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Abstract

Word Error Rate (WER) has been the predominant metric used
to evaluate the performance of automatic speech recognition
(ASR) systems. However, WER is sometimes not a good indi-
cator for downstream Natural Language Understanding (NLU)
tasks, such as intent recognition, slot filling, and semantic pars-
ing in task-oriented dialog systems. This is because WER takes
into consideration only literal correctness instead of semantic
correctness, the latter of which is typically more important for
these downstream tasks. In this study, we propose a novel Se-
mantic Distance (SemDist) measure as an alternative evalua-
tion metric for ASR systems to address this issue. We de-
fine SemDist as the distance between a reference and hypoth-
esis pair in a sentence-level embedding space. To represent
the reference and hypothesis as a sentence embedding, we ex-
ploit RoBERTa, a state-of-the-art pre-trained deep contextual-
ized language model based on the transformer architecture. We
demonstrate the effectiveness of our proposed metric on various
downstream tasks, including intent recognition, semantic pars-
ing, and named entity recognition.
Index Terms: ASR evaluation metric, spoken language un-
derstanding, natural language understanding, intent recognition,
semantic parsing, task-oriented dialog.

1. Introduction
While the adoption of Word Error Rate (WER) as the de
facto evaluation metric has served to advance automatic speech
recognition (ASR) research over the decades, there has been an
increasing interest in the speech recognition community to con-
sider a more suitable evaluation measure for downstream Natu-
ral Language Understanding (NLU) applications, such as intent
recognition, slot filling and semantic parsing for task-oriented
dialog. This is primarily because WER has been shown to have
limitations in measuring semantic correctness, as it is derived
from the word-level edit distance between the true transcrip-
tion and the ASR hypothesis, where every error (substitution,
insertion, or deletion) is weighted equally. For example, if the
reference is “This is a cat” and two ASR systems generate dif-
ferent hypotheses: “This is the cat” and “This is a cap”, then
the former system would be preferred by a downstream NLU
system. However, WER by itself cannot identify which sys-
tem is better as the error rates are identical (one substitution
error). Past research has highlighted such limitations of WER
and demonstrated that improvements in NLU can be obtained
while observing a worse WER [1–3].

Motivated by the limitations of WER, alternative mea-
sures have been proposed. [4] presented word information pre-
served (WIP) based on mutual information between the ref-
erence and the hypotheses. [5] proposed a new measure that

includes named Entity Error Rate (EER), and the stop-word-
filtered WER, for taking word importance weight into account.
[6–8] attempted to adopt information retrieval to measure the
performance. While these metrics addressed some of WER’s
limitations, all of them are still based on the literal-level word
correctness and do not allow for direct analysis of performance
at the semantic level of the sentence.

Recently, substantial work has shown that pre-trained neu-
ral language models, trained on billions of words, can learn
universal language representations of text in the form of low-
dimensional continuous feature vector (i.e., embedding) in the
semantic space. These embeddings can then be plugged into
a variety of downstream tasks, such as textual similarity, ques-
tion answering, paraphrasing, sentiment analysis, etc., to dras-
tically improve their performance [9–11]. In 2017, [9] intro-
duced ELMo and demonstrated that contextualized word repre-
sentations from this model outperformed earlier word embed-
dings such as Word2Vec [12] and GloVe [13] by capturing lin-
guistic context in addition to word-level syntax and semantics.
The GPT model [14] proposed a new architecture using trans-
formers [15] and was used for text generation tasks. BERT,
which is based on bidirectional transformer, set a new state-of-
the-art performance on 11 NLU tasks [10]. Later, RoBERTa
subsequently showed that BERT can be further improved by
robustly optimized the pre-training process [11]. More impor-
tantly, BERT and RoBERTa have demonstrated their ability to
derive semantically meaningful sentence embeddings that can
be compared using cosine similarity [16]. To the best of our
knowledge, there have been no studies thus far that leverage
these models to evaluate the performance of ASR systems.

