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Abstract

Speaker embeddings extracted with deep 2D convolutional neu-

ral networks are typically modeled as projections of first and

second order statistics of channel-frequency pairs onto a linear

layer, using either average or attentive pooling along the time

axis. In this paper we examine an alternative pooling method,

where pairwise correlations between channels for given fre-

quencies are used as statistics. The method is inspired by

style-transfer methods in computer vision, where the style of

an image, modeled by the matrix of channel-wise correlations,

is transferred to another image, in order to produce a new im-

age having the style of the first and the content of the second.

By drawing analogies between image style and speaker char-

acteristics, and between image content and phonetic sequence,

we explore the use of such channel-wise correlations features

to train a ResNet architecture in an end-to-end fashion. Our

experiments on VoxCeleb demonstrate the effectiveness of the

proposed pooling method in speaker recognition.

Index Terms: speaker recognition, style-transfer, deep learning

1. Introduction

Extracting low-dimensional representations from speech utter-

ances that characterize the speaker is a challenging tasks with

numerous application. Apart from speaker recognition, speaker

representations are used in automatic speech recognition (e.g.

for speaker adaptation), in speaker diarization and separation,

and in speech synthesis, for mimicking a target speaker using

text-to-speech or voice conversion.

Until recently, i-vectors were the most commonly used

means for representing speaker characteristics [1, 2]. With the

advent of deep learning, neural architectures such as time-delay

neural networks (TDNNs [3]), Long Short-Term Memory net-

works (LSTMs), 2D convolutional neural networks (such as

ResNets and its extensions [4]) and Transformers have emerged,

surpassing the performance of i-vectors in most applications

and speaker recognition settings.

In order to obtain fixed-size representation vectors from ut-

terances of variable duration and arbitrary word sequences (i.e.

text-independent), a pooling method is required. The most com-

mon pooling method is a simple aggregation over the time axis,

where the mean vector is concatenated with standard deviation

(known as statistics pooling layer). The speaker embedding

(a vector of few hundred dimensions) is obtained by project-

ing this pooled representation (a vector of few thousand dimen-

sions) onto a linear layer or a shallow feed-forward neural net-

work. Other pooling approaches have been proposed, such as

single and multi-head attention, as well as the use of higher-

order statistics [5, 6, 7].

In this paper we present an alternative way of modeling

speaker information, that is largely inspired by style-transfer

[8]. This seminal algorithm in computer vision is capable of

producing new images that combine the content of an image

with the style of other images or artworks. The style of an im-

age is modeled by the correlations between the channels of the

convolutional neural network. By considering styles as broadly

analogous to speakers, we experiment with modeling speakers

by channel-wise correlation. This is in contrast to averaging

along the time dimension of each channel frequency pair of

the output tensor that is used in statistics pooling. The other

sources of variability that may also be considered as style of

the recording, such as noise, channel, and emotion, can be

suppressed by training the model end-to-end using supervised

learning with speakers as targets. The resulting embeddings are

highly speaker-discriminative, yielding state-of-the-art results

on VoxCeleb using plain cosine similarity scoring.

The rest of the paper is organized as follows. In Sect. 2 we

briefly review some of the related work, such as pooling meth-

ods and style-transfer. In Sect. 3 we introduce the proposed

method, and provide all the implementation and architectural

details. In Sect. 4, we present our experiments on a standard

speaker recognition benchmark (VoxCeleb). Finally, in Sect. 5

we provide conclusions and future work directions.

2. Related work

2.1. Style-transfer in computer vision and voice conversion

A few years ago, the seminal work of L.A. Gatys et al. [8] in

neural style-transfer gained the attention of the computer vision

community and the industry, and received wide media coverage.

Since then, several works extended their method, some of which

can be found in [9]. A theoretical interpretation of the way style

and image texture is encoded in the channel-wise correlations

(which can be considered as a Gram-Matrix) is given in [10].

The authors treat style-transfer as a domain adaptation problem,

and prove the equivalence between trying to match the Gram-

Matrices of feature maps and minimizing the Maximum Mean

Discrepancy (MMD) with the second-order polynomial kernel.

