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Abstract

Neural network-based language models are commonly used in

rescoring approaches to improve the quality of modern auto-

matic speech recognition (ASR) systems. Most of the exist-

ing methods are computationally expensive since they use au-

toregressive language models. We propose a novel rescoring

approach, which processes the entire lattice in a single call to

the model. The key feature of our rescoring policy is a novel

non-autoregressive Lattice Transformer Language Model (LT-

LM). This model takes the whole lattice as an input and pre-

dicts a new language score for each arc. Additionally, we pro-

pose the artificial lattices generation approach to incorporate a

large amount of text data in the LT-LM training process. Our

single-shot rescoring performs orders of magnitude faster than

other rescoring methods in our experiments. It is more than 300

times faster than pruned RNNLM lattice rescoring and N-best

rescoring while slightly inferior in terms of WER.

Index Terms: speech recognition, lattice transformer, language

models, artificial lattices, lattice rescoring, LT-LM

1. Introduction

Language models (LMs) are a significant part of automatic

speech recognition (ASR) systems. They can reduce the overall

system error rate [1–4] and make the recognition results more

human-readable [5]. Back-off n-gram LMs [6] are traditionally

used in hybrid ASR systems [7], but the Neural Network Lan-

guage Models (NNLMs) outperform n-gram ones [8–13] due to

their ability to capture longer context and extract more mean-

ingful information from text. However, NNLMs are compu-

tationally expensive, and their usage in ASR systems is chal-

lenging. The most popular way to apply them is the two-pass

method [14]. First, decoding pass is performed with an n-gram

LM. Then, a NNLM can be additionally used to rescore [10] the

results of the first pass.

There are several widely used rescoring approaches. The

simplest one is the N-best list rescoring [15]. It is applied

separately to each hypothesis of the first pass, ranking them

with respect to updated scores. N-best rescoring provides bet-

ter Word Error Rate (WER) reduction when it operates with a

larger number of hypotheses N to re-rank. Usually, hypothe-

ses differ from each other only in a small number of words.

Since N-best rescoring does not take this fact into account, it

requires a lot of unnecessary computations, which makes this

method very computationally expensive. This flaw of N-best

rescoring is mitigated when using rescoring approaches deal-

ing with word lattices. There are approaches such as pruned

RNNLM lattice rescoring [16], fast N-best rescoring [17] and

parallelizable lattice rescoring [18] which exploit the similarity

of hypotheses to optimize computations. Nevertheless, these

rescoring approaches are rather slow and computationally ex-

pensive as they require multiple LM calls.

In this article, we introduce a new non-autoregressive lan-

guage model that processes the whole lattice in a single shot

during the rescoring process. It is trained directly on ASR lat-

tices, unlike conventional LMs trained on text sequences. We

used the Transformer architecture [19] for this purpose because

it can be easily adapted for training on lattices [20–22] and

named this special model Lattice Transformer Language Model

(LT-LM). This model takes a whole lattice as input and outputs

a language weight for each arc. Using such a model in a rescor-

ing process makes it possible to re-rank the lattice hypotheses

in a single call to the model. This makes the rescoring process

significantly faster and reduces the number of computational re-

sources compared to rescoring with autoregressive models.

Autoregressive LMs are usually trained on large amounts

of text data, which helps them to provide significant WER re-

duction in the rescoring task. Since LT-LM is supposed to be

trained on ASR results and corresponding speech transcripts, it

is challenging to obtain enough training data. To cope with the

lack of training data, we developed a method of artificial lat-

tices generation from large amounts of texts, using just a small

subset of labeled audio data (about 1-2 hours). This made it

possible to significantly increase the amount of training data for

LT-LM and obtain rescoring results close to ones corresponding

to modern autoregressive LMs.

2. Rescoring Task

Normally, the decoding process searches for the best ASR hy-

pothesis according to the Maximum A Posteriori (MAP) rule:

W
∗ = argmax

W

p(X|W )aP (W )l, (1)

where W stands for a recognition hypothesis, W ∗ is the best hy-

pothesis, a and l are adjustable acoustic and language weights,

respectively, while p(X|W ) is an acoustic score, and P (W ) is

a language score.

