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1RWTH Aachen University
2AppTek GmbH

yu.qiao@rwth-aachen.de, zhou@cs.rwth-aachen.de, elma.kerz@ifaar.rwth-aachen.de,
schlueter@cs.rwth-aachen.de

Abstract
In recent years, automated approaches to assessing linguistic
complexity in second language (L2) writing have made signifi-
cant progress in gauging learner performance, predicting human
ratings of the quality of learner productions, and benchmarking
L2 development. In contrast, there is comparatively little work
in the area of speaking, particularly with respect to fully auto-
mated approaches to assessing L2 spontaneous speech. While
the importance of a well-performing ASR system is widely rec-
ognized, little research has been conducted to investigate the
impact of its performance on subsequent automatic text anal-
ysis. In this paper, we focus on this issue and examine the
impact of using a state-of-the-art ASR system for subsequent
automatic analysis of linguistic complexity in spontaneously
produced L2 speech. A set of 30 selected measures were con-
sidered, falling into four categories: syntactic, lexical, n-gram
frequency, and information-theoretic measures. The agreement
between the scores for these measures obtained on the basis
of ASR-generated vs. manual transcriptions was determined
through correlation analysis. A more differential effect of ASR
performance on specific types of complexity measures when
controlling for task type effects is also presented.
Index Terms: speech recognition, linguistic complexity, En-
glish as a second/foreign language, nonnative spontaneous
speech

1. Introduction
Measuring the product of second language (L2) (spoken or writ-
ten) performance is a key aspect of research into language learn-
ing and has a relatively long tradition dating back to 1970. This
line of research has been primarily geared towards assessing L2
performance in terms of reliable and valid performance indica-
tors that enable comparability and replicability across different
studies (see e.g. [1]). The search for such indicators has led to
the emergence of the Complexity, Accuracy and Fluency (CAF)
triad, a conceptual framework that captures the multicomponen-
tial nature of L2 proficiency (Housen & Kuiken 2009, [2], [3]).
Complexity refers to the range, comprehensiveness, richness,
and sophistication of language performance. Accuracy refers
to target-like and/or error-free language use. Fluency typically
refers to the smooth, easy, and eloquent production of language
with a relatively small number of pauses or reformulations.

As L2 learners become more proficient – i.e. as compared
to learners at lower levels or to themselves at earlier develop-
mental levels – they are expected to produce more complex
and varied sentence structures and advanced vocabulary as well
as more accurate and more fluent language. The significance
of CAF is also reflected in the descriptors of language pro-
ficiency levels defined in European and international compe-
tence frameworks, such as the Common European Framework
of Reference for Languages (CEFR, [4]) and its six levels of

competence (A1-C2). Since the focus here is on complexity –
which in itself is multidimensional – we provide below a con-
cise overview of related work on automated assessment of in-
dicators pertaining to this construct. At the lexical level, sev-
eral measures have yielded consistent results in capturing dif-
ferences associated with L2 English proficiency, such as those
pertaining to lexical sophistication, lexical variation/diversity
and lexical density (see e.g. [5], [6]). Lexical sophistication
refers to the degree to which a learner’s production contains
unusual or advanced words [7] and is commonly gauged using
features related to word frequency, n-gram frequency, academic
language, and psycholinguistic word properties, such as word
prevalence. Lexical diversity refers to the degree to which the
vocabulary used in L2 production is varied [8] and is often cap-
tured through features related to the number of word types pro-
duced in a language sample (the type-token ratio and its vari-
ants). Lexical density refers the amount of information in a
learner text and is captured by the number of lexical (as opposed
to grammatical) words to the total number of words in a lan-
guage sample [9]. At the syntactic level, a number of measures
have produced mixed results in terms of L2 ability and devel-
opment (see, e.g., [10], [11], see also [12] for a recent review).
Syntactic complexity measures can be broadly classified into
three types: length-based, clausal subordination, and phrasal
complexity measures. Length-based measures (e.g., number of
words per sentence/utterance) are commonly used in studies of
early first language acquisition based on the assumption that
longer utterances are inherently more complex [13]. However,
sentence length measures alone are insufficient to assess later
stages of L2 learning, as longer sentences do not always in-
dicate more complex syntactic structure. Measures relating to
clausal subordination are thus more commonly used in L2 stud-
ies for operationalizing syntactic complexity. In this way, clause
structure is prioritized over length, so that a short sentence with
multiple clauses is considered more complex than a longer sen-
tence with a single clause. Measures of phrasal complexity, in
particular noun phrase complexity, are typically associated with
proficiency in academic writing, whereas clausal subordination
is associated with proficiency in the spoken register (e.g. [14]).

