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Abstract
Against the background of the ongoing pandemic, this year’s
Computational Paralinguistics Challenge featured a classifica-
tion problem to detect Covid-19 from speech recordings. The
presented approach is based on a phonetic analysis of speech
samples, thus it enabled us not only to discriminate between
Covid and non-Covid samples, but also to better understand
how the condition influenced an individual’s speech signal.
Our deep acoustic model was trained with datasets collected ex-
clusively from healthy speakers. It served as a tool for segmen-
tation and feature extraction on the samples from the challenge
dataset. Distinct patterns were found in the embeddings of pho-
netic classes that have their place of articulation deep inside the
vocal tract. We observed profound differences in classification
results for development and test splits, similar to the baseline
method.
We concluded that, based on our phonetic findings, it was safe
to assume that our classifier was able to reliably detect a patho-
logical condition located in the respiratory tract. However, we
found no evidence to claim that the system was able to discrim-
inate between Covid-19 and other respiratory diseases.
Index Terms: ComParE, Covid-19 recognition, phonetic
speech analysis

1. Introduction
Unlike any other disease of the 21st century, Covid-19 has
changed the everyday life of people around the globe. The
virus primarily targets the respiratory system of an individ-
ual, thus harming lungs and airways [1] and causing symptoms
such as fever, dry cough and dyspnea [2]. Due to the sparse
availability of drugs and vaccines, detection and isolation of
infected individuals has proven to be a successful strategy to
break the exponential growth of case numbers [3]. The most
common form of screening are various types of medical (rapid)
tests [4, 5]. However, a lack of availability, particularly during
the onset of the pandemic, encouraged researchers to investigate
other options to detect an infection with the severe acute respi-
ratory syndrome coronavirus (SARS-CoV-2). Because Covid-
19 symptoms strongly affect the respiratory tract, speech sig-
nals could serve as surrogates containing valuable information
about the condition of an individual [6, 7]. Different studies
focused on the analysis of breathing and cough sounds [8] or
telephone-quality speech signals [9] to detect Covid-19 cases
and reporting F1-scores or accuracy of over 90 %. There are,
however, many pitfalls and challenges to overcome when de-
signing a study to apply machine learning for automated Covid-
19 screening [10].

A common flaw is the application of 0-1 loss function for all
types of misclassifications. For a reliable screening solution,
sensitivity is of greater importance compared to specificity, as
the cost of overseeing a positive (infected) sample is consider-
ably larger than falsely classifying a healthy individual as in-
fected [11]. This cost inequality is not represented by a 0-1 loss
function.
Another weakness potentially arises from the data itself. A
successful detection of Covid-19 is challenging because initial
symptoms are quite similar to those of the common flu. A suc-
cessful classification between healthy individuals and Covid-
19 patients does not support the assumption that a system is
also able to differentiate between Covid-19 and other respira-
tory conditions.
This work is a contribution to this year’s Computational Paralin-
guistics Covid-19 Speech sub-challenge (CSS) [12] and aims
to provide a detailed analysis on how the condition affects the
speech signals of infected patients on a phonetic level. After a
brief description of both the provided Covid-19 dataset as well
as three other auxiliary datasets, we introduce our deep acous-
tic model and describe how it was used to perform segmentation
and feature extraction. After an outline of our classification sys-
tem and general methodology, we provide a detailed analysis of
the Covid-19 dataset, highlight important phonetic findings and
discuss classification results. In the final conclusion, we sum-
marize the most important findings.

2. Materials and Methods
2.1. Covid-19 Speech Dataset
The dataset comprised 893 speech recordings collected from
366 speakers in various languages. The language of the individ-
ual recordings as well as the mapping of the recordings to the
speakers was not provided by the organizers. In every record-
ing, a participant uttered the phrase ”I hope my data can help to
manage the virus pandemic.” one or three times in their native
language. Samples were distributed into training, development
and test set. The training set contained 243 non-Covid (NC)
and 72 Covid (COV) samples. This imbalance was not found in
the development set with 153 NC and 142 COV. Ground truth
of the test set was blinded. A more detailed description of the
dataset can be found in the paper on the challenge [12].

2.2. Auxiliary datasets
Auxiliary datasets of three different languages were used to
train a deep acoustic model. These corpora are completely unre-
lated to pathological speech, but they served as background in-
formation to learn what healthy speech sounds like. The largest
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of all three was a subset of the German Verbmobil corpus [13],
containing 29 hours of dialogue speech recordings from 593
speakers (307 female, 286 male). We also incorporated the
American English TIMIT corpus [14], comprising 5.3 hours of
speech recordings collected from a total of 630 speakers (192
female, 438 male). Participants had to utter various phoneti-
cally rich sentences. The last dataset was the Mexican Spanish
DIMEx100 corpus [15]. Each of the 100 speakers (51 female,
49 male) contributed recordings of 50 unique and 10 reference
(identical for all speakers) phrases, totaling a bit more than 6
hours of speech.

