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Abstract
The INTERSPEECH 2021 Computational Paralinguistics Chal-
lenge addresses four different problems for the first time in
a research competition under well-defined conditions: In the
COVID-19 Cough and COVID-19 Speech Sub-Challenges, a
binary classification on COVID-19 infection has to be made
based on coughing sounds and speech; in the Escalation Sub-
Challenge, a three-way assessment of the level of escalation in
a dialogue is featured; and in the Primates Sub-Challenge, four
species vs background need to be classified. We describe the
Sub-Challenges, baseline feature extraction, and classifiers based
on the ‘usual’ COMPARE and BoAW features as well as deep
unsupervised representation learning using the AUDEEP toolkit,
and deep feature extraction from pre-trained CNNs using the
DEEP SPECTRUM toolkit; in addition, we add deep end-to-end
sequential modelling, and partially linguistic analysis.
Index Terms: Computational Paralinguistics, Challenge,
COVID-19, Escalation, Primates

1. Introduction
In this INTERSPEECH 2021 COMPUTATIONAL PARALIN-
GUISTICS CHALLENGE (COMPARE) – the thirteenth since 2009
[1], we address four new problems within the field of Computa-
tional Paralinguistics [2] in a challenge setting:

In the COVID-19 Cough Sub-Challenge (CCS) and
COVID-19 Speech Sub-Challenge (CSS), coughing sounds or
speech are used to binary classify COVID-19 (or not) infection.
In the present pandemic situation, great potential lies in low-
cost, anywhere and anytime accessible real-time pre-diagnosis
of COVID-19 infection. To date, the possibility has been shown
[3], yet a controlled challenge test-bed is lacking. In the Escala-
tion Sub-Challenge (ESS), participants are faced with three-way
classification of the level of escalation in human dialogues. A
range of applications exists including human-to-computer inter-
action, computer mediated human-to-human conversation, or
public security. Finally, in the Primate Sub-Challenge (PRS),
we classify four species of primates versus background noise.
Real-life applications include wild-life monitoring in habitats,
e. g., to save species from extinction.

For all tasks, a target class has to be predicted for each
case. Contributors can employ their own features and machine

learning algorithms; standard feature sets and procedures are
provided. Participants have to use the pre-defined partitions for
each Sub-Challenge. They may report results obtained from
the Train(ing)/Dev(elopment) set – preferably with the supplied
evaluation setups, but have only five trials to upload their results
on the Test set per Sub-Challenge, whose labels are unknown
to them. Each participation must be accompanied by a paper
presenting the results, which undergoes peer-review and has to
be accepted for the conference in order to participate. The organ-
isers preserve the right to re-evaluate the findings, but will not
participate in the Challenge. As evaluation measure, we employ
in all Sub-Challenges Unweighted Average Recall (UAR) as
used since the first Challenge from 2009 [1], especially because
it is more adequate for (unbalanced) multi-class classifications
than Weighted Average Recall (i. e., accuracy) [2, 4]. Ethical
approval for the studies has been obtained from the pertinent
committees. In section 2, we describe the challenge corpora.
Section 3 details baseline experiments, metrics, and baseline
results; concluding remarks are given in section 4.