In the domain of L2 writing, automated approaches to as-
sessing complexity and sophistication have been successfully
used to distinguish non-native from native and expert writers, to
differentiate levels of L2 proficiency, and to predict human rat-
ings of the quality of learner productions (see e.g. [15], [6]; see
also [16], [17], [12] for overviews). Comparatively little work
has been undertaken in the area of speaking, in particular con-
cerning fully automated approaches to assessment of L2 spon-
taneous speech, which includes measures of complexity and
sophistication (however, for exceptions, see e.g. [18]). Such
a fully automated approach requires automatic speech recog-
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nition (ASR) as a first step, which is known to have a higher
error rate for spontaneous, non-native speech compared to pre-
dictive speech (for details on factors that may affect ASR ac-
curacy, see [19]: p.67). More generally, ASR of L2 speech is
challenging due to a number of reasons: A key challenge is the
lack of publicly available databases and benchmark datasets for
spontaneously produced non-native speech. This is especially
true for L2 speech produced by adolescents and young adults
(but see the recent Interspeech (2020 & 2021) shared tasks on
ASR for Non-Native Children’s Speech). Another challenge is
the considerable inter-individual variability among non-native
speakers, even among those who are at similar levels of profi-
ciency due to a host of factors, including speaking rate, vocal
effort and speaking style. The phenomenon of idiosyncratic
differences in ASR system performance has been known for
many decades (see [20] for a comprehensive review of ASR and
speech variability), but its effects are more pronounced when
the overall WER is higher, as is the case with spontaneous
non-native speech. A third challenge associated with ASR of
L2 spontaneous speech is the frequent occurrence of a number
of phenomena that impair ASR performance, including mis-
pronounced words, ungrammatical utterances and disfluencies
(such as false starts, partial words, and filled pauses).

To our knowledge, while there is general recognition of
the importance of a well-performing ASR in the assessment
of spontaneous L2 speech, there is virtually no research aimed
at understanding what role ASR accuracy plays in subsequent
analyses of speech performance (for exceptions see [21],[22],
[23]). In this paper, we focus on this issue and examine the
impact of using a state-of-the-art (SOTA) ASR system for sub-
sequent automatic analysis of linguistic complexity in sponta-
neously produced L2 speech. More specifically, the uncertainty
introduced into the evaluation process by using automatically
instead of manually transcribed speech is investigated.

2. Data
The data used here come from two data sets of non-native (L2)
spontaneous speech collected as part of the third author’s re-
search aimed at advancing our current understanding of L2
learning and development. The target population are L2 speak-
ers of English with German as their first language at upper in-
termediate to advanced levels of proficiency.

