Adjust framework. The layer norm is omitted to save space.
pctc is the connectionist temporal classification (CTC) output, pattn is the decoder output, yt−1 is
the previous token. The three key modules are (1) pre-trained mBERT-based decoding to improve
language modelling; and (2) dual adapters to improve acoustic modelling, all particularly for tail
languages; and (3) class-imbalance adjustment of the logits fdec(yt−1,henc) by class priors πy .

vanilla transformer decoder is replaced with mBERT for better language modeling, particularly for
low-resource languages. Secondly, the common and language-specific adapters are added to each
encoder and decoder layer to learn both the shared and language-specific information for better
acoustic modelling. Finally, we perform class imbalance adjustments during training or inference,
where the logits are adjusted with the class priors estimated from the training data.

2.2 BASE MODEL: HYBRID CTC-ATTENTION SPEECH TRANSFORMER

A sequence-to-sequence speech transformer model (Dong et al., 2018; Kim et al., 2016; Karita
et al., 2019b) based on the hybrid CTC-Attention network is used for acoustic modeling. It takes
in the acoustic features x ∈ RT×F and outputs the sentence piece tokens y, where T and F denote
the sequence length and feature dimension. The encoder consists of several 2D convolution layers
followed by self-attention layers. The convolution layers are used to extract more robust features
before they are sent to the transformer. The decoder layers have two attention mechanisms, one
for self-attention and the other for the encoder output. The network is trained in an autoregressive
manner by predicting the next token given the current output. In addition, the CTC layer (Graves
et al., 2006) is added to the encoder output to serve as a regularizer to the attention model.

Training Multi-task loss LMTL (Watanabe et al., 2018; Karita et al., 2019b), combining the CTC
loss (Graves et al., 2006) and attention lossLATTN, is used to train the speech transformer. The multi-
task loss is computed as an interpolation of the two losses with a hyper-parameter λ (0 ≤ λ ≤ 1):

LATTN = KL(pattn||py), (1)
LMTL = λ logpctc(y|henc) + (1− λ)Lattn, (2)

where py is the label distribution after label smoothing (Müller et al., 2019) to prevent the model
from making over-confident predictions. Kullback-Leibler divergence loss (KL) (Kullback &
Leibler, 1951), is used for the attention loss.

Decoding Beam search is used to predict the sentence pieces without any additional language
models. The decoding score is computed as a weighted sum of both the CTC and attention network
probabilities using β as the decoding parameter to balance them (Karita et al., 2019a):

ŷ = argmax
y∈Y∗

{βpctc(y|henc) + (1− β)pattn(y|henc,y
′)}, (3)

where y′ is the decoded sequence so far.
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2.3 MULTILINGUAL BERT AS TRANSFORMER DECODER

For better language modeling, especially for low-resource languages, mBERT is used as the trans-
former decoder. Since mBERT is pre-trained on text data, it is essential to augment a cross-attention
layer to the encoder output for each mBERT layer. The cross-attention and its self-attention layers
are learned to “align” the acoustic and text spaces for the speech recognition. This is because the
text space may diverge significantly from the acoustic space of the encoder output.

Autoregressive mBERT Figure 3 depicts the adaptation of mBERT as an autoregressive trans-
former decoder. We copy the embeddings and self-attention parameters of mBERT into the decoder
layers. Let t denote the current decoding step. The autoregressive decoder takes the current input
token yt to predict the next token yt+1. The mBERT embedding layer converts the input token to
a vector representation. Subsequently, the cross-attention layer takes the encoder output henc as the
key and value, and the self-attention output as the query, and computes the attention output.

Figure 3: Parameter transfer from a pre-trained multilingual language model to a speech recognition
decoder. The dotted line shows the transfer direction from a specific module of the model.

Vocabulary Mapping The vocabulary size of the vanilla mBERT is too large (119,547 tokens) for
training the end-to-end speech recognition system. Therefore, vocabulary mapping is performed to
reduce the number of targets for the speech transformer. In this work, sentence pieces (SP) (Kudo,
2018) are used as the target tokens. The SP models are trained on the transcriptions with a preset
vocabulary size. In this work, we use a shared set of 5,237 tokens as the multilingual system’s
vocabulary. The minimum number in the token set for the sentence piece model is 150 for all the
monolingual systems, except Chinese with 2,265 tokens. The generated sentence piece tokens are
then matched against the mBERT token set. During training, the embeddings of all tokens in the
mBERT vocabulary are initialized with mBERT embeddings.

