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Abstract
Large-scale deep neural networks (DNNs) such as convolu-
tional neural networks (CNNs) have achieved impressive per-
formance in audio classification for their powerful capacity and
strong generalization ability. However, when training a DNN
model on low-resource tasks, it is usually prone to overfitting
the small data and learning too much redundant information.
To address this issue, we propose to use variational informa-
tion bottleneck (VIB) to mitigate overfitting and suppress irrel-
evant information. In this work, we conduct experiments on
a 4-layer CNN. However, the VIB framework is ready-to-use
and could be easily utilized with many other state-of-the-art net-
work architectures. Evaluation on a few audio datasets shows
that our approach significantly outperforms baseline methods,
yielding ≥ 5.0% improvement in terms of classification accu-
racy in some low-source settings.
Index Terms: audio classification, variational information bot-
tleneck, overfitting, low resource data

1. Introduction
Deep learning [1, 2, 3] has emerged as the de facto standard
technique in all areas of artificial intelligence, including speech
processing [4, 5], computer vision (CV) [6, 7] and natural lan-
guage processing (NLP) [8, 9]. Currently DNNs have been very
successful in the audio processing domain [10, 11] for their
strong capacity. The DNN models can produce good-quality
representation features for audio processing tasks, for exam-
ple, audio classification [12], automatic speech recognition [13]
and speaker verification [14]. However, modern DNN-based
audio classifiers typically require large amount of labeled data
for training or fine-tuning [15], which might pose a challenge
for many real applications. Because audio data labeling is both
time-consuming and tedious, in many real situations there are
only a limited number of training examples available [16].

Applying DNN classifiers to low-resource datasets often
leads to overfitting because DNNs have too much capacity and
extract too many features of the low-resourced data that are ir-
relevant to the target labels [17]. Variational information bot-
tleneck (VIB) addresses the overfitting problem by eliminating
irrelevant information and only retaining target related informa-
tion [18]. Before elaborating VIB, we describe some basics on
information bottleneck (IB).

IB was proposed by [19] to explain and enhance the gen-
eralization ability of neural networks. The main idea is: for an
input data X and its corresponding output (label) Y , we aim to
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learn a low-dimensional representation Z that is maximally in-
formative about our target Y with minimal redundant informa-
tion. IB method maximizes the mutual information I(Z, Y ) be-
tween Y andZ, and minimizes the mutual information I(Z,X)
betweenX and Z, so as to reserve the most useful data and dis-
card redundant information.

The IB principle is appealing, since it defines what we mean
by a good representation, in terms of the fundamental tradeoff
between having a concise representation and good predictive
power [20]. The main drawback of the IB principle is that mu-
tual information is, in general, computationally challenging. To
address the computing issue, [21, 18] proposed a variational in-
ference approach, i.e., the VIB. It has been used in various areas
of deep learning research. For example, [22] proposed VIB-
ERT that can suppress irrelevant features and yield a concise
representation for text classification tasks in NLP. [23] utilized
the VIB principle to prune individual neurons for model com-
pression. Though VIB has been shown great promise in low-
resource text classification, few research have investigated its
use in audio classification. In this paper, we propose to imple-
ment the VIB method to address the overfitting problem in low-
resourced audio classification. To illustrate how the VIB frame-
work works, we take convolutional neural networks (CNNs)
as our feature extractor and conduct extensive experiments to
verify its effectiveness. Actually, the VIB framework can also
be used with other state-of-the-art network architectures, like
Transformer encoder [24], etc.

The main contributions are summarized as follows:

• We explore the VIB approach to address the overfitting
in audio classification

• We conduct extensive experiments to verify the effec-
tiveness of VIB in comparison with other baselines

2. Methodology
The objective of IB is to learn a maximally compressed repre-
sentation Z of the input X that maximally preserves informa-
tion about the output Y . Its mathematical formula is shown in
Eq. (1),

LIB = βI(X,Z)︸ ︷︷ ︸
Compression

− I(Z, Y )︸ ︷︷ ︸
Predictive

(1)

where I(X,Z) and I(Z, Y ) are used for compression and pre-
dictive purposes, respectively, and β ≥ 0 controls the balance
between compression and prediction.
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Figure 1: Schematic diagram of CNN+VIB framework.