2. The Four Sub-Challenges
2.1. The COVID-19 Cough Sub-Challenge (CCS) and the
COVID-19 Speech Sub-Challenge (CSS)

For the CCS and CSS, we employ two subsets from the Cam-
bridge COVID-19 Sound database [5, 6]. The database was
collected via the COVID-19 Sounds App since its launch in
April 2020, aiming at collecting data to inform the diagnosis of
COVID-19 based primarily on voice, breathing, and coughing.
Participants were able to provide audio samples together with
their COVID-19 test results via multiple platforms (a webpage,
an Android app, and an iOS app). The participants also provided
basic demographic, medical information, and reported symp-
toms. For the CCS and the CSS, only cough sounds and voice
recordings with COVID-19 positive/ negative test results were
included separately, and only audio data and the corresponding
COVID-19 test labels are provided. The quality of these data
was manually checked. As they were crowd-sourced, the original
audio data had varying sampling rates and formats; all of them
were resampled (in a few cases, upsampled) and converted to
16 kHz and mono/16 bit, and further normalised recording-wise
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to eliminate varying loudness. For the CCS, 725 recordings from
343 participants were provided, in total 1.63 hrs. In each cough
recording, the participant provided one to three forced coughs.
For the CSS, we use 893 recordings from 366 participants. in
total 3.24 hrs. In each speech recording, the participant recorded
speech content (“I hope my data can help to manage the virus
pandemic.”) in one language (English, Italian, or German, etc),
one to three times. For each recording, a COVID-19 test result
was available which was self-reported by the participant. To
create the two-class classification task, the original COVID-19
test results were mapped onto either positive (denoted as ‘P’)
or negative (‘N’). Note that Train, Dev, and Test sets contain
mutually different speakers; within each set, however, speakers
can occur more than once; thus, it is essential to stick to the
partitioning provided.

2.2. The Escalation Sub-Challenge (ESS)

For the ESS, the INTERSPEECH COMPARE Escalation Corpus
is provided, consisting of the Dataset of Aggression in Trains
(TR) [7] and the Stress at Service Desk Dataset (SD) [8]. Both
present unscripted interactions between actors, where friction
appears as they spontaneously react to each other based on short
scenario descriptions. While the datasets share the same proce-
dure for eliciting interactions, the topics, the number of partici-
pants in the scene, and amount of overlapping speech, as well
as the recording quality differ. The TR dataset consists of 21
scenarios of unwanted behaviours in trains and train stations
(e. g., harassment, theft, travelling without a ticket) played by
13 subjects. It was annotated based on aggression levels on a 5
point scale by 7 raters (Krippendorff’s alpha = 0.77). Here, the
annotation based on audio footage is used. The SD dataset con-
tains scenarios of problematic interactions situated at a service
desk (e. g., a slow and incompetent employee while the customer
has an urgent request). It contains 8 subjects and the recordings
were annotated for stress levels on a 5 point scale by 4 raters
(Krippendorff’s alpha = 0.74), based on audio-visual footage.
All original labels were mapped onto a 3 point scale: SD classes
1 and 2 and TR class 1 onto Low, SD class 3 and TR class 2
onto Medium, and the rest of the data onto High escalation. The
language spoken in the Escalation Corpus is Dutch (two scenar-
ios from SD where English was spoken were excluded). Manual
transcriptions are provided. The corpus has been re-segmented
based on linguistic information, resulting in 413 and 501 (test)
segments, of an average length of 5 seconds. The challenge task
is to use the SD dataset for training, and to recognise escalation
levels in the TR dataset.

2.3. The Primates Sub-Challenge (PRS)

For the PRS, the Primate Vocalisations Corpus described in
Zwerts et al. [9] is used. The global biodiversity crisis calls
for effective monitoring methods to measure, manage and con-
serve wildlife. Using acoustic recordings is a non-invasive and
potentially cost-effective way to identify and count species for
environments like tropical forests, where opportunities for vi-
sual monitoring are limited. Several studies have applied auto-
matic acoustic monitoring for a variety of taxa, ranging from
birds [10] to forest elephants [11], and sporadically also for
primates [12, 13, 14]. Zwerts et al. [9] recently collected acous-
tic data from a primate sanctuary in Cameroon. The recorded
species were Chimpanzees (Pan troglodytes), Mandrills (Man-
drillus sphinx), Red-capped mangabeys (Cercocebus torquatus)
and a mixed group of Guenons (Cercopithecus spp.). The sanc-
tuary houses primates under semi-natural conditions making

Table 1: Databases: Number of instances per class in the
Train/Dev/Test splits: Test split distributions are blinded during
the ongoing challenge and will be given in the final version.