2.4 LANGUAGE ADAPTERS

Similar to Kannan et al. (2019), lightweight residual language adapters are used for better acoustic
modelling with minimal language-specific parameters to increase the model robustness to languages
with limited resources. As shown in Figure 4, in addition to the language-specific adapter for captur-
ing the language-intrinsic knowledge, a common adapter is also trained to learn language-agnostic
information in the multilingual data; we call these Dual-Adapters. The language-specific and com-
mon adapters are denoted as Alang and Acom, respectively. Each adapter of layer l consists of a
down-projection layer Wl

d, followed by a ReLU activation function, and an up-projection layer
Wl

u. The adapters take hl as the input, where hl is the self attention output of layer l. We compute
the output of Adapter(hl) as follows for both the language-specific and common adapters:

Adapter(hl) = Wl
u(ReLU(Wl

d(LayerNorm(hl)))) + hl. (4)

The final adapter output is computed as ol = ollang + olcom. ol is then used as the input to the next
encoder or decoder layer. We create a language mask to specify the language-specific adapters.
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Figure 4: Dual-Adapters. The orange box presents the active language-specific adapter and the blue
box presents the common adapter. The figure on the right shows the language adapter structure.

2.5 SENTENCE PIECE CLASS IMBALANCE ADJUSTMENTS

The sentence piece class imbalance problem is addressed by incorporating the class priors during
training or inference via logit adjustments. Derived from a Bayesian point of view in Menon et al.
(2020) for computer vision tasks, the softmax classifier with adjusted logits as input minimizes the
balanced error across all classes. A natural adjustment is to scale the logits fy(x) by the inverse of
the corresponding class prior πy . In log domain, the adjustment can be performed as follows:

f adj
y (x) = fy(x)− τ · log πy, (5)

where τ > 0 is a hyper-parameter. The adjustment can be viewed as applying a class-dependent
offset to re-weight each logit according to its class prior.

Class priors The class priors are the natural frequencies of the sentence piece tokens estimated
from the multilingual training data. To form a valid prior distribution, smoothing is applied to the
raw counts according to Equation 6 for zero occurrence tokens:

πy =

{
Ci

C −
1

(N−n0)×C , ci > 0
1

n0×C , otherwise,
(6)

whereC is the total number of counts for all labels, n0 is the number of labels with zero occurrences,
N is the number of classes and ci is the raw count of class i.

Training phase class imbalance adjustments To incorporate the priors during training, the logits
f dec
yt of the last decoder layer are adjusted before softmax according to the following:

f dec
yt = wTy · Decoder(henc,Embedding(yt−1)) (7)

f adj
yt = f dec

yt − τ · log πyt , (8)

padj
yt =

exp(f adj
yt )∑

y′t∈[N ] exp(f
adj
y′t

)
. (9)

The adjusted softmax output vector padj
y of the sequence is used to compute the KL loss and perform

the backward propagation to update the model. yt−1 is the previous label available only during
training. To reduce the training and inference discrepancy, scheduled sampling (Bengio et al., 2015)
is commonly used for sequential classification tasks like speech recognition. During later training
iterations, instead of using the ground truth label yt−1 for computing the logits, y′t−1 is chosen from
the maximum prediction output of the current model to simulate the inference:

y′t−1 = argmax
y

padj
yt−1

. (10)

If the scheduled sampling is used, the adjusted logits at step t will have influence over all of the
following tokens in the current sequence. This is a crucial difference from the image classification
task in Menon et al. (2020). If τ is set to be 1, the training phase logit adjustment becomes similar
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to the widely used label smoothing technique Müller et al. (2019). However, in conventional label
smoothing, the prior πy is usually a uniform distribution that is independent of the data. The logit
adjustment applies a class-specific “smoothing” based on the class prior, and has been shown to be
superior to the baseline with the standard label smoothing.

Inference phase class imbalance adjustments Alternatively, the class priors can be incorporated
during inference via logit adjustments. The decoding score is computed as follows:

ŷ = argmax
y∈Y∗

{βpctc(y|henc) + (1− β)padj
y }. (11)

During beam search, the attention decoding scores padj
y are computed in the same way as the sched-

uled sampling from the adjusted logits.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Dataset The CommonVoice dataset (Ardila et al., 2020) is a multilingual corpus collected by
Mozilla. Similar to Conneau et al. (2020a), we use 11 languages: English (en), Spanish (es), French
(fr), Italian (it), Kyrgyz (ky), Dutch (nl), Russian (ru), Swedish (sv), Turkish (tr), Tatar (tt), and
Chinese (zh). The dataset is split into training, dev, and eval sets according to the ESPNET recipe.
The transcriptions are tokenized using the SentencePiece model with the unigram algorithm. We
train our SentencePiece model using speech transcriptions, and the size of the vocabulary is shown
in Table 10. We then add special tokens, such as <unk>, <sos>, <eos>, and a blank token for
the CTC objective. The detailed data split is shown in Table 6 of Appendix C.

Network configurations We use six transformer encoder layers with a hidden size of 2048
units and eight attention heads, each with an attention dimension of 256. For the decoder, distil-
mBERT (Sanh et al., 2019) is used. The mBERT decoder consists of six transformer decoder layers
with a hidden size of 3072 and an attention dimension of 756, and four attention heads. We train our
model with a batch size of 32 and accumulate the gradient in two steps to have a larger batch size
using a single GPU NVIDIA V100 16GB. The models are trained with the Adam optimizer with a
warm-up step of 25000. In particular, for balanced sampling, we take six samples for each language
and construct a balanced batch by accumulating the gradient 11 times.