School Data: The first data set consists of 165 samples of
spontaneous L2 speech produced by as many students attend-
ing German high schools in North Rhine-Westphalia (NRW).
This amounts to 9.7 hours of audio data. All students attended
grades 10, 11, and 12, which generally correspond to ages 16-
18. Students in grades 10 through 12 prepare for the high
school diploma (Abitur), which is equivalent to the British A-
level or the American high school diploma after 12 years of
formal education. The core curricula for L2 English instruction
at Gymnasien in NRW are oriented toward the CEFR frame-
work and its proficiency levels mentioned in Section 1. Ac-
cording to these curricula, by the end of 10th grade students
should reach level B1 of the CEFR with portions of level B2,
while by the end of 12th grade they should reach level B2 with
parts of level C1 in the receptive areas. The LexTALE task is
a useful instrument designed for intermediate to advanced L2
learners and often used as a proxy estimate of general English
proficiency (for more details see Lemhöfer & Broersma 2012).
The students’ performance on the LexTALE task provided ad-
ditional support for these proficiency levels as represented by
mean score and standard deviation (SD): 10th grade = 64.25%
(SD 9.53), 11th grade = 67.83% (SD 11.04) and 12th grade =

Table 1: Details of the L2 speech data
Data sets Recordings Words Hours

School dev 19 7503 1.0
test 50 23154 3.0
train 96 42217 5.7

University dev 25 13663 1.8
test 33 21584 2.9
train 240 165861 21.8

71.92% (SD 12.19), where B2 = upper intermediate level cor-
responds to LexTale scores between 60%-80%. All students
were asked to deliver a short (3-5 minutes) presentation on a
key topic from the core curricula mentioned above that relates
to the political system in the UK or UK international relations.

University Corpus: The second data set consists of 299
samples of spontaneous L2 speech produced by 243 students at
RWTH Aachen University. 56 of them produced two speeches.
This amounts to 26.5 hours of audio data. To elicit spontaneous
speech, the students first watched a popular TED talk1. They
were then asked to present their views on some of the issues
raised in the corresponding TED Talk. To ensure sufficiently
sized speech samples (approx. 5 minutes), students received
guiding questions to keep up the flow of speaking. Since the
prerequisite for entry into the German university is the Abitur,
students are expected to be at least B2 level and in parts C1 (see
descriptions of the core curricula above). This is also reflected
in their average LexTALE score of 75.79% (SD 15.46).

The audio recording of the two data sets were manually
transcribed following the same transcription conventions. De-
tails of the data are shown in Table 1. The train, dev and test
sets have no speaker overlap.

3. Automatic Speech Recognition Setup
We use the hybrid hidden Markov Model (HMM)-based ASR
system from [24] as our baseline, which shows SOTA perfor-
mance on the 2nd release of TED-LIUM task (TLv2) [25]. The
bidirectional long short-term memory [26] (BLSTM)-based
acoustic model (AM) is further fine tuned on the training sets
of school and university data separately (Table 1). The con-
stant learning rate for the fine tuning is optimized on the dev
sets, which yields 2 × 10−4 for the school set and 5 × 10−5

for the university set. Additionally, the same language mod-
els (LM) as in [24] are used for recognition, which are trained
on the TLv2 LM training data. These include both the 4-gram
and the LSTM-based LM, whose perplexity on both data sets is
shown in Table 2. To enhance the recognition output, we apply
confusion network decoding by default.

One major challenge here is the large difference of voice
characteristics between the experienced speakers in TLv2 and
the young students in our data. This is especially the case for
the school children whose vocal tract is still under develop-
ment. Speaker adaptation techniques are commonly applied to
account for such speaker variability and to improve ASR per-
formance. Following [24], we adopt the vocal tract length nor-
malization (VTLN) and the i-vectors-based speaker embedding
approaches. As shown in Table 3, VTLN gives the most im-
provement for the school set and i-vectors are more suitable for
the university set.