# Train Dev Test Σ

CCS: COVID-19 COUGH (C19C) corpus

no COVID-19 215 183 169 567
COVID-19 71 48 39 158
Σ 286 231 208 725

CSS: COVID-19 SPEECH (C19S) corpus

no COVID-19 243 153 189 585
COVID-19 72 142 94 308
Σ 315 295 283 893

ESS: Escalation at Service-desks and in Trains (CEST)

L 156 69 260 485
M 75 34 191 300
H 64 16 50 130
Σ 295 119 501 915

PRS: Primate Vocalisations Corpus (PVC)

C 2 217 2 217 2 218 6 652
M 874 874 875 2 623
R 208 209 210 627
G 158 159 159 476
Background 3 458 3 459 3 461 10 378
Σ 6 915 6 918 6 923 20 756

background noise relatively comparable to natural forests, albeit
less rich in biodiversity and also containing human related noise.
Recordings were made between December 2019 and January
2020 with a timespan of 32 days, using Audiomoth (v1.1.0)
recorders [15], mounted either on the fence or nearby the respec-
tive species’ enclosure, with 48 kHz sampling rate and 30.6 dB
gain, yielding 358 GBs of acoustic data, with a total duration of
1 112 hours [9]. A semi-automatic annotation process speeded
up the manual annotation efforts, with 1) initial annotation based
on spectrogram analysis and listening, 2) vocalisation detec-
tion based on energy/variation in certain frequency sub-bands
(150 Hz - 2 KHz), and 3) final annotation based on spectrogram
analysis and listening, yielding over 10 k annotated vocalisa-
tions. For the background class, the recordings not annotated as
vocalisation were sampled so as to exactly match the duration
distribution of the annotated chunks of each species [9].

3. Experiments and Results
For all corpora, the segmented audio was converted to single-
channel 16 kHz, 16 bits PCM format. Table 1 shows the number
of cases for Train, Dev, and Test for the databases; partitions for
CCS, CSS, and ESS were gender-balanced.

3.1. Approaches

COMPARE Acoustic Feature Set: The official baseline fea-
ture set is the same as has been used in the eight previous editions
of the COMPARE challenges, starting from 2013 [16]. It contains
6 373 static features resulting from the computation of function-
als (statistics) over low-level descriptor (LLD) contours [17, 16].
A full description of the feature set can be found in [18].
Bag-of-Audio-Words (BoAWs): These have been applied suc-
cessfully for, e. g., acoustic event detection [19] and speech-
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Table 2: Results for the four Sub-Challenges. The official baselines for Test are highlighted (bold and greyscale); there are no
official baselines for Dev. C: Complexity parameter of the SVM, for all from 10−5 to 1, only best result. N : Codebook size for
Bag-of-Audio-Words (BoAW) splitting the input into two codebooks (COMPARE-LLDs/ COMPARE-LLD-deltas) of the same given size,
with 50 assignments per frame. DenseNet121: pre-trained CNN used for extraction of DEEP SPECTRUM features. X: Threshold
power levels for S2SAE under which was clipped. DIFE: Linguistic feature extraction pipeline and SVM. END2YOU: End-to-end
learning with convolutional recurrent neural network hidden units Nh. UAR: Unweighted Average Recall. CCS: COVID-19 Coughing.
CSS: COVID-19 Speech. ESS: Escalation Sub-Challenge. PRS: Primates Sub-Challenge. CI on Test: confidence intervals for Test, see
explanation in text.

CCS CSS ESS PRS
UAR [%] UAR [%] UAR [%] UAR [%]

Dev Test CI on Test Dev Test CI on Test Dev Test CI on Test Dev Test CI on Test
C OPENSMILE: COMPARE functionals+SVM