In this work, we propose a novel Semantic Distance
(SemDist) measure as an alternative performance metric for
ASR systems to capture semantic correctness. We define Se-
mantic Distance as the distance between the reference and an
ASR hypothesis in the sentence embedding semantic space. To
represent the reference and hypothesis as a sentence embedding,
we exploit RoBERTa [11], a state-of-the-art pre-trained deep
contextualized language model based on the transformer archi-
tecture. We evaluate SemDist on several downstream tasks, in-
cluding intent recognition, semantic parsing, and named entity
recognition. We demonstrate that our proposed metric has bet-
ter correlation with NLU performance than WER and can po-
tentially be used as part of the model selection process.

2. Semantic Distance
In this section, we describe our proposed SemDist as an alter-
native ASR performance metric. Figure 1 illustrates the overall
procedure to obtain the SemDist from the ASR systems A and
B in addition to the WERs. Our proposed SemDist is calculated
in two steps. First, we exploit pre-trained sentence embedding
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Figure 1: Two metrics for evaluating ASR systems: the WER
and our proposed SemDist.

models to map the utterances into a sentence embedding space
(in Section 2.1). Second, we measure semantic distance by us-
ing the cosine similarity function (in Section 2.2).

2.1. Sentence Embeddings

To represent the reference and hypothesis in the sentence-level
semantic embedding space, we use RoBERTa [11], a state-of-
the-art pre-trained masked language model. It uses the same
architecture as BERT [10], with the robustly optimized train-
ing method, (i.e. longer training, with bigger batches, dynam-
ically changing the masking pattern, etc), described in [11]. It
has produced state-of-the-art results on a wide variety of chal-
lenging NLP benchmarks, such as GLUE, SQUAD and RACE.
RoBERTa/BERT employ bidirectional training of transformers
[15], allowing the models to learn a deeper sense of language
context. Further, with the language masking strategy used for
training, the model learns to predict intentionally masked sec-
tions of text. Most importantly, open source RoBERTa and
BERT models, pre-trained on billions of words, are readily
available and allow fast fine-tuning with small modifications
(i.e. additional output layer) on any specific final task. This
form of transfer learning, where pre-trained models are used as
starting points for task-specific models, has shown significant
breakthroughs in semantic textual similarity tasks [17].

In our method, we pass the reference and hypothesis
through the pre-trained RoBERTa and perform a pooling op-
eration by computing the mean of all output vectors. The
pre-trained model architecture that we used in this work is
BERTBASE [10], which has 12 transformer layers with 768 hid-
den size and 12 self-attention heads, for a total of 110M parame-
ters. Thus, a single single 768-dimensional sentence embedding
vector is computed for each reference and hypothesis.

2.2. Cosine Distance Scoring

In the sentence embedding space, a simple cosine distance has
been applied successfully to compare two utterances for seman-
tic textual similarity decision [16]. Given two sentence embed-
dings: an embedding of the reference transcription, eref, and an
embedding of the hypothesis generated from an ASR system,
ehyp, SemDist is calculated as follows:

SemDist(eref, ehyp) = 1− (eref)
T · ehyp

||eref|| · ||ehyp||
(1)

Note that the cosine distance only considers the angle be-
tween the two sentence embeddings and not their magnitudes.
SemDist is bounded between 0 and 1, where lower scores indi-
cate higher semantic similarity and vice versa.

Table 1 demonstrates the difference between our proposed
SemDist and other conventional metrics, WER, Named Entity

Table 1: Example comparison of our proposed SemDist and
other conventional metrics, WER, NER, and POS tagging ac-
curacy of two hypotheses from different ASR systems. The ref-
erence transcription is “This is a cat.”

ASR Hypo. WER NER POS SemDist

A This is the cat 25.0% None 100% 0.0077
B This is a cap 25.0% None 100% 0.0157

Recognition F1-score (NER), POS tagging accuracy (POS) on
two different ASR hypotheses, given the reference transcription
“This is a cat”. Naturally, the downstream tasks prefer Model A
to Model B because Model A is more semantically correct. As
seen in this example, WER and other metrics cannot separate
these two models since it only measures literal word-level cor-
rectness. However, SemDist can indicate that Model A (0.0077)
performed better than Model B (0.0157).