One of the few attempts to apply neural-style transfer in

speech synthesis is described in [11]. The authors employ a

pretrained CNN and apply style-transfer to train a speech gener-

ation and voice conversion system. Moreover, they demonstrate

the capacity of the intermediate tensors to encode speaker char-

acteristics using the VCTK dataset. However, the scope of their

work is different to ours, the network is not trained end-to-end

while the representations are high-dimensional. Furthermore,

their method is not tested on a speaker recognition benchmark

containing noise and high intrinsic and extrinsic within-speaker

session variability (such as VoxCeleb or NIST-SRE). Hence, the

ability of their utterance-level representation to suppress session

variability has not been examined.

http://arxiv.org/abs/2104.02571v2


2.2. Pooling layers in speaker embeddings

The vast majority of speaker embedding networks use the statis-

tics pooling layer introduced by x-vectors, i.e. mean and stan-

dard deviation (std) for each frequency and channel combina-

tion [12]. The main family of alternative pooling methods en-

hance these statistics with an attention mechanism. Examples

are single and multi-head attention, as well as Net and Ghost-

VLAD [6, 13, 14]. Both attention and VLAD methods em-

ploy a set of heads (i.e. trainable network parameters which are

broadly analogous to the means of a mixture model) to cluster

the output features into broad phonetic categories in an unsu-

pervised and end-to-end fashion. The resulting statistics pool-

ing is defined as the concatenation of the per-head statistics.

Their main difference lies in the normalization; the attention

normalizes only over the time axis while the VLAD over the

attentive heads. Second order statistics (i.e. std features) may

also be added as in the case of average pooling. More recent

approaches exist, such as vector-based attentive pooling [15],

phonetically-aware attention [16], and cross-attention [17].

A second alternative to standard statistics pooling is the use

of higher-order statistics (skewness and kurtosis) [7]. Skew-

ness is a measure of the asymmetry of a distribution with re-

spect to its mode, while the kurtosis measures its “tailedness”.

The authors did not obtain any consistent improvement com-

pared to using merely first and second statistics, as in standard

statistics pooling. Recently (and concurrently to our work) a

set of alternative pooling methods were examined in [18]. The

authors show that the use of second order statistics is more ef-

fective compared to first order, while they also perform exper-

iments with using the full covariance matrix, without showing

improvements over the standard statistics pooling. Their work

is close to ours, although we differ in several ways, such as in

the suggested pooling method and in the several implementa-

tion details (e.g. instead of covariances we propose frequency-

dependent channel-wise correlation matrices).

3. The proposed method

3.1. Notation

We denote by X = {xt}
Ti

t=1
the sequence of acoustic fea-

tures of an utterance with Ti frames, which in our method are

Fi = 80 dimensional filterbank features. The architecture is a

ResNet-34 and the output of the last ResNet block is a 3D ten-

sor (we omit the batch axis) denoted by Y ∈ R
T×F×C , where

T denotes the size of the temporal axis, F the size of the fre-

quency axis, and C the number of channels. Typical values for

these quantities are (T, F,C) = (50, 10, 256); note though that

T is variable and can be derived by Ti divided by the cumulative

temporal stride (equal to 23 = 8 in our architecture). Similarly,

F = 10 since the cumulative frequency stride is again equal to

8, while Fi = 80.

3.2. Statistics pooling

The statistics pooling layer in speaker embeddings networks

with 2D CNN architectures is a concatenation of the mean and

std of each of the F × C frequency-channel pairs [Pm;Ps],
where

P
m
f,c =

1

T

∑

t

Yt,f,c (1)

and

P
s
f,c =

√

1

T

∑

t

(Yt,f,c −Pm
f,c)

2 (2)

The speaker embeddings are extracted by projecting the

(vectorized) pooling layer onto a lower dimensional space (e.g.

de = 256) using a single linear layer.

3.3. Style modeling in images

The style of an image in computer vision for a given convolu-

tional layer is modeled by the symmetric positive-semidefinite

matrix S with elements defined as

Sc,c′ =
1

TF

∑

t,f

Yt,f,cYt,f,c′ (3)

Note though that images differ from spectral representations of

acoustic signals. Image characteristics are considered invariant

along both spatial axes, while spectral representations are in-

variant only along the time axis. In fact, this property explains

the use of frequency-channel pairs in statistics pooling instead

of channels alone, as shown in (1)-(2). Due to this property of

spectral representations, pooling along both time and frequency

axes as in (3) is expected to yield less discriminative speaker

representations.