61.4 65.5 56.1-74.3 / 66.1-67.2 57.9 72.1 66.0-77.8 / 70.2-71.1 70.5 58.6 53.5-63.3 / 55.2-58.3 82.4 82.2 80.5-83.9 / 78.8-79.6
N OPENXBOW: COMPARE BoAW+SVM
125 60.7 66.7 59.5-75.3 / 64.5-65.5 66.0 63.6 57.6-69.6 / 62.0-63.2 72.2 55.8 50.2-61.0 / 52.6-56.4 – –
250 60.7 63.3 54.1-72.3 / 60.8-62.0 60.6 60.4 54.5-66.3 / 60.9-61.9 69.0 53.0 47.8-57.8 / 50.9-53.3 80.0 80.9 79.2-82.5 / 78.8-79.5
500 66.4 67.6 59.3-76.7 / 65.7-66.8 64.2 64.7 58.7-70.4 / 62.6-63.7 70.1 49.4 44.4-54.0 / 47.3-49.3 83.1 82.4 80.6-84.0 / 80.1-80.8
1000 66.2 69.1 60.6-77.5 / 69.3-70.2 62.6 68.7 62.9-74.2 / 66.0-67.0 69.7 56.8 52.0-61.8 / 55.7-56.9 83.3 83.9 82.2-85.5 / 81.4-81.9
2000 64.7 72.9 64.4-80.5 / 71.5-72.2 66.3 68.7 62.9-74.2 / 64.4-66.4 70.6 59.8 54.8-64.7 / 56.3-58.2 – –
Network DEEPSPECTRUM+SVM
DenseNet121 63.3 64.1 55.7-72.8 / 65.9-67.1 56.0 60.4 55.9-64.9 / 57.8-58.7 64.2 56.4 51.5-61.3 / 53.6-55.2 81.3 78.8 76.9-80.6 / 76.1-76.8
X [dB] AUDEEP: S2SAE+SVM
-30 60.7 55.2 47.6-61.9 / 51.9-53.5 65.8 59.9 53.6-65.4 / 58.2-59.3 39.1 35.3 30.0-40.4 / 34.8-37.3 70.6 69.7 67.7-71.8 / 69.1-69.5
-45 64.1 60.5 51.8-69.5 / 61.0-62.0 66.3 55.2 49.1-61.0 / 54.1-55.2 41.3 43.1 37.8-48.6 / 38.5-42.0 80.3 82.3 80.6-83.8 / 80.5-81.3
-60 67.6 67.6 60.3-75.4 / 64.9-65.8 59.4 53.3 47.4-59.4 / 52.2-53.5 42.0 44.3 39.2-49.6 / 41.7-44.1 81.6 84.1 82.5-85.6 / 82.4-83.2
-75 64.0 64.6 56.1-72.6 / 61.0-62.3 58.4 52.2 45.9-57.7 / 52.0-52.9 49.0 52.2 47.2-56.9 / 50.1-52.0 80.7 83.0 81.5-88.0 / 81.1-82.0
Fused 65.4 64.2 57.0-72.2 / 62.1-63.1 62.2 64.2 63.1-74.3 / 62.3-64.2 46.8 45.0 39.8-50.4 / 45.1-47.5 84.6 86.6 85.1-88.0 / 84.6-85.2
Features DIFE: Transformer+SVM
plain – – – – – – 51.2 36.8 32.2-41.7 / 38.8-41.2 – –
plain-BlAtt – – – – – – 50.3 45.2 39.4-50.8 / 44.0-45.3 –
sent – – – – – – 56.5 44.1 38.4-49.7/ 40.9-44.2 – –
sent-BlAtt – – – – – – 47.3 47.2 41.8-52.9 / 46.9-47.8 – –
tuned-BlAtt – – – – – – 43.5 44.9 40.0-50.3 / 43.7-45.3 – –
Nh RNN End2You: CNN+LSTM RNN
64 61.8 64.7 56.2-73.5 / – 70.5 68.7 63.1-74.3 / – 64.1 54.0 48.8-59.5 / – 72.70 70.8 68.8-72.9 / –