4. Automatic Text Analysis (ATA) Setup
Both manually and ASR generated transcripts of speech record-
ings were automatically analyzed using CoCoGen (short for

1https://bit.ly/3cZw7fN

https://bit.ly/3cZw7fN


Table 2: Perplexity of the TLv2 4-gram and LSTM LMs

LM School University
train dev test train dev test

4-gram 172 177 160 133 134 136
LSTM 95 99 85 79 75 80

Table 3: WER results of speaker adaptation (with a 4-gram LM)

Model Dev
School University

baseline + fine tuning 25.8 21.4
+VTLN 23.3 18.4
+i-vectors 24.0 18.2
+VTLN + i-vectors 23.8 18.7

Complexity Contour Generator), a computational tool that im-
plements a sliding window technique to calculate within-text
distributions of scores for a given language measures (see e.g.
[27, 28], for recent applications of the tool in the area of lan-
guage learning).The impetus for the implementation of the mea-
sures in the tool comes from a wealth of recent multidisciplinary
research that adopts an integrated approach to language [29] and
language learning [30] as well as an extensive body of litera-
ture on CAF framework reviewed in Section 1. Here in this
paper we employ a selection of 30 complexity measures (CMs)
from a larger set of 91 CMs that fall into four categories (see
below for the selection procedure): (1) syntactic CMs (N=12),
(2) lexical CMs (N=11), (3) register-based n-gram frequency
CMs (N=6), and (4) information-theoretic CMs (N=1). CoCo-
Gen uses the Stanford CoreNLP suite [31] for performing tok-
enization, sentence splitting, part-of-speech tagging, lemmati-
zation and syntactic parsing (Probabilistic Context Free Gram-
mar Parser [32]). The implementation of syntactic features fol-
low the descriptions in [33] and are based on the Tregex tree
pattern matching tool [34] with syntactic parse trees for extract-
ing specific patterns. The operationalizations of measures of
lexical complexity follow those described in [5] and [35]. The
third group includes 10 n-gram CMs that are derived from the
five register sub-components of the COCA [36]: spoken, mag-
azine, fiction, news and academic language2. The information-
theoretic CMs, Kolmogorov complexity (KolDef), uses the De-
flate algorithm [37] to compress text and obtain complexity
scores by relating the size of the compressed file to the size
of the original file (see [35] for the operationalization and im-
plementation of these CMs). The CMs selection procedure was
based on the following considerations: First, all CMs with near
zero variance were removed. Second, redundant CMs were re-
moved by considering the absolute values of all pair-wise corre-
lations between the measures: If two variables had a correlation
coefficient r > 0.9, we calculated the mean absolute correlation
of each measure and removed the one with the largest mean ab-
solute correlation.

5. Experimental Setup and Results
To assess the impact of the transcription from a SOTA ASR sys-
tem on automatic analysis of CMs in L2 spontaneous speech,
Spearman correlation coefficients (ρ) were calculated between
the results of all 30 speech measures based on manual transcrip-
tion and the ASR output. In addition, we decided to zoom in on
the school data set and examine which CMs discriminate most
strongly among the three grade levels (10th, 11th, and 12th).

2The Contemporary Corpus of American English is the register-
balanced corpus that contained 560 million words at the time the mea-
sures were derived.

Table 4: ASR performance on the school and university test sets
(with an LSTM LM)

Test Sub Ins Del WER
School 7.3 3.0 7.9 18.2
University 7.1 3.5 6.7 17.3

Table 5: Statistics of L2 speaker-specific ASR performance
(with an LSTM LM)

Mean SD Min Max
School
WER 18.4 5.2 8.4 34.7
Substitutions 7.3 3.0 2.7 18.1
Deletions 8.1 4.4 1.0 19.0
Insertions 3.0 1.4 1.0 7.2
University
WER 17.4 5.9 7.5 32.8
Substitutions 7.1 3.0 3.0 17.0
Deletions 6.9 3.3 2.8 15.5
Insertions 3.5 1.9 0.5 9.9