3. Experimental Setup
3.1. Overall Experiment Pipeline

In order to demonstrate the effectiveness of our proposed
SemDist metric on various realistic large-scale downstream
tasks, we use strong baseline ASR and NLU systems, and evalu-
ate on our large-scale in-house ASR/NLU dataset. We describe
these baseline systems and evaluation dataset in more detail in
Section 3.2, Section 3.4, and Section 3.3, respectively.

In order to address our main research question “Can
SemDist identify which ASR system is better even when WER
is same?”, we derive three more ASR outputs, hypotheses sets,
in addition to our ASR baseline output. We then evaluate and
compare the performance of these hypotheses set in NLU task
by using NLU metrics (in Section 3.6).

We first obtain the hypotheses (Set A) from our strong
ASR baseline on the evaluation dataset. We then generate
Set B that has the exactly same WER, but has worse (higher)
SemDist. To do so, based on each hypothesis’ number of sub-
stitution/insertion/deletion errors in Set A, we substitute or in-
sert the true/reference word with a random word or delete the
random position of the reference word. On the contrary, we
generate Set C that has the exactly same WER, but has better
(lower) SemDist. To do so, we change the order of two ran-
dom reference word or add the articles (i.e. “a”) to minimize
the damage of the meaning of the reference sentence. Finally,
we also generate Set D that has better (lower) SemDist without
limiting to have same WER, but also without artificial way. To
do so, we use a neural language model and perform the shal-
low fusion [18] with internal LM subtraction [19] on top of our
strong ASR baseline. This results in better WER as well, but
we can get more realistic insight on SemDist.

3.2. ASR Task

We first build a strong baseline ASR system by employing
a large-scale in-house ASR training dataset consisting of two
parts. The first part comprises of 1.7M hours of English video
data publicly shared by Facebook users; all videos are com-
pletely de-identified before transcription, and both transcribers
and researchers do not have access to any user-identifiable in-
formation (UII). The second part contains approximately 50K
hours of manually transcribed de-identified data with no UII in
the voice assistant domains.



Our ASR model is an end-to-end sequence transducer,
a.k.a. RNN-T [20] with approximately 83M total parameters.
The acoustic encoder is a 20-layer streamable low-latency Em-
former model [21] with a stride of 6, 60ms lookahead, 300ms
segment size, 512-dim input, 2048-dim hidden size, eight self-
attention heads, and 1024-dim fully-connected (FC) projection.
The text predictor consists of three Long Short Term Memory
(LSTM) layers with 512-dim hidden size, followed by 1024-
dim FC projection. The joiner network contains one Rectified
Linear Unit (ReLU) and one FC layer. The target units are 4095
unigram WordPieces [22] trained with SentencePiece [23]. The
model is first trained for 4 epochs using sub-word regulariza-
tion (l = 5, α = 0.25) [22], SpecAugment LD policy [24],
and AR-RNNT loss [25] (left buffer 0, right buffer 15), where
the alignment is provided by a chenone hybrid acoustic model
(AM) [26]. Finally, we fine-tune the model for 1 epoch with
trie-based deep biasing [27].

3.3. Evaluation Dataset

Our in-house annotated evaluation sets for ASR task have two
main domains: open-domain dictation and assistant-domain
voice commands. The open-domain dictation set includes
22.9K de-identified utterances (305K words) collected from
crowd-sourced workers on mobile devices. It contains a
mix of short-form (9.3 words/utterance) and long-form (19.0
words/utterance) dictation data under diverse recording envi-
ronments. The assistant-domain voice commands set includes
15K manually transcribed de-identified utterances (46K words)
collected from voice activity of volunteer participants. The par-
ticipants consist of households that have consented to have their
voice activity reviewed and analyzed. We use these datasets to
analyze the relationship between WER and SemDist, and basic
NLP metrics (in Section 4.1 and Section 4.2).

For NLU, annotated evaluation sets have only assistant-
domains, and there are 10k utterances that overlap with the ASR
assistant-domain evaluation set. We use this dataset (NLU ∩
ASR) for the tasks of intent recognition and semantic parsing
(in Section 4.3).

Table 2: Description of ASR/NLU task evaluation dataset

Task Domain # utter # word Avg. Len.