2.1. Variational Information Bottleneck

Directly optimizing LIB is hard, because it is usually compu-
tationally demanding. Then [21, 18] developed a variational
approximate estimate of IB (VIB) in light of

βI(X,Z)− I(Z, Y )

≤ β
∫
dxdzp(x)pθ(z|x) log

pθ(z|x)

r(z)

−
∫
dxdydzp(x)p(y|x)pθ(z|x) log qφ(y|z),

(2)

where qφ(y|z) is a variational distribution to approximate
p(y|z), and r(z) is a specified prior distribution for latent code
Z (usually taking standard normal distribution), and pθ(z|x)
is an estimate of the posterior probability of z. Alternatively,
pθ(z|x) and qφ(y|z) can also be interpreted as encoder and de-
coder, respectively as in the variational auto-encoder [25]. For
each training example (x, y), the IB loss is upper bounded by

LV IB = βEx[KL(pθ(z|x), r(z))]+

Ez∼pθ(z|x)[− log qφ(y|z)]. (3)

Therefore, in this work Eq. (3) is applied to minimize the IB
objective.

2.2. Deep VIB Audio Classifier

Here we construct an audio classifier by incorporating a CNN
encoder inside the VIB. The schematic diagram of our frame-
work is shown in Fig. 1. Specifically, during training, for each
audio data x, we extract its Mel-Frequency Cepstral Coeffi-
cients (MFCC), and pass them through a CNN encoder, yielding
the mean and standard deviation vectors, i.e., µ(x) and Σ(x),
of the posterior distribution pθ(z|x). Then we simulate Gaus-
sian samples of z and feed them a multi-layered perceptron
(MLP) qφ(y|z) to predict the logits of label y. During infer-
ence, z = µ(x) is used instead of sampling from pθ(z|x).

For each training example, z is the latent bottleneck and its
dimension K controls the information relevant to the label y. If
the dimension K is large, the compression effect is decreased;
otherwise the bottleneck compressed the information used for
prediction. The hyper-parameter β in Eq. (3) also controls the
compression effect of the model. If β is small, the compression
effect is weak and the model tends to overfit the data. If β is
large, the model is compressed heavily and little information
is used for prediction. In Fig. 1, CNN architecture could be

replaced by other networks, like Transformer [24], etc. In this
work, we conduct experiments on a CNN architecture, because
it is commonly used in audio classification.

3. Experiment Setup

Here we conduct audio classification experiments over multiple
datasets to empirically verify the effectiveness of our method,
in comparison with existing approaches. We use Tensorflow
and Keras to implement our VIB+CNN classifier and Librosa
[26] for audio processing and MFCC feature extraction. We uti-
lize the loss, accuracy and F1 score to evaluate the performance
of different approaches. We then present some ablation stud-
ies and analyses to investigate the source of the improvements
using our VIB method. The Python code for experiments can
be found at https://github.com/shijing001/VIB_
audio_classification.

3.1. Datasets

We conduct extensive experiments on four datasets: Audio-
MNIST, ESC-50, Toronto Emotional Speech Set (TESS), and
TUT Acoustic Scenes (TUT). Details on these 4 datasets are
presented as follows. Basic statistics, i.e., data size, number of
classes (C), train/validation/test size and the number of samples
per class, are shown in Table 1.

Audio MNIST consists of 3000 audio recordings of spoken dig-
its (0-9) in English with 50 repetitions per digit for each of the
60 different speakers. Recordings were at a sampling frequency
of 48kHz and were saved in 16 bit integer format.

ESC-50 is a collection of short environmental recordings avail-
able in a unified format (5-second-long clips, 44.1 kHz, single
channel, Ogg Vorbis compressed @ 192 kbit/s). It consists of
a labeled set of 2000 environmental recordings (50 classes, 40
clips per class).

Toronto Emotional Speech Set (TESS)[27] A set of 200 target
words were spoken in the carrier phrase “Say the word xxxx”
by two actresses and recordings were made of the set portraying
each of seven emotions (anger, disgust, fear, happiness, pleasant
surprise, sadness, and neutral). There are 2800 recordings in
total (7 classes, 400 clips per class).

TUT Acoustic Scenes 2017 consists of 4680 recordings of 15
classes. Each audio is about 10 seconds long. More details on
this data can be found in [28].

https://github.com/shijing001/VIB_audio_classification
https://github.com/shijing001/VIB_audio_classification


Table 1: Basic statistics of four datasets withC and Num/C rep-
resenting the number of labels and average number of examples
for each class.

Dataset Size C Train/Valid./Test Num/C
Audio-MNIST 3000 10 1800/600/600 300
ESC-50 2000 50 1600/200/200 40
TESS 2800 7 1680/560/560 400
TUT 4680 15 3808/936/936 312

Table 2: The architecture of the baseline CNN classifier.

