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Abstract

There is a recent trend in machine learning to increase model

quality by growing models to sizes previously thought to be un-

reasonable. Recent work has shown that autoregressive gen-

erative models with cross-entropy objective functions exhibit

smooth power-law relationships, or scaling laws, that predict

model quality from model size, training set size, and the avail-

able compute budget. These scaling laws allow one to choose

nearly optimal hyper-parameters given constraints on available

training data, model parameter count, or training computation

budget. In this paper, we demonstrate that acoustic models

trained with an auto-predictive coding loss behave as if they

are subject to similar scaling laws. We extend previous work to

jointly predict loss due to model size, to training set size, and to

the inherent “irreducible loss” of the task. We find that the scal-

ing laws accurately match model performance over two orders

of magnitude in both model size and training set size, and make

predictions about the limits of model performance.

Index Terms: speech recognition, acoustic modeling

1. Introduction

In the field of language modeling, it has been shown that gener-

ative models have predictable and favorable scaling properties

with respect to training set size, model size, and available com-

pute budget[1, 2]. It has also been shown that, as the models

become larger and more accurate, less task-specific fine-tuning

is necessary to achieve state-of-the-art results[3].

Consequently, the field of natural language processing is in

the middle of an “arms race” to build the largest and most pow-

erful models. It started with smaller models like GPT[4] and

Bert[5], which had hundreds of millions of parameters. Today,

state-of-the-art models like SWITCH-C[6] have more than 1.5

trillion parameters.

Meanwhile, in the field of acoustic modeling of speech,

there has been growing interest in improving automatic speech

recognition by using bulk untranscribed audio for unsupervised

pre-training. Successful techniques use either autoregressive

predictive coding (APC) [7, 8, 9] or contrastive predictive cod-

ing (CPC) [10, 11, 12] to pre-train an acoustic model from a

large corpus of unlabeled speech. Once the pre-training is com-

plete, the models are used to generate features for downstream

modeling tasks, such as automatic speech recognition.

If acoustic models trained with predictive coding exhibit

similar scaling behavior as the autoregressive generative mod-

els studied in [2], then we can use this analysis to discover best

practices for scaling and training acoustic models that are much

larger and more accurate than today’s state-of-the-art. By accu-

rately predicting the amount of data, number of parameters, or

length of compute, we eliminate these factors from potentially

expensive hyperparameter tuning on the models we build. By

understanding whether our model’s performance (development-

set loss) is being limited by a lack of data or by the model size,

we can make intelligent decisions about how to improve them.

This paper tests this premise and develops a generalization

of previous work that accounts for the interplay between limited

training data, limited model parameters, and the development-

set loss of a converged model.

We find that these acoustic models do exhibit smooth

power-law relationships with respect to the training constraints,

that training to convergence is inefficient, that data requirements

scale sub-linearly with model size, and that larger models are

more efficient learners as was shown for language models in [1].

This paper is organized as follows. In Section 2, we de-

scribe the acoustic models that we test, our training procedure,

and our parameter scaling strategy. In Section 3, we review pre-

viously published results on model scaling, and fit them to mea-

surements of fully trained acoustic models. Section 4 highlights

the advantage of not training to convergence, and or conclusions

are presented in Section 5.

2. Experimental Setup

The two models evaluated in this work share the same basic

auto-predictive coding (APC) design, shown in Figure 1. Both

models share the same encoder and prediction structures, with

different context modules.
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Figure 1: APC model structure.

In this work, the encoder module is a dense affine embed-

ding layer that projects each input feature vector into the layer

width of the context module, without additional frame-stacking

or decimation.

The context module is a sequence-to-sequence model that

converts the encoded input sequence into a sequence of con-

text vectors. We experiment with two different designs for the

context model: the LSTM and the Transformer. To maintain

causality, the LSTM are uni-directional and the Transformer

uses masking to prevent the network from using future frames.

The prediction module uses the output of the context mod-

ule to predict and reconstruct ten consecutive input feature vec-

tors. It does this with ten separate prediction networks. Each

one consists of a linear projection to 512 units, a ReLU nonlin-

earity, and a linear projection to the input data dimension. The

model is trained to minimize the sum of the L1 loss between

each of the ten prediction networks and the ten contiguous in-

put feature vectors. Following the design in [13], the first of
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these feature vector targets is identical to the context vector’s

latest input.