2.3. Multilingual phonetic concept
The term phoneme is often used incorrectly [16]. In our
setup, the ground truth of all three auxiliary datasets consisted
of phoneme sequences of the respective language. Because
phonemes are strictly bound to a certain language, we had to
adapt the target space to work for multiple languages at the
same time. We selected 35 target PHONE classes, such that each
PHONE would be the union of elementary phones that could
serve as a valid realization of the respective PHONE in any of
the three languages.

2.4. Audio processing
Whenever necessary, an audio recording was first resampled to
16 kHz, followed by a root mean square normalization to a level
of−10 dB and removal of DC offset. We then computed magni-
tude and phase spectrograms (2048 FFT points) over a window
of 25 ms, shifting by 5 ms per frame. Both spectrograms were
converted to logarithmic scale of base 10 and afterwards filtered
with a triangular Mel-bank with 128 frequency bands to resem-
ble the human perception of speech. The resulting dual-channel
spectrograms served as input to our deep acoustic model.

2.5. Deep acoustic model
The deep acoustic model was comprised of two major compo-
nents, a convolutional part for feature extraction and a recurrent
part for sequential analysis. The neural network was trained
in two separate steps to improve the final sequence prediction.
Initially, the model operated as a framewise PHONE classifier.
At every time step t, the network would distribute a probability
mass over all PHONE targets.
After pre-training a framewise PHONE classifier, we slightly in-
creased the number of hidden units of the recurrent cells and
retrained the model. During this second training stage, we omit-
ted any alignment information. The network now had to learn
the alignment of PHONE sequences itself by using connection-
ist temporal classification (CTC) loss [17]. Through a beam
search, we could ultimately predict the most probable sequence
of output tokens, in our case PHONE classes, from the outputs
of the acoustic model.
The convolutional feature extraction part was constructed with
two major building blocks inspired by the Inception architec-
tures presented for image classification [18]. The core idea
was to apply multiple convolution kernels of varying sizes in
parallel such that the network itself would learn which kernel
worked best for what task. Within an Inception block, initial
1x1 convolutions perform a channel reduction to make the fol-
lowing convolution operations less parameter-intensive. Subse-
quent 1x1, 3x3 and 5x5 convolutions operated in parallel and
(for 3x3 and 5x5) were implemented with separated kernels
(3x3 = 3x1 × 1x3) to further reduce their complexity. A fi-
nal 1x1 convolution projected the concatenated results from all
three convolutions back to the original channel configuration.

Table 1: Outline of the CTC PHONE recognition model. Out-
put size depended on the length of the sample (T). #c indicates
number of channels. #x# denotes kernel size in temporal (first)
and frequency (second) domain. [#, #] denotes the stride in the
respective domain.

Output size Layer
2Tx64, 60 60c 1x4 Conv [1, 2]
Tx64, 120 120c 5x1 Conv [2, 1]
Tx32, 160 160c 1x4 Conv [1, 2]
Tx16, 200 200c 1x4 Conv [1, 2]

Tx16, 200 2 x Residual Inception Block
ch. reduced: 70

Tx8, 340 Reduction Inception Block
ch. reduced: 70

Tx8, 340 2 x Residual Inception Block
ch. reduced: 120

Tx4, 580 Reduction Inception Block
ch. reduced: 120

Tx4, 580 2 x Residual Inception Block
ch. reduced: 200

Tx300 Depthwise separable convolution
Tx480 2 x BiLSTM 240 hidden units
Tx35 Linear projection to 35 targets PHONES

Before adding the result to the input of the Inception block to
realize a residual connection [19], we applied activation scaling
(s = 0.3) as proposed in [18] to stabilize training. The sec-
ond important building block of the network was the reduction
inception block. The major purpose of that component was to
reduce the remaining number of frequency bins while leaving
the time dimension unchanged. Reduction was performed with
parallel max-pooling and strided convolution layers and their
outputs were concatenated.
A depthwise separable convolution [20] was used to project any
remaining frequency bands and their channels after the last in-
ception block down to 300 values per time step. The sequential
analysis was realized through a stack of two bidirectional Long
Short-Term Memories (BiLSTM) [21]. Each BiLSTM was con-
figured with 240 hidden units per direction in the case of CTC,
200 units for pre-training to warm up the convolutional part.
The final linear layer projected the output of the recurrent part
to the 35 PHONE targets.
We used hard swish activation function [22] and performed
batch normalization [23] before the non-linearity. After each
normalization layer, we applied a dropout of 10 % to prevent
overfitting. The model for framewise pre-training comprised
around 6.6 million parameters, the final CTC model was slightly
larger with roughly 7.2 million parameters. The architecture of
the final CTC PHONE recognition model is shown in Table 1.