This enables a more nuanced picture of the implications of using
ASR for subsequent automated analysis of complexity. The rea-
son for focusing on school data is to control for task type effects
on linguistic complexity, since previous L2 research has demon-
strated that topic and task type have a significant impact on mea-
sures of syntactic complexity and lexical sophistication (see e.g.
[38]). The relative importance of a given CM was quantified in
terms of standardized coefficients of a mixed-effects ordinal re-
gression model (cumulative link mixed model). Separate mod-
els were fitted to the scores from each of the 30 CMs to predict
the cumulative probabilities for the outcome variable ‘school
grade’.
5.1. ASR Results
The performance of the ASR system on the test set is provided
in Table 4. One speaker’s recording from the university data
had to be excluded for the analysis due to a strong distortion.
The overall WER for the school data was 18.2%, whereas the
overall WER for the university data was 17.3%. The most fre-
quent recognition errors in the school data set were deletions
(Del) (7.9%), followed by substitutions (Sub) (7.3%) and in-
sertions (Ins) (3.0%). In the university data, the most frequent
recognition errors were substitutions (7.1%), followed by dele-
tions (6.7%) and insertions (3.5%). A closer look at the recog-
nition error distributions revealed that the majority of errors in-
volved mis-recognition of hesitation markers (such as uh, uhm)
and monosyllabic grammatical words (such as a, an, and, the)
(see Figure 2 in the Appendix). As expected from the literature
reviewed in Section 1, we observed substantial inter-individual
variability among L2 speakers as shown by the speaker-specific
ASR performance in Table 5. WER for different speakers can
range from optimally 10% to as high as 30%.
5.2. Impact on ATA scores
Complete descriptive statistics and results of the correlation
analyses between CMs scores from manual vs. ASR-generated
transcripts are provided in Table 6 in the appendix. Figure 1
visualizes these correlations both overall and across data sub-
groups. Overall, the correlations between scores were high (av-
erage ρ = 0.78, SD = 0.05). Strong correlations (ρ > 0.7) were
found for 28 out of 30 measures. The remaining two measures
exhibited moderate correlations with ρ > 0.6. The group of
strongly correlated measures includes all register-based three-,
four-, and five-gram CMs, all lexical complexity measures and
the information-theoretic measure. For the syntactic CMs, we
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Figure 1: Correlation coefficients between CMs derived from manual vs. ASR-generated transcriptions. The height of the blue bars
indicates overall correlation; colored lines represent the correlation coefficients by subgroup

obtained the following results: All length-based CMs and all but
one CM related to clausal subordination and coordination, such
as number of clauses per sentence (C/S), mean clause length
(MLC), or number of dependent clauses per T-unit (DepC/C),
showed strong correlations. One phrasal CM (NP.PostMod) and
one subordination CM (T/S) showed moderate correlations.

Finally, we turn to the results of the ordinal regression mod-
els aimed at identifying those CMs that are most discriminative
for the three school grades (see Figure 2 in the Appendix). This
was quantified on the basis of the sum of absolute threshold
coefficients in these models. The results indicated that the top
eight most discriminative CMs include two academic (tri- and
four-)gram measures, cTTR, two CMs pertaining to lexical so-
phistication (as gauged by word frequency lists from the ANC
[39] and, MLWs, the word length measured in syllables), two
syntactic CMs (DepC/T and MLC) and one word prevalence
measure (Prevalence.USAWF, for more details on these mea-
sures, see [40]). These findings are consistent with those re-
ported in the literature on automated approaches to L1 and L2
writing, which show a shift toward more advanced and sophis-
ticated use of lexical items, including the increased use of aca-
demic vocabulary and multi-word sequences, across grade lev-
els ([41], [42]). As reported above, the use of ASR to generate
transcripts compared to manual transcripts did not have a large
impact on the calculation of scores for seven of these eight CMs.
However, at the same time, one CM (Prevalence.USAWF) of
these top eight CMs showed only moderate correlations when
calculated on ASR- vs. human-based transcripts.

6. Conclusion and Outlook
Robust and reliable assessment of linguistic complexity in a
second/foreign language is of particular importance for upper
intermediate and advanced learner populations targeted in this
paper. The importance of mastering complex and sophisticated
L2 usage at higher proficiency levels is also reflected in the de-
scriptors of the six CEFR levels introduced in Section 1. For
example, in the section on qualitative aspects of spoken lan-
guage use, the CEFR states that learners at B2 level should have
“a sufficient range of language to be able to give clear descrip-
tions, express viewpoints and develop arguments without much
conspicuous searching for words, using some complex sentence
forms to do so”.