Training and Evaluation We evaluate our model using beam-search with a beamwidth of 10 and
λ = 0.3 and β = 0.5. The hyper-parameter τ is set to 0.3 for both the training and inference phase
class imbalance adjustments. The multilingual models are trained with 150K iterations. We compute
the average over the last ten checkpoints as the decoding model. For the monolingual setting, we
stop after 100 epochs of training. Models are evaluated using the character error rate (CER) to
simplify the evaluation and to have a universal metric for all languages.

Baselines As baseline approaches, we consider the following: Monolingual: we train monolin-
gual models; SMT (Standard Multilingual Training), we randomly sample the batch from the data
distribution; BS (Balanced Sampling), we sample the same number of utterances for each language
in a batch so that they have roughly equal contributions to the training; LAN-Specific Adapters:
language-specific adapters proposed by Kannan et al. (2019); and LID: (language ID) conditioning
with one-hot language vectors proposed by Li et al. (2018).

3.2 RESULTS

In Table 1, we present the test results on the CommonVoice dataset. Compared to the monolingual
models, even the SMT models improve the performance of the low-resource languages significantly.
In other words, SMT is a decent multilingual baseline to be compared with. We conjecture that
this may be because the multilingual models can capture common sub-phonetic articulatory fea-
tures (Kirchhoff et al., 2002; Metze, 2005; Livescu et al., 2007; Wang & Sim, 2014) that are shared
by different languages and are beneficial for low-resource languages recognition.
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Balanced Sampling We observe the same trend as in Kannan et al. (2019): compared to the SMT,
the tail language performance is significantly boosted. However, the performance of the head lan-
guages suffers due to fewer occurrences during training. The model is clearly over-fitted to the tail
languages due to up-sampling, for example, the CERs on the training set of “ky” and “sv” are sig-
nificantly lower than the evaluation data (3.4% and 4.2% training vs 13.4% and 22.8% evaluation).
Consequently, the overall performance is the same as SMT. In fact, even after balanced sampling,
the sentence piece tokens still have a long-tailed distribution, as shown in Appendix C.

Table 1: Test results in terms of CER (%) on the CommonVoice dataset.

high-resource intermediate low-resource
Model en fr es it ru zh tt nl tr ky sv avg
Training hours 877 273 132 66 57 33 20 19 10 9 4

Monolingual (full) 13.3 11.5 11.1 20.7 10.3 28.2 13.6 23.0 28.0 30.0 56.1 22.3

Training hours 80 50 40 20 15 15 15 15 10 9 4

Monolingual 22.6 20.1 17.3 20.7 23.9 37.6 20.7 38.1 30.3 31.6 57.7 29.1
SMT 20.1 17.4 13.0 12.5 13.7 34.1 12.2 18.7 13.9 14.4 26.4 17.9
BS 25.2 20.3 14.5 12.7 13.2 32.6 11.5 18.0 12.9 13.4 22.8 17.9
LAN-Specific Adapters 24.2 19.4 13.9 12.3 11.8 32.0 10.7 16.9 11.8 12.7 21.7 17.0
LID 25.7 19.2 13.7 12.0 12.0 31.6 10.8 16.4 12.0 12.5 21.8 17.1
LID + Adjust-Train 24.7 18.5 13.0 11.3 11.6 31.2 10.4 16.4 11.6 12.4 22.0 16.6
A2 (Adjust-Inference) 22.6 17.9 12.7 11.2 11.2 30.1 10.2 15.8 11.4 12.2 21.1 16.0
A2 (Adjust-Train) 22.0 17.7 12.5 11.3 11.1 30.4 10.0 15.9 11.3 12.1 21.3 16.0

Language Adapters We next compare the language adaptation techniques, the LAN-Specific
Adapters (Kannan et al., 2019), the one-hot language vector (Li et al., 2018), and the Dual-Adapters.
Note that all adapters are based on BS + mBERT, which has better performance than the BS-only
model. Adding the language-specific adapters without common adapters significantly outperforms
the BS baseline, with a 0.9% absolute performance gain. Another way of injecting language in-
formation is to augment a one-hot language vector. Interestingly, applying sentence piece class
imbalance adjustment (LID + Adjust-Train) to the language vector significantly improves the CER.