3.4. Pooling via frequency-dependent channel-wise correla-

tions

A natural modification of (3) that addresses the above issue is

to pool only along the time axis, i.e.

Sf,c,c′ =
1

T

∑

t

Yt,f,cYt,f,c′ (4)

The 3D tensor S can be viewed as a list of F symmetric and

positive semidefinite matrices Sf = Sf,:,: and has therefore

FC(C + 1)/2 free variables. As its size can be too large we

propose to reduce it in a frequency-dependent manner as shown

later.

A further proposed modification is the use of mean and vari-

ance normalization along the time axis of Y for each frequency-

channel pair, i.e. Z:,f,c
norm
←−−− Y:,f,c. When variance normal-

ization is applied, the variables in the diagonal of Sf (i.e. the

variance of each channel-frequency combination) become equal

to 1, and therefore they can be removed from the pooling layer

resulting in C(C − 1)/2 free variables for each frequency f
and FC(C − 1)/2 overall. Moreover, Sf,c,c′ ∈ [−1, 1] for all

f, c, c′. The pooling layer is followed by a linear layer which

reduces the size of the representation to de = 256 (the speaker

embedding space), as in the standard statistics pooling.

Note that when mean and variance normalization are ap-

plied, the pooled representation encodes complementary in-

formation to that of the standard pooling; the means of each

channel-frequency are being subtracted, while their variance is

also set equal to one.

3.5. Additional extensions and modifications

In the pooling method described above, we add the following

operations in other to decrease the size of the pooling layer and

regularize the network. Recall that regularization is needed in

order to extract embeddings that generalize well to speakers un-

seen during training.

3.5.1. Channel dropout

Dropout is a standard choice for regularizing a network. We em-

ploy it in a channel-wise fashion, that is, we sample a 1D mask



of size C (with dropout probability pd = 0.25) and we broad-

cast it along the time and frequency axes. Channel-wise dropout

is chosen because of its Bayesian interpretation as model aver-

aging between models with variable number of convolutional

filters [19].

3.5.2. Frequency ranges

As neighboring frequency bins in Y have similar statistics, we

consider merging them into Fr frequency ranges. After experi-

mentation, we concluded that merging fr = 2 consecutive fre-

quency bins in a non-overlapping manner yields more stable

performance. Merging is implemented by reshaping Y, so that

Fr ← Ff−1

r and Tr ← Tfr. For example, when experiment-

ing with fr = 2, we obtain Fr = 5 and Tr = 100 given that

F = 10 and T = 50. Note that by setting fr = F we re-

cover the original style-transfer used in computer vision, where

pooling is performed along both spatial axes.

3.5.3. Frequency-dependent channel reduction

The number of channels in Y is C = 256 which would result

in C(C − 1)/2 ≈ 33K variables per frequency bin. So we

transform Y as follows

Yt,f,c′ ←
∑

c

Łf,c,c′Yt,f,c. (5)

where Ł is a learnable tensor of shape (Fr, C, C
′), acting on

the channel axis and reducing its size from C to C′ (we choose

C′ = 64). The rationale for using a 3D kernel instead of a

2D is that different linear combinations of channels should be

better suited for obtaining speaker discriminative information

from each frequency range.

3.6. Summary and order of operations

We summarise here the set of operations and their order we use

in order to extract speaker embeddings. Recall that the output

tensor of the last ResNet block is Y with shape (T, F,C).

1. Dropout We apply channel-wise dropout with pd by

sampling a binary mask of shape C and broadcasting it

along the other two axes.

2. Frequency ranges We reshape the tensor Y with new

shape (Tr, Fr, C), by merging fr consecutive frequency

bins into Fr frequency ranges.

3. Channel Reduction We reduce the channel size by ap-

plying Ł as shown in (5), i.e. Y
Ł
←− Y, where the shape

of Y becomes (Tr, Fr, C
′) .

4. Normalization We apply mean and variance normaliza-

tion along the time axis, i.e. Z
norm
←−−− Y.

5. Pooling We apply pooling as shown in (4), but using Z

instead of Y, by which we obtain S, a 3D tensor with

shape (Fr, C
′, C′).