The first stage of the fully automated procedure for obtain-
ing complexity measures (CM) of L2 speech performance is
automatic speech recognition (ASR), which is required to con-
vert the speech of L2 learners into a transcription that can serve
as the basis for computing such measures. ASR of nonnative
spontaneous speech is still challenging due to numerous factors

that can affect its performance briefly outlined in Section 1 (for
more details see [19]). This raises the question of how the er-
rors and uncertainties introduced by an ASR system affect the
subsequent computation of text-based complexity measures. To
address this question, we used a SOTA ASR system described
in Section 3 in combination with automated text analysis (ATA)
system (see Section 4). The latter was used to compute scores
for a set of 30 selected CMs obtained on the basis of ASR-
generated vs. manual transcriptions of 165 speech recordings of
L2 speech produced by high school students (10th-12th grade)
and 299 samples of spontaneous L2 speech produced by univer-
sity students. The ASR system results with the overall WER of
18.2% for the school data and 17.3% for university data are very
promising in light of the aforementioned challenges associated
with the recognition of spontaneously produced L2 speech, in-
cluding the significant inter-individual variability between L2
speakers that we also observed in both data sets. The degree
of noise and uncertainty introduced by the ASR system had no
adverse effect on the majority of CMs investigated in this pa-
per, as indicated by high correlation coefficients. However, both
the specific syntactic CMs pertaining to phrase-level complexity
and CM of lexical sophistication pertaining to word prevalence
were affected by ASR performance.

In this paper we made a first important step towards sys-
tematically evaluating the impact of ASR on subsequent auto-
matic analysis of linguistic complexity and sophistication in L2
speech. Although learners at more advanced levels can be ex-
pected to produce fewer grammar and vocabulary errors, we in-
tend to consider the effects of such errors on automatic analysis
of CMs in our future work. The importance of well-performing
ASR is increasingly recognized in other contexts, such as auto-
matic approaches to Alzheimer’s disease (AD) detection [43].
A recent study [44] investigated which speech patterns are most
affected by certain types of ASR errors, such as word deletions
and substitutions, and how this affects the performance of AD
detection with machine learning models. In our future work, we
will take a similar approach to investigate the different effects
of error types on measures of syntactic and lexical complexity.
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9. Appendix

Table 6: Descriptive statistics for 30 CMs for manual vs. ASR-
generated transcripts along with Spearman correlation coeffi-
cients (ρ)

Manual ASR
CM M SD M SD ρ

KolDef 0.93 0.54 0.91 0.36 0.90
trigram.acad 7.95 11.63 7.95 11.36 0.85

cTTR 3.83 1.08 3.83 1.09 0.85
C/S 2.52 3.17 2.46 3.15 0.85

fourgram.acad 0.84 1.90 0.83 1.84 0.84
TTR 0.85 0.14 0.86 0.13 0.84

trigram.fic 7.29 11.16 7.14 10.87 0.83
MLWs 1.38 0.28 1.40 0.28 0.83
MLWc 4.36 0.89 4.41 0.84 0.82
ANC 0.18 0.14 0.18 0.15 0.82

fourgram.mag 1.08 2.24 1.05 2.14 0.82
fourgram.fic 0.88 2.17 0.83 2.07 0.79

fivegram.spok 0.33 1.17 0.32 1.06 0.78
NGSL 0.11 0.13 0.11 0.12 0.78
BNC 0.36 0.16 0.36 0.17 0.78

DepC/T 0.95 1.75 0.97 1.89 0.78
CompN/T 1.97 2.37 2.05 2.70 0.77

LD 0.48 0.15 0.48 0.15 0.77
CompN/C 0.99 0.96 0.99 0.98 0.77
CoordP/C 0.25 0.48 0.25 0.48 0.76