Sentence Piece Class Imbalance Adjustment Both the training and inference phase adjustments
provide a significant performance gain over the LAN-Specific Adapters, with 1% absolute CER re-
duction. The gains are mostly due to the improved performance of the head languages, although tail
languages also benefit from the logit adjustments. More importantly, the gap between the mono-
lingual and multilingual performance for the head languages is greatly reduced, leading to a better
“balanced error” performance. This strongly justifies the importance of class imbalance adjustments.
Compared to BS, A2 also avoids over-fitting to the tail languages, CERs on “ky” and “sv” are 8.2%
and 23.6%, much closer to evaluation CERs. Compared to SMT with random sampling, A2 has a
significant better averaged CER with a modest cost for the two head languages “fr” and “en”. Some
example transcriptions and detailed analysis using different A2 modules are given in Appendix E.

3.3 ABLATION STUDIES

3.3.1 MULTILINGUAL BERT

The effectiveness of mBERT is presented in Table 2. The performance of mBERT depends heavily
on the quality of the acoustic models. Without adapters or logit adjustments, the improvement over
BS is marginal, and mBERT performance is even worse for SMT. This may indicate that, with better
acoustic models like A2, the text space of the vanilla mBERT is better aligned with the acoustic
space, which leads to improved performance across all languages, especially for low-resource ones.
It is also interesting to note that, even without adapters, “SMT + mBERT + Adjust-Train” yields the
same overall CER as the best adapter system (BS + mBERT + Dual-Adapters).

To study the impacts of the pretrained language models, a more advanced XLM-R (Conneau et al.,
2020b) pretrained model is used in place of the distilled-mBERT. Although XLM-R has a better
multilingual language generation capability than mBERT, it does not translate to the final perfor-
mance gain for the multilingual ASR task. We believe this is because it becomes more difficult
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Table 2: Ablation study on mBERT for multilingual speech recognition.

en fr es it ru zh tt nl tr ky sv avg
SMT 20.1 17.4 13.0 12.5 13.7 34.1 12.2 18.7 13.9 14.4 26.4 17.9
SMT + mBERT 20.4 17.9 13.4 13.0 14.0 34.8 12.4 18.9 14.0 14.3 26.2 18.1

BS 25.2 20.3 14.5 12.7 13.2 32.6 11.5 18.0 12.9 13.4 22.8 17.9
BS + mBERT 25.0 20.0 15.4 12.6 13.2 32.9 11.1 17.3 12.6 12.8 22.8 17.8
BS + Dual-Adapters 23.5 18.9 13.5 12.1 12.3 31.0 10.9 16.5 12.0 12.9 21.6 16.8
BS + Dual-Adapters + mBERT 23.4 18.6 13.4 11.8 11.7 30.8 10.8 16.2 11.6 12.4 21.5 16.5
SMT + Adjust-Train 20.2 16.9 12.5 11.9 13.1 32.9 11.3 18.5 13.5 13.9 25.3 17.3
SMT + Adjust-Train + mBERT 19.4 16.5 12.1 11.7 12.2 31.1 11.0 17.5 12.7 13.2 24.6 16.5
A2 with mBERT 22.0 17.7 12.5 11.3 11.1 30.4 10.0 15.8 11.3 12.1 21.3 16.0
A2 with XLM-R 22.1 17.6 12.5 11.4 11.4 29.6 10.3 15.9 11.5 12.1 21.4 16.0

for the model to align the text and acoustic space with the increased model complexities for XLM-
R. XLM-R is not advised considering it has more parameters compared to distilled-mBERT, and
the performance gain is not significant although it does improve the performance on “zh” and “fr”
slightly.

3.3.2 LANGUAGE ADAPTERS

The results and parameter sizes of different adapters are given in Table 3. Generally speaking, de-
coder layer adapters are not as effective as in the encoder layers, indicating adaptation of the acoustic
space is much more effective than of the text space. Therefore, considering the extra computation
and parameters, it is advisable to apply only the encoder adapters.

Table 3: Ablation study on language adapters’ impacts on BS + mBERT models

#Params en fr es it ru zh tt nl tr ky sv avg
No Adapter 76M 25.0 20.0 15.4 12.6 13.2 32.9 11.1 17.3 12.6 12.8 22.8 17.8
Decoder Adapter Only 82M 23.6 19.2 13.7 12.2 11.7 32.5 10.3 16.7 11.7 12.2 21.4 16.8
Encoder Adapter Only 78M 23.1 18.5 13.3 11.8 11.7 31.1 10.6 16.0 11.5 12.6 21.3 16.5
Encoder + Decoder 84M 23.4 18.6 13.4 11.8 11.7 30.8 10.8 16.2 11.6 12.4 21.5 16.5

We investigate the effectiveness of the common language adapters in Table 4. The Dual-Adapters
outperform the language-specific adapters significantly, by a 0.5% absolute CER reduction, indicat-
ing knowledge transfer with the common adapter is effective.

Table 4: Ablation study of language adapters.