The process of searching for the best hypothesis requires

applying the language model to all possible word sequences to

estimate their language probabilities. This process is fast when

n-gram LMs are used. Typically, NNLMs work much slower

but significantly outperform n-gram ones in terms of WER.

Thus, it is necessary to reduce the number of recognition hy-

potheses to apply neural network-based LMs. It can be done

with a two-pass approach. First, decoding with an n-gram LM

is performed, and a list of hypotheses with the best scores is
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saved. The result of the first pass can be compactly represented

as a weighted directed acyclic graph called a lattice. Lattice arcs

are usually supplied with word labels, as well as language and

acoustic scores. Lattice always has a single initial state and at

least one final state.

The second part of the two-pass method is the rescoring

process. It updates language scores using neural network-based

LM and reorders hypotheses. Generally, after such a procedure,

the best hypothesis changes to the one containing fewer errors.

The score of the best hypothesis after rescoring can be evaluated

as follows:

W
∗ = argmax

W∈lattice

P (X|W )aP1(W )l1P2(W )l2 , (2)

where P1(W ) and P2(W ) are the probabilities of n-gram LM

and rescoring LM, respectively, and l1, l2 are corresponding

LM weights.

The language model estimates a probability of a given se-

quence of words. However, the rescoring process operates only

with the most probable hypotheses of the first pass. In order

to take this fact into account, we propose a special LM, which

estimates the language scores directly for a set of lattice hy-

potheses. We named it Lattice Transformer Language Model

and trained it on lattices instead of text data.

3. Lattice Transformer Language Model

While the text is a sequence of words, a lattice is a non-linear

structure. This means that the order of words in a lattice is de-

termined by lattice topology. The Transformer architecture can

be naturally adapted to training on lattices [20], in contrast to,

for example, recurrent neural networks, for which the order of

the input word sequence is essential. Such adaptation is possi-

ble due to the self-attention component of the Transformer ar-

chitecture. This module does not depend on the order of its

elements because it computes a weighted sum of the input se-

quence. Transformer uses positional encoding to introduce the

information about the sequence order into its latent represen-

tations. The following subsection describes the proposed ap-

proach of lattice topology encoding for use in Transformer.

3.1. Positional Encoding

One of the most common ways to encode positional informa-

tion is combining embeddings of the input elements with the so-

called positional embeddings [23]. Positional embeddings are

usually obtained from the embedding matrix trained together

with the model. Each embedding corresponds to a specific posi-

tion in the input sequence. This encoding method can be easily

adapted for training on data structures different from sequences

(e.g., lattices).

We propose the following pipeline for positional encoding

of lattices. The first step is representing the lattice as a set of

its arcs. Then, we propose adding several auxiliary arcs to keep

information about the initial and final states of a lattice. They

serve the same purpose as the SOS and EOS tokens in the case

of text-based learning. An auxiliary arc with the symbol <s>

comes to the initial state, and auxiliary arcs with the symbol

</s> come from each final state. Here symbols <s> and </s>
correspond to the beginning and the end of the sentence, respec-

tively. The next step is the topological sort of lattice to ensure

the proper order of its states.

The position of the arc (x, y) in the lattice is determined by

the indices of its source and destination states x and y. Thus, it

is possible to encode the topological information of each arc in

the lattice using the sum of positional embeddings of its source

and destination states, respectively. Two embedding matrices

for source and destination states are trained separately to ac-

count for arcs direction. Finally, the total arc embedding is ob-

tained by adding its positional embedding to a corresponding

word embedding.

3.2. Targets and loss

The hypothesis with the least WER in the lattice is called the

oracle hypothesis. The ideal rescoring would provide this hy-

pothesis as a result. For this reason, LT-LM is trained to find

the oracle hypothesis in the lattice. This is done in the follow-

ing way. First, the oracle path is obtained from each lattice

prepared as described above. If there are several oracle paths

in lattice, the target path is chosen randomly. Then lattice arcs

are split into two classes. All arcs comprising the oracle path

are assigned to class 1, and the others — to class 0. LT-LM is

trained to minimize the binary cross-entropy for each arc.