2.6. Methodology
For every sample of the CSS dataset, the PHONE sequence was
predicted with the acoustic model. With every PHONE predic-
tion, we also collected its posterior probability as well as a 480-
dimensional feature vector. It represented the output hidden
state of the last RNN layer at that time-step where the PHONE
was predicted. The individual features required no further scal-
ing, because hidden states of an LSTM are computed as the
product of a logistic and a hyperbolic tangent function, thus
ranging between [-1,1]. The technique of using a phonetic ref-
erence model trained on vast amounts of healthy speech for seg-
mentation and feature extraction had already been successfully
applied before [24].
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Figure 1: Results of a t-SNE embedding of velar fricative [x]
realizations for non-Covid and Covid samples.

For an initial phonetic analysis of the challenge data, we
grouped all feature vectors according to their associated PHONE
prediction and applied t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) embedding [25] to identify if certain PHONES
or PHONE groups showed distinct differences between NC and
COV productions.
Because we had no information about (1) the number of differ-
ent languages in the CSS dataset, (2) their relative frequency
and (3) their distribution among training, development and test
split, we computed a phonetic profile for every sample. This
was done by computing the relative frequency of every PHONE
in an individual sample. The result was a distinct profile, mainly
dependent on the language in which the reference phrase was
uttered. We computed t-SNE embedding on these profiles to
identify clusters of phonetically similar samples. We then fit-
ted a Gaussian Mixture Model (GMM) on the embedded space
to group each sample into one of ten clusters. This strategy
allowed us in the following steps to compare only samples of
similar phonetic profiles, which corresponded to the same lan-
guage.
With a better understanding of how Covid-19 affected the
speech of individuals on a phonetic level, we designed our clas-
sification pipeline. We trained a linear Support Vector Machine
(SVM) classifier for every PHONE and every phonetic cluster,
using the 480-dimensional feature vectors of every PHONE pre-
diction as input and performing 5-fold cross-validation (CV) to
optimize regularization hyperparameter C (10x for x ∈ [-4 .. 0]).
Note that the folds were created with respect to samples, not
speakers, because the mapping of speakers to samples was un-
known. Afterwards, the classifiers were used to compute the
signed distance to the decision boundary for every feature vec-
tor. The sum of distances for every PHONE were stored in a 35-
dimensional vector for each sample. The final prediction was
then computed with a logistic regression classifier.

3. Results
The phonetic analysis of NC and COV samples showed distinct
patterns in certain PHONE groups, while others remained unaf-
fected. Our analysis of vowel t-SNE embeddings showed no
identifiable clusters. The same was the case for other PHONES
that were produced in the upper parts of the vocal tract, like
the lips (e. g. [p] and [b]). We found that PHONES that have
their place of articulation deeper in the vocal tract were more
severely affected by Covid-19. An outstanding example of this
was the velar fricative [x]. Figure 1 depicts the embedding re-
sult for NC and COV samples. We observed a dense cluster of
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Figure 2: Clustering of a t-SNE embedding of phonetic profiles
for all samples. Left: Distribution of phonetic profiles among
training, development and test split. Right: Same embedding,
clustered with a Gaussian Mixture Model into 10 different com-
ponents.

COV samples that clearly separated from almost any NC sam-
ple. We found similar but less pronounced patterns for other ve-
lar PHONES, such as [g] and [k], as well as non-velar PHONES
[r] or [h] for example.

To better understand how languages were distributed in the
CSS dataset, we created t-SNE embeddings of the phonetic pro-
file of every sample as shown in Figure 2. With a GMM, indi-
vidual clusters could be separated from each other. Looking at
the distribution of phonetic profiles among train, development
and test split, we found that there were multiple clusters which
were dominated by only one of the three splits. Particularly the
three dense orange clusters of samples from the development
set caught our attention. Similarly, we found regions where test
samples were stronger represented than the other splits. Certain
clusters from the GMM were found to have very few represen-
tative samples from the training or development split. In gen-
eral, we found that samples within certain clusters of phonetic
profiles were not evenly distributed among the three data splits.