#Params en fr es it ru zh tt nl tr ky sv avg
LAN-Specific Adapters 84M 24.2 19.4 13.9 12.3 11.8 32.0 10.7 16.9 11.8 12.7 21.7 17.0
Individual Dual-Adapters 84M 23.4 18.6 13.4 11.8 11.7 30.8 10.8 16.2 11.6 12.4 21.5 16.5
Language Group Dual-Adapters

By Written Scripts 78M 24.0 19.4 13.9 12.1 11.7 32.1 10.5 16.3 12.0 12.0 21.0 16.8
By Language Families 78M 23.5 19.0 13.6 11.9 11.4 31.0 10.4 16.2 11.6 11.9 21.4 16.5

In addition to the individual language adapters, we also divide languages into groups to allow sharing
of adapters within the same group. According to the written scripts, we divide the 11 languages into
language groups, e.g., Latin, Chinese characters and Cyrillic scripts. They can also be groups into
language families, e.g., Romance, Chinese, Turkic, Germanic. This group focuses more on the
similarities in lexica, grammars, and pronunciations, which are usually subsumed under the end-to-
end multilingual architectures. According to one group, languages that belong to the same cluster
do not necessarily belong to the same cluster in the other group. For example, Tartar and Turkish are
both Turkic languages. However, Tartar uses the Cyrillic script, and Turkish uses the Latin alphabet.
All languages in the same group share the same dual-adapters, and the adapters are trained with
all language members. In general, grouping by language families is better than grouping by written
scripts because it is more consistent with the encoder adapters for adapting the acoustic space, which
are more effective than decoder adapters in Table 3. Compared to individual language adapters,
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sharing language adapters by language families helps the low-resource languages performance, e.g.,
“sv” of the Germanic group, “ky” and “tr” of the Turkic group because more data are used to train
the group adapters. However, this also comes with a cost to the resource-rich languages compared
to “Individual Dual-Adapters”. Therefore, individual language adapters are advised considering the
adapters’ parameter sizes are much smaller than the encoder and decoder attention weights.

3.3.3 SENTENCE PIECE CLASS-IMBALANCE ADJUSTMENTS: TRAINING VS. INFERENCE

The two logit adjustments are compared in Table 5. For the SMT systems, training phase adjustment
shows a clear advantage over inference phase adjustment. Under the convex assumption, the solution
of the two adjustment approaches is the same. However, deep neural network optimization is a non-
convex problem, so they may converge to different local minima. Under SMT, the model is heavily
biased towards the head classes due to random sampling. Training phase class imbalance adjustment
can help the training to place more focus on the tail classes, leading to much better balanced and
lower error. With better acoustic models, e.g., language adapters, the inference phase adjustment
can better calibrate the raw classification scores and yield similar performance to the training phase
adjustment. Lastly, we show the effects of τ on inference phase logit adjustment in Appendix D.

Table 5: Training and inference phase logit adjustments with different A2 models.

Params en fr es it ru zh tt nl tr ky sv avg
SMT + mBERT + 76M 20.4 17.9 13.9 13.0 14.0 34.1 12.4 18.9 14.0 14.3 26.2 18.1

Adjust-Inference 76M 20.1 17.2 13.4 12.2 13.2 34.0 11.5 18.3 13.4 13.2 26.1 17.6
Adjust-Train 76M 19.4 16.5 12.1 11.7 12.2 31.1 11.0 17.5 12.7 13.2 24.6 16.5

BS + mBERT + 76M 25.0 20.0 15.4 12.6 13.2 32.9 11.1 17.3 12.6 12.8 22.8 17.8
Adjust-Inference 76M 24.1 19.3 13.5 12.0 12.1 32.3 10.6 16.7 12.2 12.6 22.2 17.0
Adjust-Train 76M 23.8 19.1 13.4 11.9 11.8 32.4 10.5 16.7 12.1 12.6 21.5 16.9

BS + mBERT + Dual-Adapters + 84M 23.4 18.6 13.4 11.8 11.7 30.8 10.8 16.2 11.6 12.4 21.5 16.5
Adjust-Inference 84M 22.6 17.9 12.7 11.2 11.2 30.1 10.2 15.8 11.4 12.2 21.1 16.0
Adjust-Train 84M 22.0 17.7 12.5 11.3 11.1 30.4 10.0 15.9 11.3 12.1 21.3 16.0

4 RELATED WORK

Long-Tail Conventional approaches to addressing the long-tail problem are focused on data sam-
pling methods (Kubat & Matwin, 1997; Chawla et al., 2002; Wallace et al., 2011). Recently, the
long-tail distribution issue has regained interest for neural network models (Menon et al., 2020), and
several approaches have been proposed, such as weight normalization (Kang et al., 2019), adaptive
margin (Cao et al., 2019), and equalized loss (Tan et al., 2020).

Adapters Adapters were first proposed to learn domain-specific representations in computer vi-
sion in a parameter-efficient way (Rebuffi et al., 2017). They were subsequently adopted for NLP
tasks to avoid fine-tuning a new model for each task by training an adapter module for each task
while sharing the pre-trained language model parameters (Houlsby et al., 2019; Lin et al., 2020).
Invertible adapters were proposed in Pfeiffer et al. (2020a;b) to effectively adapt an existing pre-
trained multilingual model to unseen languages for multi-task cross-lingual transfer.