6. Flattening We flatten the pooled representation to a vec-

tor of size dp = FrC
′(C′ − 1)/2, which corresponds to

the number of free variables in S.

7. Embedding We reduce the size of the pooled represen-

tation vector to de using a linear layer. The resulting

vector is the speaker embedding.

4. Experiments

4.1. VoxCeleb 1 & 2 datasets

We evaluate the systems on the three VoxCeleb test sets, namely

the original VoxCeleb 1 test set (composed of only 40 speak-

ers) [20] and the (much larger and representative) Extended and

Hard sets [14]. As training set, we use a subset of the VoxCeleb

2 development set which we augmented with babble, noise, re-

verberation, and music using Kaldi [21, 3]. The training set

contains 5750 speakers and approximately 4.9M utterances in-

cluding the augmented versions. As a held-out set we used 455

utterances (plus augmentations) from 90 training speakers.

4.2. Architecture, training, and loss function

The backbone of the network is a 34-layer ResNet. All con-

volutional kernels are 3 × 3, the strides are (1, 2, 2, 2) for the

4 blocks in both time and frequency axes, while the number

of channels is (64, 128, 256, 256) (the first convolutional layer

also outputs 64 channels). The number of convolutional layers

per block is (3, 4, 6, 3). Finally, Squeeze and Excitation layers

(with reduction ratio r = 4) are added only to the first 2 blocks

of the ResNet [22, 23].

The network is trained using multi-speaker classification.

As optimization criterion we employ the Additive Angular Mar-

gin (AAM) loss, which has shown notable improvements over

the plain Cross Entropy loss [24]. We set the scale coefficient of

the loss equal to 30, while for the margin coefficient we adopt

a curriculum learning approach and progressively increase it as

(0.1,0.2,0.3) during training [25].

As optimizer we use stochastic gradient descent with mo-

mentum equal to 0.9. The minibatch size is 256, however to

train the model with a single GPU we split the minibatch into

16 “microbatches” of 16 examples each and use gradient accu-

mulation. The initial learning rate (LR) is equal to 0.2 which

we divide by 2 when the loss does not improve for more than

3000 model updates in the held-out set (the final LR is 0.2/64).

The experiments are conducted using TensorFlow [26].

We emphasize that the model architecture, the training

method, and its hyperparameters are optimized with the base-

line, where mean and std features are used for pooling. More-

over, we did not observe any differences in time required per

epoch between the baseline and the proposed architectures.

4.3. Experimental Results

To evaluate our method we experiment we examine several con-

figurations and ablations. The results we obtained are given in

Table 1, and are obtained using cosine-similarity, without score

or any other normalization. For the two baseline experiments

we train and evaluate a ResNet-34 with the standard temporal

pooling. The first includes mean and std features while the sec-

ond only std (suggested in [18]). We emphasize that for the

baseline experiments the tensor operations are not included, i.e.

mean and std pooling is performed directly on the output of the

last ResNet block.

The first experiment using a variant of the proposed pool-

ing (P1) is essentially a direct implementation of the pooling

as suggested in image style-transfer (recall that pooling with

Fr = 1 is equivalent to (3), i.e. to pooling along both time

and frequency axes.). Two such networks are examined, one

with mean and a second one with mean and variance normaliza-

tion, denoted by P1 and P5, respectively. Note that when mean-

only normalization is applied, the number of free-parameters

is FrCr(Cr + 1)/2, i.e. the size of the pooled representa-



Table 1: Results on the Original, Hard, and Extended VoxCeleb test sets.

System VoxCeleb-O VoxCeleb-H VoxCeleb-E

minDCF EER(%) minDCF EER(%) minDCF EER(%)

B1 Baseline (mean & std pooling) 0.091 1.40 0.145 2.48 0.090 1.43

B2 Baseline (std pooling) 0.104 1.56 0.154 2.61 0.099 1.54

C′ Fr Ł Normalization

P1 Proposed 128 1 2D mean 0.126 1.74 0.177 2.93 0.114 1.74

P2 Proposed 64 5 2D mean 0.106 1.66 0.166 2.80 0.104 1.67

P3 Proposed 64 5 3D mean 0.089 1.55 0.148 2.49 0.092 1.48

P4 Proposed 64 10 3D mean 0.109 1.70 0.159 2.70 0.103 1.62

P5 Proposed 128 1 2D mean & var. 0.102 1.56 0.158 2.63 0.101 1.57

P6 Proposed 64 5 2D mean & var. 0.095 1.46 0.143 2.40 0.091 1.41

P7 Proposed 64 5 3D mean & var. 0.071 1.16 0.128 2.17 0.079 1.22

P8 Proposed 64 10 3D mean & var. 0.085 1.41 0.137 2.33 0.087 1.39

B1s B1 with adaptive score normalization (as-norm) 0.079 1.26 0.127 2.23 0.080 1.31