3.3. Single-shot Rescoring with LT-LM

The LT-LM key feature is the ability to generate probabilities

for all arcs in the lattice in a single call to the model. LT-LM

predicts the probability for each arc of the lattice to belong to

the oracle path. These probabilities can be used in combination

with original LM and AM scores to generate the final rescoring

result. Then, the best hypothesis is chosen using the standard

forward algorithm accordingly to (2). The described method is

significantly faster than other rescoring methods requiring sev-

eral calls to the model. This fact is discussed in detail in sub-

section 5.4.

4. Lattices generation from text

As mentioned above, recognition lattices and ground-truth

word-level transcriptions are needed for LT-LM training. At

the same time, classic LMs are trained in an unsupervised man-

ner using large amounts of text data, which are much easier to

collect. In order to utilize large amounts of available text data

for LT-LM training, we propose an algorithm that generates re-

alistic artificial lattices directly from the text.

It is necessary to imitate the acoustic similarity of words to

generate realistic lattices from the text. We propose the follow-

ing approach for generating lattices from text data as close as

possible to real ones:

• simulate a per-frame alignment from text without using

audio data;

• simulate a probability distribution over acoustic classes

for each frame of the alignment;

• decode the resulting sequence with a beam search algo-

rithm to generate lattices.

We used an acoustic model and a small labeled audio

dataset to generate lattices. We estimated the per-frame dis-

tribution of acoustic classes of this dataset and built a per-frame

alignment. For each acoustic class, we estimated the distribu-

tion of its duration in the alignment. We evaluated this distri-

bution from the alignment and calculated the average acoustic

model output for each acoustic class. Finally, we obtained a

matrix of the shape (A,A), where A stands for the number of

acoustic classes, and referred it to as the Fake Acoustic Model

(FAM). The i-th row in this matrix contains the average distri-
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Figure 1: A beginning part of an artificial lattice. The whole lattice contains 53 arcs, while the reference text contains 22 words.

bution of acoustic classes over all frames where the alignment

value is equal to i.

Alignment can be obtained from the text as follows. Simi-

lar to the forced alignment pipeline, each sentence is converted

to a graph containing all possible representations of the corre-

sponding word sequence in the form of acoustic classes. If there

is an audio corresponding to the text, the most probable align-

ment can be obtained using the Viterbi algorithm. In contrast,

we propose to sample a random path from the alignment graph.

This path should not contain the same acoustic classes on ad-

jacent arcs. Unlike the real alignment, the obtained paths are

time-agnostic. Thus, it is necessary to introduce the time com-

ponent and “stretch” this path to simulate realistic alignment.

We sampled a random number N from the estimated distribu-

tion for each acoustic class and stretched this class by N frames.

We referred to the resulting sequence of acoustic classes as the

Fake Alignment (FAli).

Then, artificial lattices can be generated by performing the

conventional decoding procedure on FAli. The probability dis-

tribution of acoustic classes for each frame is sampled from the

FAM model. Finally, the standard decoding procedure can be

applied to generate artificial lattices.

Figure 1 represents a part of generated lattice for an utter-

ance from dev clean subset of LibriSpeech corpus. Solid lines

mark the path corresponding to the oracle hypothesis, while

dashed ones indicate arcs of alternative hypotheses added dur-

ing the lattice generation. The structure of a simulated lattice is

similar to the structure of a real one. The words from alternative

hypotheses of generated lattice sound similarly to correspond-

ing ones from the oracle path.

5. Experiments

5.1. Baselines

Our experiments with LT-LM were performed using the Lib-

riSpeech corpus [24], which contains 960 hours of English au-

diobooks for AM training and 5Gb of extra text data for LM

training. The Kaldi [25] recipe for LibriSpeech1 was used for

the baseline AM training. The baseline WER results were ob-

tained using the large 3-gram LM from this recipe. As rescor-

ing baselines, we used a Transformer-LM2 as well as LSTM-

LM3 from ESPNet framework [26]. Transformer-LM consists

of 16 transformer blocks. Each block has 8 attention heads of

dimensions 512 and 2048 units in feed-forward layers. LSTM-

LM has 4 layers of 2048 neurons each. The target texts were

tokenized into 5000 tokens by Byte Pair Encoding (BPE) al-

gorithm [27] from the SentencePiece tokenization toolkit [28].