Multilingual ASR E2E architectures like LAS (Toshniwal et al., 2018) and the Recurrent Neural
Transducer (Kannan et al., 2019) have been used for building a multilingual ASR system for a
group of Indian languages. In Kannan et al. (2019), language adapters are used to tackle the data
imbalance problem, although the improvement from using language adapters is marginal compared
to the language vector augmentation. Acoustic vector quantization is also used in the recent work
by Conneau et al. (2020a) on multilingual ASR. A massive multilingual ASR study with more than
50 languages and more than 16,000 hours of speech is presented in Pratap et al. (2020). The two
main techniques are data resampling and language clusters, which bear some similarities with our
balanced sampling and language adapters. Unfortunately, their datasets are not publicly available.
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5 CONCLUSION

In this paper, we introduce Adapt-and-Adjust (A2), an end-to-end transformer-based framework to
address the crucial challenge of long-tail data distribution issues in multilingual speech recognition.
A2 consists of three major components, namely, language adapters, class imbalance adjustments,
and a pretrained multilingual language model. Extensive experiments on the CommonVoice corpus
show that A2 significantly outperforms conventional approaches for end-to-end multilingual speech
recognition due to 1) the better acoustic modeling with adapters and class imbalance adjustments;
and 2) the better language modeling with pretrained multilingual BERT.
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A A2 ALGORITHM

The full algorithm of the A2 framework with training phase sentence piece class imbalance adjust-
ments is outlined in Algorithm 1.

Algorithm 1 Adapt-and-Adjust (A2) with Adjust-Train
Require: D: long-tailed multilingual data
Require: θ: an encoder-decoder model
Require: α, λ: step size hyperparameters

1: randomly initialize θ
2: copy mBERT pretrained language model to decoder parameters in θ
3: compute class priors π from D
4: while not done do
5: Sample batch of multilingual utterances x ∼ D
6: Generate language adapter mask m using the language tag in x
7: Compute encoder hidden states henc using x and m by encoder forwarding
8: Compute logits f dec

yt using henc and m by decoder forwarding
9: Adjust logit according to Equation 9

10: Compute CTC posteriors pctc(y|henc)
11: Compute attention loss LATTN in Equation
12: Compute multi-task loss LMTL using pctc(y|henc), LATTN, and λ in Equation 2
13: Update model θ ← θ − α∇θLMTL
14: end while

B ASR MODEL STRUCTURE

The encoders and decoders of the transformer-based speech recognition model used in this study is
presented here.

enc

enc

Figure 5: Encoder structure.

dec

dec

Figure 6: Decoder structure.

Encoder Layer Figure 5 shows the structure of the encoder layer. An adapter layer is added after
the layer norm and self-attention module. We also apply two residual connections after both the
self-attention layer and the adapter layer:

o = SelfAttn(LayerNorm(hl−1enc )) + hl−1enc , (12)

hlenc = FeedForward(Adapter(LayerNorm(o)) + o), (13)

where hl−1enc is the encoder hidden states of the previous layer l − 1 and hlenc is the output of the
encoder layer.
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Decoder Layer Figure 6 shows the structure of decoder layer with the adapter. We place the
adapter layer after the cross-attention model.

o1 = SelfAttn(LayerNorm(hl−1dec )) + hl−1dec , (14)
o2 = CrossAttn(henc,LayerNorm(o1)) + o1 (15)

hl+1
dec = FeedForward(Adapter(LayerNorm(o2)) + o2), (16)

where hl−1dec is the decoder hidden states of the previous layer, and hldec is the output the current layer.

C DATASET DISTRIBUTION

Table 6 shows the data split used for training, validation, and testing. Table 7 shows the frequencies
of the labels in the original data and our estimates on the balance sampling. There are only a few data
with an occurrence of more than 50k (around 1%). The class distribution on the balance sampling is
shifted to the 10k-50k range; thus, there are more labels in the middle of the distribution.

Table 6: Dataset split information

high-resource intermediate low-resource
en fr es it ru zh tt nl tr ky sv

Train (hours) 80.0 50.0 40.0 20.0 15.0 15.0 15.0 10.0 10.0 9.0 4.0
Valid (hours) 109.0 34.0 16.5 8.3 7.3 4.2 2.5 2.5 1.3 1.1 0.5
Test (hours) 10.0 10.0 10.0 8.3 7.3 4.3 2.5 2.5 1.3 1.1 0.5

Table 7: Class frequency in the original data and after applying balanced sampling

>100k 50k-100k 10k-50k 1k-10k <1k

Original data 6 9 152 1164 3905
Balance sampling 12 30 306 960 3243

Figure 7 and Figure 8 visualizes the long-tail distribution in more detailed. To better visualize them,
we ignore the classes fewer than 20k.
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Figure 7: Class Frequency. We only show labels more than 20k
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Figure 8: Class Frequency with Balance Sampling. We only show labels more than 20k
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D ABLATION STUDY ON INFERENCE PHASE LOGIT ADJUSTMENT