Fusion of Best
– 73.9 66.0-82.6 / – – 71.1 65.4-76.3 / – – 59.7 55.0-64.4 / – – 87.5 86.0-88.9 / –

based emotion recognition [20]. Audio chunks are represented
as histograms of acoustic LLDs, after quantisation based on a
codebook. One codebook is learnt for the 65 LLDs from the
COMPARE feature set, and another one for the 65 deltas of
these LLDs. In Table 2, results are given for different code-
book sizes. Codebook generation is done by random sampling
from the LLDs/deltas in the training data. Each LLD/delta is
assigned to the 10 audio words from the codebooks with the
lowest Euclidean distance. Both BoAW representations, one
from the LLDs and one from their deltas, are concatenated.
Finally, a logarithmic term frequency weighting is applied to
compress the numeric range of the histograms. LLDs are ex-
tracted with the OPENSMILE toolkit, BoAWs are computed
using OPENXBOW [21].
DEEP SPECTRUM: The feature extraction DEEP SPECTRUM
toolkit1 is applied to obtain first deep representations from the in-
put audio data utilising pre-trained convolutional neural networks
(CNNs) [22]. DEEP SPECTRUM features have been shown to be
effective, e. g., for speech processing [23]. First, audio signals
are transformed into mel-spectrogram plots using a Hanning
window of width 32 ms and an overlap of 16 ms. From these,
128 Mel frequency bands are computed. The spectrograms are
then forwarded through DenseNet121 [24], a pre-trained CNN,
and the activations of the ‘avg_pool’ layer of the network are
extracted, resulting in a 2 048 dimensional feature vector.
AUDEEP: Another feature set is obtained through unsupervised
representation learning with recurrent sequence to sequence au-
toencoders, using AUDEEP2 [25, 26]. These explicitly model the
inherently sequential nature of audio with Recurrent Neural Net-

1https://github.com/DeepSpectrum/DeepSpectrum
2https://github.com/auDeep/auDeep

works (RNNs) within the encoder and decoder networks [25, 26].
Here, Mel-scale spectrograms are first extracted from the raw
waveforms in a data set. In order to eliminate some background
noise, power levels are clipped below four different given thresh-
olds in these spectrograms, which results in four separate sets
of spectrograms per data set. Subsequently, a distinct recurrent
sequence to sequence autoencoder is trained on each of these
sets of spectrograms in an unsupervised way, i. e., without any
label information. The learnt representations of a spectrogram
are then extracted as feature vectors for the corresponding in-
stance. Finally, these feature vectors are concatenated to obtain
the final feature vector. For the results shown in Table 2, the
autoencoders’ hyperparameters were not optimised.
DiFE: Escalation is marked by an increase in arousal coming
from acoustic rather than linguistic features; yet, semantic con-
notations might additionally play a role [27, 28]. To this aim,
we developed a lightweight Dutch Linguistic Feature Extractor
(DIFE) pipeline similar to [29] and last year’s challenge [30] to
utilise linguistic features for ESS3. Transformer language em-
beddings recently showed tremendous success over a wide range
of Natural Language Processing tasks. For the vectorisation,
DIFE either utilises a) a standard pre-trained Dutch BERT model
(plain), b) a fine-tuned version on an external sentiment (sent)
task [31], or c) a fine-tuned version on the escalation train and
validation partitions (tuned). Next, a 768-dimensional con-
text embedding vector for each word of a segment of the last 4
layers is extracted and summed up over the last four layers [32].
The sequence of encoded words is then either summed up again
across the time dimension, or fed into a feature compression
block to obtain a single feature vector for the entire segment. For

3https://github.com/lstappen/DiFE
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Figure 1: Confusion matrices for CCS, CSS, ESS, and PRS. The individual approach/hyperparameters performing on Dev for the best
Test result (without fusion) were chosen – given on top of each figure. In the cells, absolute number and percent of ‘classified as’ of the
class displayed in the respective row; percentage also indicated by colour-scale: the darker, the higher.

compression, the pipeline uses a bidirectional Long Short-Term
Memory (LSTM) RNN with an attention module (BLAtt), fol-
lowed by two feedforward layers. The output of this last layer is
used as feature input for the SVM evaluation.
End2You: We utilise the multimodal profiling toolkit
End2You [33]4 to perform end-to-end learning. For our pur-
poses, we utilise the Emo-18 [34] deep neural network that uses
a convolutional network to extract features from the raw time
representation and then a subsequent recurrent network with
Gated Recurrent Units (GRUs) which performs the final classifi-
cation. For training the network, we split the raw waveform into
chunks of 100 ms each (except for the PRS Sub-Challenge with
chunks of 70 ms). These are fed into a three layer convolutional
network comprised of a series of convolution and pooling oper-
ations which try to find a robust representation of the original
signal. The extracted features are passed to a two layer GRU to
capture the temporal dynamics in the raw waveform.