The difference between this APC design and a more tradi-

tional autoencoder is that in an autoencoder, the network distills

and recreates the input, and in an APC design, the network pre-

dicts the future from the past.

The LSTM context module is a stack of uni-directional

LSTM layers. Each of the L layers incorporates layer normal-

ization, and every layer but the first employs a residual struc-

ture. The complexity of this context module, both in terms of

number of parameters N and the number of multiplications per

frame of input data performed during inference M are shown in

Table 1. The values are a function of u, the number of units in

the LSTM.

Table 1: LSTM layer parameter count N and inference multi-

plication count M .

Computation N M

Input, Output, Forget Gates 3u(2u + 1) 3u(2u+ 1)
Cell Update u(2u+ 1) u(2u+ 1)
Layer Norm 2u u

Total 4u(2u + 1) u(8u+ 5)

The Transformer context model is a stack of Transformer

encoder layers. Each layer comprises layer norm, masked

multi-headed self-attention, a second layer norm, and a then a

point-wise feed-forward network. Both the self-attention and

the feed-forward network employ a residual connection. The

number of parameters N and the number of multiplications per

input frame during inference M are given in Table 2. Unlike the

LSTM, the computational complexity of the transformer-based

context module is dependent on both the number of units in the

model u and the attention component’s context length nc.

Table 2: Transformer encoder layer parameter count N and

forward-pass multiplication count M .

Computation N M

Two Layer Norms 4u 2u
Att. Embeddding 3u(u+ 1) 3u(u+ 1)
Self Attention 0 2nctxu

Att. Projection u(u+ 1) u(u+ 1)
Feed-Forward u(8u+ 5) u(8u+ 5)
Total u(12u+ 13) u(12u+ 2nctx + 11)

The LSTM exhibits O(u2) complexity, regardless of the in-

put data. The Transformer exhibits O(u2) complexity for short

context lengths, and O(u) for long context lengths. Specifically,

when nc < 6u, the term 12u2 dominates the Transformer mul-

tiplication count, and when nc > 6u, the term 2unc becomes

more important.

2.1. Training

To train the models, we used an Adam optimizer with a warm

hold decay learning rate scheduler. The learning rate was

ramped up from 1 × 10−4 to 2 × 10−4 over 3,000 steps, held

there until 50,000 steps were complete, and then exponentially

decayed to hit 1 × 10−5 at 150,000 steps. Each step consisted

of a 64-example mini-batch of speech sequences, with a feature

dimension of 64 and roughly bucketed sequence lengths. Loss

function values were computed on a held-out development set

every 25,000 steps during training.

All acoustic data used in this paper was drawn from a 23

thousand hour corpus of untranscribed, de-identified, far-field,

English voice command and voice query speech collected from

home environments. This data is presented to the network as

a series of log-Mel frequency filterbank feature vectors, at a

rate of 100 vectors per second of audio. Although this data is

not publicly available, the authors believe that the phenomena

described in this paper should apply to any similar set of speech

recordings.

2.2. Model Scaling Strategy

Although one could scale model size by independently choos-

ing the number of layers nlayer and number of units u in the

context module, we chose to scale the models by coupling the

two hyper-parameters with a fixed aspect ratio.

Preliminary experimentation indicated that for a given num-

ber of parameters, the LSTM model performs best with a con-

stant aspect ratio of u = 256nlayer . Similarly, the transformer

model performs best with an aspect ratio of u = 64nlayer .

These ratios are used exclusively throughout this paper.

3. Scaling of Converged Models

This section describes the relationship between the number of

model parameters N , the amount of training data D, and the

model loss of a fully trained model L(N,D).

3.1. Limited Data or Limited Model Parameters

It was empirically demonstrated in [1] and [2] that, for sev-

eral generative modeling tasks, the loss of autoregressive Trans-

former models behave predictably when their performance is

limited by either the number of model parameters N or the

amount of training data D. Specifically, loss is predictable ac-

cording to a power-law plus constant formulation as in Eq. 1.

L(D) = L∞ +
(

DC

D

)αD

, L(N) = L∞ +
(

NC

N

)αN

(1)

The parameter DC represents the critical value of D, where

the contribution of limited data to the loss function is equal to

1.0. The parameter αD controls the relationship between in-

creased data and reduced loss. The parameters NC and αN

perform similar functions in relating N to L(N). The constant

L∞ is the “irreducible loss” that is independent of either D or

N .