Figure 9 depicts the CERs of the systems with different τ for inference phase logit adjustment
with the best A2 configuration: balanced sampling with mBERT and Dual-Adapters. We choose
one language from each group, and the other languages demonstrate the same trend. In Figure 9, the
advantage of the logit adjustment is clearly shown compared to the baseline without logit adjustment
(τ = 0). All of the languages achieve their best CER with a τ value of τ = [0.3, 0.4]. Performance
saturates with heavier smoothing (τ >= 0.5).
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Figure 9: Comparison of models with different τ .

E TRANSCRIPTION EXAMPLES

We provide samples of two languages generated from different models, a resource-limited language
zh (traditional Chinese scripts and Mandarin spoken in Taiwan) and a resource-rich language en
(English).

Table 8: Transcription of a testing traditional Chinese utterance with different models

Reference 困難與挑戰是激發我們的原動力
Pinyin Kun4 Nan2 Yu3 Tiao3 Zhan4 Shi4 Ji1 Fa1 Wo3 Men2 De0 Yuan2 Dong4 Li4

Model Hypothesis CER

BS + mBERT 困難與挑戰是資料我們的員動力 21.4
+ Dual-Adapters 困難與挑戰是機發我們的員動力 14.3
+ Dual-Adapters + Adjust-Train 困難與挑戰是機發我們的員動力 14.3

Monolingual 負能一票佔是機發我的能員動力 64.3

SMT 可能與調站是機發我們的員動力 42.9

The reference in Table 8 roughly translates to English as “Obstacles and challenges are the sources
of power that motivate us.” The monolingual output is rather poor. Not only did it miss an impor-
tant character們 for distinguishing “my” and “our”, the sounding out of the sentence is also quite
different from the reference (Fu4 Neng2 Yi2 Piao4 Zhan4 Shi4 Wo3 De0 Yuan2 Dong4 Li4). The
standard multilingual training (SMT) improves the monolingual training by predicting the character
與 (Yu3) in place of一 (Yi2). In addition, the output of調站 (Tiao2 Zhan4) sounds almost the same
as the reference挑戰 (Tiao3 Zhan4). (The monolingual system output票佔 (Piao4 Zhan4) not only
does not make any sense in terms of word meaning, the pronunciation is also quite different from
the reference.) This shows that the multilingual training helps improve the acoustic modelling com-
pared to the monolingual training if the monolingual training data are limited. The mBERT model
further helps the language modeling by correcting 可能與調站 (literally translates to “possibility
and changing stations“) to 困難與挑戰 (“obstacles and challenges”). However, mBERT also re-
places 機發 (Ji1 Fa1) to 資料 (Zi1 Liao4) since 資料 (“documents/materials”) is a more common
word than機發, which is a wrong word with correct pronunciations relative to the reference. Lastly,
the adapters successfully convert 資料 (Zi1 Liao4) to 機發 (Ji1Fa1) so that it sounds the same as
the reference with one wrong character. This demonstrates the adapter’s capability in better acoustic
modelling. Finally the errors including the wrong characters in 機發 (Ji1Fa1) and 員動力 (Yuan2
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Dong4 Li4) can be easily corrected by a decent external language model during decoding, e.g., an
RNN-LM trained on the training transcriptions.

Table 9: Transcription of a testing English utterance with different models

Reference FOUND A LITTLE CROWD OF ABOUT TWENTY PEOPLE SURROUNDING THE HUGE HOLE

Model Hypothesis CER
BS + mBERT I SOUND THE LITTLE CROWD OF THE ABOUT TWENTY PEOPLE SURROUNDING THE HUGE HOLE 13.6
+ Dual-Adapters I SOUND A LITTLE CROWD IS ABOUT SPENT PEOPLE SURROUNDING THE HUGE HOLE 11.9
+ Dual-Adapters + Adjust-Train I SOUND THE LITTLE CROWD OF ABOUT TWENTY PEOPLE SURROUNDING THE HUGE HOLE 8.5
Monolingual SAW THE LEVEL CROWD AS ABOUT TWENTY PEOPLE SURROUNDING THE FUISH FOR 33.9

SMT SOUND THE LITTLE CROWD AS ABOUT TWENTY PEOPLE SURROUNDING THE HUGE HOLE 13.6

Table 9 shows the transcriptions of different models applied to an English testing utterance. Dif-
ferent from Table 8, where only limited training data are available, mBERT does not provide any
improvement over SMT, except that it makes the sentence more grammatical by adding a subject,
“I”. The Dual-Adapters improve the performance compared to mBERT by successfully decoding the
sentence piece “ENT” in “SPENT”, which is closer to “TWENTY” in terms of characters. Lastly,
the class imbalance adjustment system yields the best CER.