The total number of parameters of LSTM and Transformer LMs

are 155M and 54M, respectively. We considered two rescoring

approaches as baselines: N-best rescoring and pruned RNNLM

1kaldi/egs/librispeech/s5/local/chain/tuning/run tdnn 1d.sh
2espnet/egs2/librispeech/asr1/conf/tuning/train lm transformer2.yaml
3espnet/egs2/librispeech/asr1/conf/tuning/train lm adam.yaml

lattice rescoring [16]. The last one was performed with 4-gram

approximation and the beam of 6.

5.2. LT-LM training

Initially, we decoded the entire LibriSpeech training set to ob-

tain lattices for the LT-LM training. The model trained using

only these lattices did not show the competitive rescoring results

due to the following reasons. First, the obtained amount of data

was insufficient for the LT-LM training and led to model overfit-

ting. Second, the word diversity of the training utterances texts

did not cover the vocabulary of the baseline n-gram LM trained

with additional text data. We used a small subset of training data

of 2 hours and additional LibriSpeech texts for the artificial lat-

tices generation to overcome these problems. Decoding is the

most computationally intensive part of the generation process.

Due to the resource limitation, we accelerated the decoding by

reducing the beam from 16 to 13 and the number of active hy-

potheses from 5000 to 3000. Finally, we pruned lattices with

beam 4 to speed up the training process. LT-LM was trained

on word lattices, and the overall vocabulary consisted of 200K

words.

We used the Fairseq framework [29] for LT-LM training.

The model had 8 transformer encoder layers, each of 8 attention

heads with 816 embedded dimensions and 2048 feed-forward

units. The total number of the model parameters was 211M.

LT-LM was trained using Adam optimizer with a linear learn-

ing rate warmup for the first 4000 iterations and with a con-

stant learning rate of 3e-5 after warmup. The use of gradient

checkpointing [30] significantly reduced the memory usage and

allowed us to increase the batch size from 4 to 64. Our best

LT-LM was trained for six epochs on a combination of real and

artificial lattices.

LM method

dev test

clean other clean other

lattices pruned with beam 8

3-gram - 3.41 9.26 3.90 9.25

LSTM 50-best 2.78 7.51 2.84 7.67

LSTM 500-best 2.56 7.55 2.86 7.67

LSTM Pruned 2.63 7.10 2.95 7.38

Transformer 50-best 2.47 8.10 2.82 8.18

Transformer 500-best 2.26 7.06 2.63 7.23

lattices pruned with beam 4

LSTM 50-best 2.88 8.61 3.14 8.69

LSTM 500-best 2.74 7.89 3.05 8.05

Transformer 50-best 2.61 8.28 2.99 8.37

Transformer 500-best 2.50 7.51 2.84 7.67

LT-LM Single-Shot 2.51 7.47 3.01 7.74

Table 1: Rescoring results in WER on LibriSpeech develop-

ment and test sets for different NNLMs and rescoring methods.

“Pruned” stands for pruned RNNLM lattice rescoring.

https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh
https://github.com/espnet/espnet/blob/master/egs2/librispeech/asr1/conf/tuning/train_lm_transformer2.yaml
https://github.com/espnet/espnet/blob/master/egs2/librispeech/asr1/conf/tuning/train_lm_adam.yaml


LM method

dev test

clean other clean other

lattices pruned with beam 8

LSTM 50-best 12m25s 13m8s 12m32s 13m21s

LSTM 500-best 48m22s 59m26s 49m5s 60m39s

LSTM Pruned 13m47s 34m 14m23s 35m38s

Transformer 50-best 10m25s 11m48s 10m25s 11m59s

Transformer 500-best 41m27s 55m42s 39m8s 54m47s

lattices pruned with beam 4

LSTM 50-best 9m15s 10m27s 9m6s 11m6s

LSTM 500-best 19m13s 32m 17m58s 32m34s

Transformer 50-best 8m11s 9m43s 7m59s 9m43s

Transformer 500-best 15m41s 27m55s 15m33s 28m44s

LT-LM Single-Shot 3.8s 4.5s 3.7s 4.6s

Table 2: Rescoring GPU running time in minutes and seconds

5.3. Rescoring WER performance

The rescoring results for all models mentioned above are pre-

sented in Table 1. The first row of the table demonstrates the

rescoring results of the best 3-gram LM from the LibriSpeech

Kaldi recipe. The next three rows correspond to the LSTM-LM

results: 50-best and 500-best rescoring and pruned RNNLM lat-

tice rescoring [16], respectively. The next two rows correspond

to 50-best and 500-best rescoring with Transformer-LM and the

latest one shows the best WER results on LibriSpeech develop-

ment and test sets. The NNLM weight of 0.8 was used for all

the described approaches. Since LT-LM was trained on lattices

pruned with a beam of 4, we used the same beam value in test

time to avoid the mismatch between training and evaluation.