ASR Open 23k 305k 13.3
ASR Assistant 15k 46k 3.0

NLU ∩ ASR Assistant 10k 25k 2.4

3.4. NLU Task: Intent Recognition, Semantic Parsing

For NLU downstream task, we evaluate four sets of assistant-
domain hypotheses (A/B/C/D) with different SemDist on Intent
Recognition and Semantic Parsing [28] tasks. Intent recogni-
tion is a text classification task where we predict the top-level
intent of the utterance from a set of 351 intent types. For the
semantic parsing task, we use the recently introduced decou-
pled semantic representation form [29]. The decoupled repre-
sentation allows for compositional semantic structures, where
a slot can further contain nested intents and slots within itself,
providing high expressiveness for task-oriented dialog systems.
Figure 2 shows an example of the decoupled representation for
the the utterance “Please remind me to call John”, which has
IN:CREATE REMINDER as the the top-level intent.

We build a strong baseline NLU system by using an in-

IN:CREATE REMINDER

SL:TODO

IN:CREATE CALL

SL:CONTACT

John

SL:METHOD

call

SL:PERSON REMINDED

me

Figure 2: Decoupled semantic representations for the single ut-
terance “Please remind me to call John”.

ternal dataset, which consists of about 475k annotated utter-
ances, across 38 domains and 351 intents. The utterances in this
dataset were generated via crowd-sourcing and were manually
labelled by annotators using the process described in [28].

Our NLU model is a sequence-to-sequence architecture, de-
scribed in [29], where the source sequence is the utterance and
the target sequence is the serialized decoupled representation.
At every decoding step, the model can either generate a token
from the intent-slot ontology, or copy a token from the source
sequence via a pointer-generator mechanism. The model uses
two distinct stacked bidirectional LSTMs [30] as the encoder
and stacked unidirectional LSTMs as the decoder. Both consist
of two layers of size 512, with randomly initialized embeddings
of size 300. We also incorporate contextualized word vectors,
by augmenting the input with ELMo embeddings [9].

3.5. NLP Task: Named Entity Recognition

In addition to the above NLU tasks, we also evaluate four sets of
open-domain hypotheses (A/B/C/D) with different SemDist on
a Named Entity Recognition (NER) task. Recognition of named
entities such as names of people, organizations, locations, etc,
is often used to understand the meaning of text. Thus, we inves-
tigate how SemDist relates to the performance on a NER task.
Since our dataset does not have annotated entities, we use an
open-source software library Spacy [31] to generate the entities
of the reference transcriptions and use them as pseudo labels.
We then generate the entities for each hypotheses set and mea-
sure the F1-score.

3.6. Metrics for Downstream Tasks

To evaluate the NLP/NLU performance in the downstream task,
we used four metrics:

1. Intent accuracy (IntentAcc): Percentage of utterances
where the top-level intent in the decoupled form in the
prediction matches the ground truth.

2. Exact match accuracy (EM): Similar to [28], we de-
fine exact match accuracy as the percentage of utterances
where the complete decoupled form is correct. This is
the strictest metric, which is 1 only when all the intents
and the slots in the utterance are predicted correctly.

3. Exact match tree accuracy (EM Tree): One drawback
of the EM metric is that it will always be 0 when ASR
makes a mistake in recognizing slot tokens. Therefore,
to study the effectiveness of NLU in the light of such
mistakes, we also evaluate the exact match accuracy of
the decoupled form after dropping the slot text, which
allow us to identify the percentage of utterances where
NLU was able to identify the correct semantic frame, re-
gardless of ASR errors in recognizing slot tokens.



4. NER-F1: F1-score of the predicted named entities of the
ASR hypotheses

4. Results and Discussions
4.1. Correlation between WER and Semantic Distance

We first analyze the correlation between our proposed SemDist
and WER. As seen in Figure 3, we observe that SemDist and
WER are highly positively correlated in both open and assistant
domains. The Pearson correlation coefficients are 0.72 and 0.65
in the open and assistant domain respectively. In addition, we
observe that as WER gets higher it shows more widely spread
SemDist at the same WER. This suggests that “not all errors are
equal,” and by focusing exclusively on WER we may miss more
nuanced differences between the hypotheses.