F VOCABULARY COVERAGE

Table 10: Vocabulary coverage

high-resource intermediate low-resource
en fr es it ru zh tt nl tr ky sv multi

Coverage (%) 74.4 73.6 70.8 73.9 90.2 97.7 91.3 64.7 57.1 91.1 53.8 54.9
# Match 181 281 192 164 156 2,330 157 110 93 154 86 2,875
# Vocab 243 382 271 222 173 2,386 172 170 163 169 160 5,237

G LOSS DYNAMICS

We plot the validation losses from A2 and the other baselines in Figures 10 and 11.
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Figure 10: Validation losses.
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Figure 11: Closer look at validation losses.

H LANGUAGE GROUP ADAPTERS

The language groups used in the experiment are shown in Table 11. We also present the detailed
CER results in Table 12 with sentence piece class imbalance adjustments. The inference phase logit
adjustments is slightly better than the training phase adjustment.
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Table 11: Language groups used in the adapters.

Groups Languages
By Written Scripts

Latin en, fr, es, it, nl, tr, sv
Chinese zh
Cyrillic ru, tt, ky

By Language Families

Germanic en, nl
Romance fr, es, it, sv
Turkic tr, tt, ky
Chinese zh

Table 12: Character error rate (CER) using different language group adapters.

high-resource intermediate low-resource
en fr es it ru zh tt nl tr ky sv avg

Language Families + 23.5 19.0 13.6 11.9 11.4 31.0 10.4 16.2 11.6 11.9 21.4 16.5
Adjust-Train 23.1 18.4 13.2 11.4 11.3 31.5 10.1 16.1 11.7 12.4 20.6 16.3
Adjust-Inference 22.7 18.2 12.9 11.3 11.1 30.7 10.0 15.9 11.5 11.8 20.7 16.1

Language Scripts + 24.0 19.4 13.9 12.1 11.7 32.1 10.5 16.3 12.0 12.0 21.0 16.8
Adjust-Train 23.5 18.9 13.5 11.7 11.6 31.5 10.4 16.4 11.9 12.1 21.2 16.6
Adjust-Inference 23.3 18.6 13.1 11.5 11.5 31.5 10.0 16.0 11.8 11.8 20.8 16.4

I FEW-SHOT SETTING

We also investigate the effectiveness of the A2 framework in the few-shot setting. We take five-hour
speech data of each language as the training data. The test results are shown in Table 13. Using
mBERT as the speech decoder consistently improves the performance in the low-resource monolin-
gual scenario. Interestingly, for Chinese language “zh”, without using mBERT as the decoder, the
model seems to be unable to learn useful information and the mBERT decoder yields an absolute
CER reduction of 17.2%.

For multilingual training, marginal performance gains are observed with mBERT decoder, indicat-
ing the multilingual language model is complementary to the shared acoustic knowledge learned
from the multilingual speech data. The language adapters lead to consistent and significant perfor-
mance gain across all languages. Note the sentence piece class imbalance adjustments do not yield
significant performance boost as in the long-tail multilingual setting in the main text. We believe
this is largely due to less severe sentence piece class imbalance when the same amount of training
data for each language is used.

Table 13: Character error rate (CER) on five-hour CommonVoice training data

high-resource intermediate low-resource
en fr es it ru zh tt nl tr ky sv avg

Monolingual

Standard Training (ST) 69.6 61.1 56.5 49.8 49.6 96.4 32.8 57.5 49.6 43.7 56.1 56.5
ST + mBERT 67.3 56.1 51.0 45.4 42.8 73.2 29.6 52.9 46.1 39.6 55.1 50.8

Multilingual

SMT 41.4 33.5 25.2 22.3 21.9 43.0 15.5 24.9 18.7 18.9 28.9 26.7
SMT + mBERT 40.9 32.6 24.3 21.0 19.9 42.1 14.5 23.8 17.3 17.4 26.7 25.5
SMT + mBERT + Adapters 36.7 28.6 21.3 18.3 17.2 38.2 12.9 20.9 15.1 15.1 23.9 22.6
A2 (Adjust-Inference) 36.5 28.4 21.0 18.0 16.9 38.0 12.7 20.6 14.8 15.0 23.7 22.3
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J HYPER-PARAMETER SETTING

The hyper-parameters used in the training are shown in Table 14.

Table 14: Hyper-parameter setting for training

hyper-parameters value
encoder-layer 6
encoder-units 2048
decoder-layers 6
decoder-units 3072
encoder-attention-dim 256
decoder-attention-dim 756
attention-heads 4
label-smoothing 0.1
batch-size 32 (for random sampling)

6 (for balanced sampling)
maximum-length-in 512
maximum-length-out 150
optimizer noam
warmup-step 25000
accum-grad 2 (for random sampling)

11 (for balanced sampling)
grad-clip 5
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