Also, we provide the results of N-best rescoring with a beam

equal to 4. These results are demonstrated in the second part of

Table 1 and reflect the influence of beam value on the rescor-

ing quality. As the final result, the single-shot approach with

LT-LM shows the quality comparable to N-best rescoring with

LSTM-LM.

5.4. Rescoring speedup

Rescoring was performed on a single Nvidia GeForce RTX

2080 ti GPU. We measured the GPU running time of different

rescoring approaches on the LibriSpeech development and test

sets to compare their speed performances. The GPU running

time results for all rescoring approaches except 500-best were

averaged over ten launches. The results for 500-best rescoring

were averaged over only two launches due to high computa-

tional cost per run. The rescoring for both LT-LM and N-best

lists was performed with a batch size equal to 64. The results

are presented in Table 2. It can be seen that the single-shot

rescoring with LT-LM was orders of magnitude faster than the

other methods. For example, LT-LM rescoring is about 350

times faster than pruned RNNLM lattice rescoring, while hav-

ing comparable quality. At the same time, Transformer-LM

500-best rescoring outperforms LT-LM rescoring for a maxi-

mum of 0.5% WER on test other, but LT-LM performs more

than 630 times faster! The reasons for such acceleration can be

explained as follows.

The main advantage of LT-LM is that the rescoring of the

entire lattice is performed in a single-shot manner. This leads to

the significant speedup of the rescoring process. Table 3 demon-

strates the statistics obtained for the LibriSpeech dev clean and

dev other sets. The left half of the table shows the average

length of sequences processed for a single LM call, while the

right half shows the number of such calls.

method

av. seq. len. num. of model calls

clean other clean other

50-best 23 19 105K 127K

500-best 27 21 795K 1.1M

Pruned 1 1 196K 456K

Single-Shot 26 33 2703 2864

Table 3: Average word sequence lengths and numbers of model

calls for different rescoring methods on LibriSpeech dev clean

and dev other sets.

In the case of N-best rescoring, the length of the processed

sequence equals the number of words in the recognition hypoth-

esis. For the pruned RNNLM lattice rescoring, the length of the

processed word sequence always equals one, because the algo-

rithm processes arcs in the lattice one by one. Finally, since

LT-LM processes the whole lattice, the corresponding word se-

quence length during the rescoring process is equal to an overall

number of arcs in the lattice. Respectively, the number of LM

calls is equal to the total amount of processed hypotheses for the

N-best rescoring, to the total amount of arcs involved in rescor-

ing in the composed lattice for the pruned RNLLM rescoring,

and to the number of lattices for the LT-LM one.

At first glance, it looks surprising that the average amount

of arcs in lattices is close to the average N-best hypothesis

length (or even less for the case of 500-best). The matter of

things is as follows. The N-best list for the short utterances usu-

ally contains only a few hypotheses (much less than N). These

hypotheses are mostly rather short, and the number of arcs in

such lattices is only slightly larger than the hypotheses lengths.

The number of arcs in lattices corresponding to long utterances

is usually larger than the hypotheses length by a moderate fac-

tor. But the N-best lists corresponding to such lattices contain a

lot of long hypotheses to be rescored. Thus, the N-best rescor-

ing needs to process significantly fewer short hypotheses than

long ones. As a result, the total average length of processed hy-

potheses is biased towards the lengths of long hypotheses from

large lattices. However, an average number of arcs in lattices is

not subject to this bias.

According to Table 3, there is no significant difference in

the average sequence lengths for LT-LM and N-best rescoring

methods. However, the number of model calls to process for

LT-LM is several orders of magnitude less than for all other

rescoring methods presented in the table.