Figure 3: Correlation between SemDist and WER. The red ‘o’
mark represents 7,871 number of open-domain test utterances
and the blue ‘x’ mark represents 1,829 number of assistant-
domain test utterances that show 0 < WER <= 100%

4.2. Open-domain: NER and Semantic Distance

Table 3: Results of WER, SemDist, and NER F1 score

WER SemDist NER-F1

Set A (BS) 7.44 0.0033 0.747
Set B (WorseSem) 7.44 0.0044 0.590
Set C (BetterSem) 7.44 0.0028 0.846

Set D (BS+LM) 7.03 0.0031 0.758

We next investigate the relationship between the SemDist
and the Named Entity Recognition (NER) on the open-
domain test set (described in 3.5), which has 23k ut-
terances. Table 3 shows the WER, SemDist, and
NER F1-score of four different sets of ASR hypotheses:
A(BS)/B(WorseSem)/C(BetterSem)/D(BS+LM) (described in
3.1) on the evaluation set. We observed that as SemDist re-
duces entity F1-score increases, even with the same WER (Set
A vs. Set C). The result indicates that our proposed SemDist
measure also aligns with the simple NLP task of NER. Note
that the Entity Error Rate(EER) is often used as an additional
metric of ASR performance; however, it still has limitations in
measuring semantic correctness as seen in Table 1.

4.3. Assistant-domain: NLU tasks and Semantic Distance

We also analyzed the relationship between SemDist
and the NLU task (described in 3.4) on the assistant-

domain test set, which has 10k utterances. Similar
to the NER experiments (in 4.2), we compared NLU
metrics of the four different sets of ASR hypotheses:
A(BS)/B(WorseSem)/C(BetterSem)/D(BS+LM) (described in
3.1) by using our NLU system, described in 3.4. Table 4 shows
the WER, SemDist, and NLU metrics: Intent accuracy, EM,
and EM Tree (described in 3.6). We observed that as SemDist
reduces, Intent accuracy, EM, and EM Tree increase, even with
the same WER (Set A vs. Set C). The results indicate that
our proposed SemDist can be a better indicator than WER for
various downstream NLU tasks as well.

Table 4: Results of WER, SemDist, and NLU Metrics

WER SemDist IntentAcc EM EM Tree

Set A (BS) 6.16 0.0024 94.63 90.81 91.34
Set B (WorseSem) 6.16 0.0030 94.28 90.27 90.73
Set C (BetterSem) 6.16 0.0017 96.22 92.98 93.08

Set D (BS+LM) 6.01 0.0023 94.84 91.14 91.58

4.4. Examples

Table 5 shows example hypotheses with their SemDist on the
open-domain set. We selected the examples that have same
WER on both Set A and D. In the first example, although both
hypotheses A and D are incorrect and has same WER, SemDist
indicates that D is more semantically close to REF. Since (‘she’
vs. ‘he’) are at least the same Part-Of-Speech(POS) tag - sub-
ject, we expect that our SemDist may be beneficial to the down-
stream tasks, such as sentence parsing, POS tagging. In the sec-
ond example, even though A is more similar in pronunciation
(‘hitting that’ vs. ‘had not’), we observed that SemDist is higher
in A because it is contradict the REF. We also observed that our
SemDist takes semantically more important word (‘aw/or’ vs.
‘aw/oh’) into account on measuring as seen in the third exam-
ple.

Table 5: Examples of hypothesis with SemDist.

SemDist Examples

REF: she is so cute
0.0112 A: heat is so cute
0.0031 D: he is so cute

REF: we hitting that new club tonight girl
0.0219 A: we had not new clubs tonight girl
0.0167 D: we had new clubs tonight girl

REF: aw you are all so sweet
0.0057 A: or you are all so sweet
0.0050 D: oh you are all so sweet

5. Conclusion and Future Work
In this work, we propose a novel Semantic Distance (SemDist)
as an alternative evaluation metric for ASR systems, capable of
measuring the semantic correctness. The SemDist measures the
semantic distance between the reference and hypothesis in the
embedding space by using the state-of-the-art pre-trained deep
contextualized language model, RoBERTa. We demonstrate the
effectiveness of our metric on various NLP downstream tasks,
including named entity recognition, intent recognition, and se-
mantic parsing. In future, we plan to explore how our Semantic
Distance can be used to train ASR systems, as an additional
objective.
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