3.2. Challenge Baselines and Interpretation

For the sake of transparency and reproducibility of the baseline
computation, in line with previous years, we use an open-source
implementation of SVMs with linear kernels. The provided
scripts employ the SCIKIT-LEARN toolkit with its class LIN-
EARSVC for the classification based on functionals, BoAW,
AUDEEP, DIFE, and DEEP SPECTRUM features. All feature
representations were scaled to zero mean and unit standard devi-
ation (STANDARDSCALER of SCIKIT-LEARN), using the param-
eters from the respective training set (when Train and Dev were
fused for the final classifier, the parameters were calculated on
this fusion). The complexity parameter C was always optimised
during the development phase. Each Sub-Challenge package
includes scripts that allow participants to reproduce the baselines
and perform the testing in a reproducible and automatic way
(including pre-processing, model training, model evaluation on
Dev, and scoring by the competition and further measures). This
year, we provide the six approaches outlined above. The same
way as in the last three years, we chose the highest results on
Test for defining the baselines, irrespective of the corresponding
results on Dev, in order to prevent participants from surpassing
the official baseline by simply repeating or slightly modifying
other constellations that can be found in Table 2. A fusion of
the best configurations (each different approach with its best
parameters) with Majority Voting is given in the last row. As can
be seen in Table 2, for CCS, the baseline is fusion of best with
UAR = 73.9 % ; for CSS, the baseline is based on COMPARE
with UAR = 72.1 %; for ESS, BoAWs define the baseline with
UAR = 59.8 %; and for PRS, the baseline is fusion of best with

4https://github.com/end2you/end2you

UAR = 87.5 %.
We provide two types of 95 % confidence intervals, see the

column ‘CI on Test’ in Table 2: First, we did 1000x bootstrap-
ping for Test (random selection with replacement) and computed
UARs, based on the same model that was trained with Train and
Dev; the CI for these UARs is given before the slash. Then, we
did 100x bootstrapping5 for the corresponding combination of
Train and Dev, and employed the different models obtained from
these combinations to get UARs for Test6 and subsequently, CIs,
as displayed after the slash. Note that for this type of CI, the Test
results are often above the CI, sometimes within and in a few
cases below. Obviously, reducing the variability of the samples
in the training phase with bootstrapping results on average in
somehow lower performance.

Figure 1 displays the confusion matrices for the four sub-
challenges for Dev corresponding to the best result on Test; e. g.,
for CCS, best Test result (without fusion) is 72.9 % UAR for N
= 2000; displayed is the confusion matrix corresponding to the
UAR of 64.7 %. Especially for CCS but for CSS as well, positive
is frequently confused with negative, which may be tuned in a
use case. For ESS, confusion between the extreme classes L and
H are almost non-existent. The high UAR for PRS is mirrored
by the high values in the diagonal – all five classes are predicted
in a range of 10 % absolute, from 79 % to 89 %.

4. Concluding Remarks
This year’s challenge is new by four new tasks (COVID-19
Cough and Speech, Escalation, and Primates), all of them highly
relevant for applications. Besides the by now ‘classic’ ap-
proaches COMPARE and Bag-of-Audio-Words (BoAWs), we
further featured sequence-to-sequence autoencoder-based audio
features by the AUDEEP toolkit, DEEP SPECTRUM, a Dutch
LinguistIc Feature Extractor (DIFE) as well as End2End Deep
Sequence Modelling. For all computation steps, scripts are pro-
vided that can, but need not be used by the participants. We
expect participants to obtain better performance measures by
employing novel (combinations of) procedures and features in-
cluding such tailored to the particular tasks.
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