To demonstrate the effect of limited D on loss, we trained

several models that were likely to be performance-limited by D.

Five instances of 11-layer Transformer models were on differ-

ently sized subsets of the training data. The training data sizes

D were chosen to be exponentially spaced from 180 hours to

11,500 hours. The loss values for these models are marked with

dots in Figure 2. The parametric L(D) from Eq. 1 is shown

with constants DC = 7.350 × 10−23 hours, αD = 0.01946,

and L∞ = 0.316.

The small value for DC indicates that almost no data is

necessary to bring the objective function below 1.0. This makes

sense for our data, where if the model did nothing but predict

the mean spectral value, the objective function would already

be less than 1.0.

To demonstrate the effect of limited N on loss, we trained

several models that were likely to be performance-limited by N .

Five models were trained on 23 thousand hours of data, with
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Figure 2: When model performance is limited only by available

training data the relationship between training data and loss is

linear on a log-log plot.

model size restricted to 2, 3, 5, 7, and 11 layers. The result-

ing loss values are marked with dots in Figure 3, together with

the parametric L(N) with NC = 9.410 × 10−25 parameters,

αN = 0.01601, and L∞ = 0.316. Note that the value used

for irreducible loss here in L(N) is identical to the one used

for L(D). The small value for NC indicates that loss values

less than 1.0 are achievable with zero parameters in the context

network.
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Figure 3: When model performance is limited by model size,

the relationship between parameter count and loss is linear on

a log-log plot.

Together, these relationships describe how to improve

model performance when it is being limited either by D or N .

At less than about one thousand hours of training data, the

11-layer transformer is data-limited. With the estimated value

of αD , a five percent reduction in loss requires a 14.0-fold in-

crease in training data D.

At less than about two million parameters, the models

trained on a large amount of data are parameter-limited. With

the estimated value of αN , a five percent reduction in loss re-

quires a 24.6-fold increase in model size N .

The ratio of αN to αD describes how quickly D should

increase to support an increase in N . If D scales more slowly,

then the model performance will eventually be limited by D

and the increase in N will be wasted. For our data,
αN

αD
< 1,

which means data requirements scale sub-linearly with model

parameter count. Specifically, with every doubling of N , D

should increase by a factor of 1.77.

If our only constraint is model size N , we should choose

D large enough so that its contribution to the loss is at least

one order of magnitude smaller than L(N). For our data, this

implies a lower limit of D > 0.0436N0.8230 .

3.2. Limited Data and Limited Model Size

In [1], the authors demonstrated that when limited by both data

and model size, but with unlimited computational power, the

two previous relationships can be combined into a single scal-

ing law, Eq. 2. Unfortunately, this equation was developed for

language models where L∞ can be ignored. The authors of [2]

did not present an analogous relationship that incorporates the

concept of irreducible loss.

L(N,D) =

[

(

NC

N

)

αN

αD

+

(

DC

D

)

]αD

(2)

To adapt this relationship to account for irreducible loss,

we introduce the following generalization, which is equivalent

to Eq. 2 with the addition of an “irreducible loss” term and a

slight change of variables.

L(N,D) =

[

(L∞)
1

α +

(

NC

N

)

αN

α

+

(

DC

D

)

αD

α

]α

(3)

To test this scaling law’s ability to describe model perfor-

mance, we trained twenty-one Transformer based models. We

used a variety of nlayer from 2 to 11, a fixed aspect ratio of

u = 64nlayer , and training data set sizes from 134 hours to

23 thousand hours of speech. Each model was trained until the

development set loss began to increase, or until 1.5 million pa-

rameter updates were complete.
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Figure 4: The converged loss of several Transformer models

with 2 through 11 layers, plotted as a function of training data

D. Each marker represents a different experiment across nlayer

and D. Lines are drawn for each model size representing the

prediction of Eq. 3. The diagonal dashed line represents a per-

formance frontier imposed by limited data, and the horizontal

dotted line represents the irreducible loss.

The loss values for these models are represented by markers

in Figure 4. The performance barrier due to limited training set

size is shown as a diagonal dashed line. Regardless of model

size, we do not expect any model will be able to surpass this

limit. The performance barrier due to irreducible loss is repre-

sented as a horizontal dotted line. If Eq. 3 is correct, no model

can be better than this limit, regardless of model size or training

data set size.