P7s P7 with adaptive score normalization (as-norm) 0.059 1.07 0.115 1.99 0.071 1.13

tion vector is increased by FrCr. By comparing P1 and P5

we observe that variance normalization helps significantly the

model to attain results that are very close to the baseline B1.

We should also note that for the experiments with Fr = 1, we

set C′ = 128 in order to have pooling layers of same order of

magnitude, since their size grows linearly with Fr .

In the next set of experiments we use either Fr = 5 or Fr =
10, where the latter indicates no reshaping of the tensor Y (as it

corresponds to fr = 1). The results confirm that the frequency

axis should be treated differently compared to the time axis,

and pooling should result in a 3D tensor, as shown in (4). They

moreover demonstrate that reshaping the tensor by a factor of

fr = 2 (i.e. Fr = 5) yields the best performance.

We may also observe that the suggested frequency-

dependent channel reduction (i.e. using a 3D tensor Ł instead of

a 2D) yields consistently improved performance (by comparing

P2 with P3, and P6 with P7). Allowing each frequency range

to have its own weighted combination of channels increases

the expressiveness of the pooled representation. We also men-

tion that we attempted to combine our best system (P7) with

B1 in the pooling layer. The improvement in performance at-

tained was small. For example the EER dropped by 0.03% and

the minDCF by 0.002 in both in VoxCeleb-E and VoxCeleb-H.

Although further experimentation is required, it suggests that

combining the correlations-based with mean and std features

does not yield any notable improvement. We also compare B1

with P7 using score normalization (as-norm). We observe that

the gains attained by the suggested pooling (P7s) over mean-std

pooling (B1s) remain even when as-norm is applied.

Finally, all experiments underline the importance of mean

and variance normalization (P5-8), as opposed to mean-only

(P1-4). In other words, transforming the Gram-Matrices to cor-

relation matrices results in more speaker-discriminative repre-

sentations. This finding challenges the common view of frame

aggregation being the natural means of extracting speaker-

relevant information from utterances. Correlations, as intrinsi-

cally normalized statistical quantities, should be more resilient

as features to the diverse factors of within-speaker variability.

Temporal aggregation may not be the most effective way to re-

move such undesired sources of variability. Removing them

via modeling correlations between different representations of

the utterances (such as time-channel maps of given frequency

ranges) may attain this goal more effectively and naturally.

5. Conclusions and research directions

In this paper, we introduced a new way of pooling informa-

tion extracted from a CNN for modeling speaker information.

The approach is inspired by neural style-transfer in computer

vision, where style is modeled by a Gram-Matrix of channel-

wise dot-products. We proposed a way to adapt this method to

speech signals, e.g. by calculating several such Gram-Matrices,

one per frequency range. We further demonstrated that trans-

forming them to correlation matrices increases the speaker-

discriminability of the extracted representations. Our experi-

ments on VoxCeleb indicate that the proposed method yields

notable improvements over the standard statistics pooling.

There are several ways by which our approach can be ex-

tended. For estimating correlations between channels, the dot-

product can be replaced by kernel functions, some of which

have been examined in image style-transfer [9]. The property

of Gram-Matrix being a symmetric positive semi-definite ma-

trix can be explored in several ways, using e.g. statistical di-

vergences (e.g. Kullback-Leibler, Jensen-Shannon, a.o.). Al-

ternative training/finetuning schemes (e.g. prototypical, triplet,

contrastive and self-supervised losses [25, 27, 28, 29]) that do

not require a classification head are probably better suited for

such kind of experimentation. Finally, the whole chain of trans-

forms we apply on the tensor Y is not a result of exhaustive

experimentation, leaving room for further improvements.
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