Our final classifier achieved an unweighted average recall
(UAR) on the development set of 73.8 % (baseline: 57.9 %)1.
On the test set, we achieved 64.2 % (baseline: 72.1 %). Fig-
ure 3 shows the confusion matrix of our classification results on
the development set and allows a further interpretation of the
results. With a false negative rate (FNR) of 29.6 %, our solu-
tion still missed a good amount of COV patients. On the other
side, the FNR of the baseline method was profoundly larger
with 63.4 %. While our system missed almost 30 % of COV
cases, it falsely predicted 22.9 % of NC as positive.

The receiver operating characteristic (ROC) curve is illus-
trated in Figure 4. Area under the curve was 0.752 on the de-
velopment set. For further interpretation of the results, we de-
cided to mark a few notable points on the curve. First, the equal
error rate of our system was 27.5 %. After shifting the deci-
sion boundary to 10 % FNR, the true negative rate (TNR) was
22.2 %. For an even lower FNR of 1 %, the remaining TNR was
2 %. These numbers were interesting because screening solu-
tions should be very sensitive to ensure that only a very small
fraction of infected individuals would be misclassified. This
comes at the cost of specificity, thus classifying more healthy
samples incorrectly. Under the assumption that costs for a false

1We refer to the openSMILE system as baseline, since it performed
best on test and no confusion table for the End2You system was pro-
vided in [12]
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Figure 3: Confusion matrix of Covid-19 classification results on
the development set.

negative prediction are 25 times larger than those of a false pos-
itive, and 5 % of tested individuals actually suffer from Covid-
19, the green curve in Figure 4 highlights how the total relative
costs changed while shifting the decision boundary of our sys-
tem. In this scenario, the optimal point of our classifier almost
halved the cost of the baseline system.

4. Discussion
Results of the phonetic analysis of COV speech compared to
NC samples showed very distinct deviations for a small group
of PHONES. Most of them had their place of articulation deep
inside the vocal tract, which could be an indicator of, for exam-
ple, an infection of the respiratory system. Our deep acoustic
model trained only with healthy speech was able to recognize
pathological changes in PHONE realizations. However, because
Covid-19 is not the only condition that affects the respiratory
tract, it is impossible to exclusively attribute the observed pat-
terns to that disease. They could also be the result of an in-
fluenza, or a simple cold.
The clusters of phonetic profiles observed for the CSS dataset
led us to the assumption that certain languages corresponding to
said profiles were unevenly distributed among the splits. This
might also explain the large deviation of UAR results on devel-
opment and test sets. The absolute difference for our system
was 9.6 %, the one of the baseline was even larger with 14.2 %.
These differences could well be caused by an uneven distribu-
tion of languages.
The confusion matrix reveals that our classifier was able to de-
tect around 70 % of all COV samples correctly. Compared to
the baseline approach, this was a major improvement. However,
the cost analysis on the ROC curve showed that for a Covid-19
screening scenario, the most important factor is sensitivity. The
costs R for classification decisions can be generalized as

RHH ≤ RCC < RHC < RCH (1)

where the first subscript indicates the ground truth and the sec-
ond indicates the prediction (H = Healthy, C = Covid). A clas-
sifier trained with the 0-1 loss for both RCH and RHC does not
account for RCH > RHC, therefore it is indispensable to incor-
porate knowledge about the cost structure already in the opti-
mization. This is also the reason why the costs at FNR values
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Figure 4: ROC curve for the classification results on the devel-
opment set. BASELINE: Performance of the baseline method.
EER: Point of equal error rate. FNR: 10 / 1%: Points on ROC
curve with 10 / 1% false negative rate, respectively. Green curve
shows relative hypothetical costs of misclassification. BASE-
LINE COSTS shows relative costs of the baseline system.

of 10 % and 1 % were rather high again. The system was simply
not optimized to perform well at high sensitivity levels.

5. Conclusions
Whilst we found pronounced phonetic patterns in the CSS
dataset that could help to better understand how Covid-19 af-
fected an individual’s speech, we don’t want to attribute any
such patterns exclusively to Covid-19. Without additional meta-
information about language, age, gender, other respiratory con-
ditions or risk factors (such as smoking), an interpretation of
our findings with respect to Covid-19 is impossible. Hence, we
conclude that any such classifier should predict whether further
testing is required rather than making a hard decision whether
an individual suffers from Covid-19 or not. This is also desir-
able to better account for asymptomatic Covid-19 cases.
Understanding how the disease affected an individuals articula-
tion of certain PHONE groups could help to improve first-level
screening solutions in general. We recommend that individuals
are asked to produce sentences with many velar phonemes of
their native language, because these encode valuable informa-
tion about the condition of the respiratory tract.
We think that in future challenges, participants should be given
additional meta-information, not only to improve classification
results, but more importantly, to allow for a better interpreta-
tion of findings. However, we assume that this was simply not
possible for the CSS dataset due to data privacy obligations.
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