The smooth curves in Figure 4 are computed using Eq. 3

with the same constants reported above with the addition of α =
0.01363. It is clear that the model of Eq. 3 is a good match to

our data.



4. Efficient Scaling Properties

Both [1] and [2] showed that for a broad class of models, train-

ing to convergence is a computationally inefficient way to max-

imize model performance. Instead, they demonstrated that for

a given loss, the most efficient way to train a model to that loss

is to train a larger model using fewer model update steps. We

repeat this analysis for acoustic models.

Figure 5 shows the evolution of development-set loss dur-

ing training for both LSTM and Transformer based models.

Each curve represents an experiment with a different N . Each

experiment is stopped after 300,000 model updates, which rep-

resents less than one full pass over the training data. For each

point, the x-coordinate is the approximate number of multipli-

cations and additions executed during training, following the

conventions established in [1].
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Figure 5: Development set loss for both LSTM and Transformer

models for models with the indicated number of layers. The

dashed line represents the computationally efficient frontier de-

fined in Eq. 4.

Regardless of model size, no experiment surpasses the

power-law plus constant fit shown as a dotted line. This line is

the compute-efficient frontier, and has a similar form to Eq. 1.

L(C) = L∞ +

(

CC

C

)αC

(4)

When a model reaches L(C), it means that a different

model with enough capacity, but with fewer parameters, would

need more computation and more data to reach the same loss

value. Alternatively, a model with more parameters would need

more computation and less data to reach the same loss value.

Where curves for two experiments meet, it is an indication

that the same amount of compute can reach the given loss value

through two different methods. One can either use more param-

eters and fewer data, or use fewer parameters and more data.

The constant L∞ is 0.306 in both figures. This represents a

shared asymptote between the LSTM and Transformer systems,

which will never be surpassed, regardless of the computational

or data budget. The fact that the same asymptote applies to both

systems hints that irreducible loss is indeed a fundamental prop-

erty of the data and not the model. Additionally, this constant

is similar to the value found in Section 3.1. The authors sus-

pect that the constants should be identical, but our precision in

measuring it is limited.

The LSTM models exhibit a compute-efficient frontier with

a slope of -0.167. A doubling of computation yeilds a 10.9%
reduction in objective function. A halving of objective function

would come with a 63.5 fold increase in computation.

The slope of the compute-efficient frontier for Transformer

models is -0.197. When computation is increased by a factor of

r, then the reducible loss will be changed by a factor of r−0.197.

At that rate, a doubling of computation yields a 12.7% reduction

in objective function. A halving of objective function would

come with a 33.7 fold increase in computation.

The difference in slope between the LSTM and Transformer

experiments indicate that the Transformer architecture makes

more efficient use of increased model parameters and increased

training data. Although LSTM is superior to transformer at

smaller model sizes, as the model size grows, and these trends

continue, the transformer will eventually be more efficient.

Finally, the experimental data show that larger models learn

more quickly from the same amount of data. Each of the points

plotted in Figure 5 represent the consumption of an additional

25 thousand minibatches of training data. At the first point,

second, or third, each model has processed the same data, but

the larger models have achieved better accuracy on the held-out

development set.

5. Conclusion

In this paper, we demonstrated that the effect of limited model

parameters and limited training data on the quality of APC

acoustic models follows a power-law given by Eq. 3. This ex-

tends previous results in language modeling and recurrent gen-

erative modeling. The relationship can be used to predict the

amount of data needed to support a given model size, or to pre-

dict the proper model size for a given amount of data.

For our data, we have shown that the irreducible loss L∞ is

the same, whether the model uses Transformer or LSTM com-

ponents. Furthermore, under two different power-law relation-

ships, the L∞ is similar. Together, this suggests that it is a

fundamental property of the task and data, but not the model.

Although speculative, authors believe that the irreducible loss

derived from such scaling studies can translate into a measure

of information content, or quality of the training data. One

study that can be performed, beyond the scope of this work,

is to add controlled amount of noise and study the effect on the

irreducible loss. Future work should tie L∞ to the intrinsic dif-

ficulty in modeling a set of acoustic data, similar to perplexity

measurements in language modeling tasks.

This paper has implicitly assumed that improvements in L1

loss are desirable. Future work will relate L1 loss to perfor-

mance on a downstream acoustic modeling task.
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