MLC 8.37 5.80 8.29 5.84 0.76
CoordP/T 0.45 0.77 0.47 0.80 0.76
DepC/C 0.34 0.35 0.32 0.35 0.74

Prevalence.UKWF 12.59 1.46 12.74 1.12 0.74
CompT/T 0.47 0.49 0.46 0.49 0.73

NP.PreMod 0.78 0.91 0.77 0.81 0.72
Prevalence.FemaleSDAP 4.05 0.43 4.10 0.29 0.71

Prevalence.Crowd 2.17 0.26 2.19 0.21 0.71
NP.PostMod 2.85 5.24 2.96 6.81 0.69

T/S 1.06 0.67 1.04 0.58 0.68

Table 7: Mean linguistic complexity and sophistication scores
(with standard deviations) across school grade levels 10-12

Grade 10 Grade 11 Grade 12
M SD M SD M SD

Syntactic complexity
NP.PreMod 1.1 0.39 0.94 0.14 1.05 0.41
NP.PostMod 3.05 1.28 3.42 0.98 4.3 4.03
MLC 10.14 2.73 9.99 1.72 9.84 1.72
C/S 2.4 2.25 2.95 1.38 4.12 5.2
DepC/C 0.25 0.14 0.29 0.11 0.29 0.18
DepC/T 0.72 0.92 0.72 0.41 1.45 2.66
T/S 1.11 0.16 1.31 0.3 1.3 0.52
CompT/T 0.37 0.22 0.43 0.15 0.43 0.21
CoordP/T 0.73 0.53 0.64 0.35 0.66 0.46
CoordP/C 0.43 0.24 0.36 0.15 0.31 0.15
CompN/T 2.13 0.72 2.37 0.9 3.03 2.84
CompN/C 1.3 0.48 1.25 0.35 1.24 0.26
Information density (syntax)
synKolDef 0.8 0.11 0.77 0.12 0.77 0.12
Lexical sophistication
NGSL 0.15 0.06 0.15 0.05 0.15 0.04
ANC 0.2 0.06 0.22 0.04 0.2 0.05
BNC 0.39 0.06 0.4 0.05 0.38 0.05
Prevalence.Crowd 2.15 0.07 2.14 0.12 2.14 0.06
Prevalence.AllSDAP 4.66 0.16 4.67 0.13 4.7 0.07
Prevalence.USAWF 13.42 0.52 13.39 0.47 13.52 0.33
MLWs 1.44 0.13 1.45 0.07 1.42 0.09
MLWc 4.55 0.42 4.49 0.24 4.44 0.26
Lexical density
LD 0.47 0.06 0.46 0.04 0.48 0.04
Lexical diversity
TTR 0.83 0.06 0.8 0.06 0.81 0.07
cTTR 3.83 0.4 4.03 0.37 4.17 0.74
Register-specific n-gram use
trigram.acad 10.58 5.1 10.16 4.97 14.75 14.87
fourgram.acad 1.34 0.79 1.15 0.9 1.37 0.9
trigram.fic 6.2 3.6 5.79 3.4 9.69 12.21
fourgram.fic 0.72 0.5 0.63 0.54 0.83 0.8
fourgram.mag 1.03 0.52 0.93 0.69 1.39 0.92
fivegram.mag 0.1 0.08 0.06 0.05 0.11 0.09
trigram.news 10.33 4.81 9.84 5.01 15.34 16.84
fivegram.news 0.11 0.08 0.09 0.08 0.12 0.08
fourgram.spok 1.62 0.81 1.64 1.21 2.35 2.12
fivegram.spok 0.22 0.2 0.24 0.22 0.31 0.32
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Figure 2: Feature importance (FI) as measured by the sum of absolute threshold coefficients (standardized). Features to the right of the
red line have above-average FI scores.
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Figure 3: Percentage of substitution (left), insertion (middle) and deletion errors (right) across word types.
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