6. Conclusion and future work

We presented a novel single-shot approach to rescoring of ASR

results. This approach allows to rescore the entire lattice in a

single LM call. While comparable in quality to other popular

rescoring approaches, the proposed one is faster by orders of

magnitude. The proposed approach utilizes a special Lattice

Transformer Language Model, which deals with ASR results

presented as lattices.

In the future, we plan to adapt sequence-discriminative

losses for LT-LM training. We believe that they can improve the

LT-LM quality and help it to outperform autoregressive LMs in

terms of WER. It is also interesting to apply LT-LM on far-field

speech datasets, which are more challenging for ASR.
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decoding and rescoring with long-span neural network language
models,” in INTERSPEECH, 2014.

[15] A. Deoras, T. Mikolov, and K. Church, “A fast re-scoring strat-
egy to capture long-distance dependencies,” in Empirical Methods

in Natural Language Processing (EMNLP), Jul. 2011, pp. 1116–
1127.

[16] X. Hainan, C. Tongfei, G. Dongji, W. Yiming, K. Li, N. Goel,
Y. Carmiel, D. Povey, and S. Khudanpur, “A pruned RNNLM
lattice-rescoring algorithm for automatic speech recognition,” in
International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2018, pp. 5929–5933.

[17] E. Beck, R. Schluter, and H. Ney, “LVCSR with transformer lan-
guage models,” in INTERSPEECH, 2020, pp. 1798–1802.

[18] K. Li, D. Povey, and S. Khudanpur, “A parallelizable
lattice rescoring strategy with neural language models,”
arXiv:2103.05081, 2021.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you

need,” in Advances in Neural Information Processing Systems

(NIPS), vol. 30, 2017.

[20] M. Sperber, G. Neubig, N.-Q. Pham, and A. Waibel, “Self-
attentional models for lattice inputs,” in Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics

(ACL), 2019, pp. 1185–1197.

[21] V. L. Shiv and C. Quirk, “Novel positional encodings to enable
tree-based transformers,” in Advances in Neural Information Pro-

cessing Systems (NIPS), December 2019.

[22] X. Li, H. Yan, X. Qiu, and X. Huang, “FLAT: Chinese NER using
flat-lattice transformer,” in Proceedings of the 58th Annual Meet-

ing of the Association for Computational Linguistics (ACL), Jul.
2020, pp. 6836–6842.

[23] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in Proceedings of

the 34th International Conference on Machine Learning (ICML),
vol. 70, 2017, pp. 1243–1252.

[24] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
riSpeech: an ASR corpus based on public domain audio books,”
in International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2015, pp. 5206–5210.

[25] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recog-
nition toolkit,” in Workshop on Automatic Speech Recognition and

Understanding. IEEE, 2011.

[26] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. Enrique Yalta Soplin, J. Heymann, M. Wiesner, N. Chen,
A. Renduchintala, and T. Ochiai, “ESPnet: end-to-end speech
processing toolkit,” in INTERSPEECH, 2018, pp. 2207–2211.

[27] R. Sennrich, B. Haddow, and A. Birch, “Neural machine transla-
tion of rare words with subword units,” in Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics

(ACL), Aug. 2016, pp. 1715–1725.

[28] T. Kudo and J. Richardson, “SentencePiece: a simple and lan-
guage independent subword tokenizer and detokenizer for neural
text processing,” in Empirical Methods in Natural Language Pro-

cessing (EMNLP): System Demonstrations, Nov. 2018, pp. 66–71.

[29] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grang-
ier, and M. Auli, “fairseq: a fast, extensible toolkit for sequence
modeling,” in Proceedings of NAACL-HLT 2019: Demonstra-

tions, 2019.

[30] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets
with sublinear memory cost,” ArXiv:1604.06174, 2016.


	1  Introduction
	2  Rescoring Task
	3  Lattice Transformer Language Model
	3.1  Positional Encoding
	3.2  Targets and loss
	3.3  Single-shot Rescoring with LT-LM

	4  Lattices generation from text
	5  Experiments
	5.1  Baselines
	5.2  LT-LM training
	5.3  Rescoring WER performance
	5.4  Rescoring speedup

	6  Conclusion and future work
	7  Acknowledgements
	8  References