Layer Outputs Kernel Stride
Conv2D+ReLU 32 4× 4 1
Conv2D+ReLU 96 4× 10 1
Conv2D+ReLU 96 4× 10 1
Conv2D+ReLU 160 4× 10 1
MaxPooling 160 2× 2 -
Dense C - -

3.2. Deep Learning models

We employ a 4-layered CNN architecture as the backbone in our
experiments. It consists of 4 convolutional layers with 32, 96,
96 and 160 output channels, respectively, followed by a maxi-
mum pooling layer and a fully connected (dense) layer with C
logits as output. Its architecture is displayed in Table 2. The
baseline methods to address overfitting are listed as follows.
Weight Decay is a common regularization technique to im-
prove generalization [29]. It regularizes the large weights w
by adding a penalization term λ

2
‖w‖ to the loss, where λ is a

hyperparameter specifying the strength of regularization. λ is
set to 1.0e− 4 in the experiments.
Dropout [30], is a widely used stochastic regularization tech-
niques used in deep learning models [31, 32] to mitigate over-
fitting. We implement the spatial dropout for all 4 CNN layers
with dropout probability 0.2.
CNN+VIB (Ours) classifier is built on top of the baseline
CNN model, and its architecture is the same as Table 2 but
with an additional dense layer after maxpooling, which yields
the µ(x) and Σ(x) for pθ(z|x). For the hyper-parameters
K and β, taking values in the ranges [20, 50, 100, 200] and
[2.0e − 3, 5.0e − 3, 2.0e − 2, 5.0e − 2], respectively. We first
perform model selection on the validation set to find the hyper-
parameters and then evaluate the selected models on the test set.

3.3. Implementation Details

Preprocessing All the raw audios are resampled to 44.1kHz and
then fixed to the certain length by zero-padding or truncating
(i.e. 4s for the Audio-MNIST, 5s for the ESC-50, 2s for the
TESS and 10s for the TUT). The short time Fourier transform
(STFT) is then applied on the audio signals to calculate spectro-
grams, with a window size of 40ms and a hop size of 20ms. 40
mel filter banks are applied on the spectrograms followed by a
logarithmic operation to extract the MFCC features.
Training details In the training phase, the Adam algorithm
[33] is employed as the optimizer with the default parameters.
The model is trained end-to-end with the initial learning rate of
0.001 and the exponential decay rate of 0.98 for each epoch.
Batch size is set to 8 and training epoch is set to 20 for TUT
and 40 for other datasets.

4. Results and Analysis
4.1. Overfitting Suppression

Here we exhibit that VIB can suppress overfitting during model
training. Fig. 2 summarizes the loss and accuracy on train-
ing and validation sets versus the number of training epochs.
Fig. 2a and 2b present the performance on the ESC-50 and
TUT datasets, respectively. In Fig. 2a, the left plot illustrates
the training and validation losses of CNN and CNN+VIB ver-
sus training epochs. The blue dotted and solid lines represent
the training and validation losses of the baseline CNN model,
while the red dotted and solid lines indicate training and val-
idation losses for our CNN+VIB approach. As the training
epoch increases, the baseline CNN training loss (the blue dot-
ted line) decreases quickly and then stabilizes after around 15
epochs. However, the baseline validation loss (the blue solid
line) falls rapidly in the beginning, reaches its minimum at
around 10 epochs and then increases speedily for the rest of
training epochs. This is a clear sign that the baseline CNN
model has overfitted the ESC-50 dataset. By contrast, the vali-
dation loss from CNN+VIB (red solid line) exhibit a gradually
decreasing trend as the increase of training epochs. This is the
empirical evidence of VIB reducing overfitting, which also ap-
pears in other datasets like the TUT in Fig. 2b.

The central-left plot of Fig. 2 displays the classification ac-
curacy on training and validation sets of ESC-50. The blue dot-
ted and solid lines represent the training and validation accuracy
of the baseline CNN model, while the red dotted and solid lines
indicate training and validation accuracy for our CNN+VIB ap-
proach. As the training epoch increases, the baseline CNN
training accuracy (the blue dotted line) increases quickly and
then stabilizes after around 15 epochs. However, the baseline
validation accuracy (the blue solid line) grows rapidly in the
beginning, reaches its maximum at around 15 epochs and then
decreases slightly later. Fig. 2b shows the loss and accuracy of
CNN and CNN+VIB on the TUT dataset, which also exhibits
the similar pattern.

Table 3 displays the performance (in terms of accuracy and
F1 score) of four methods on audio-MNIST, ESC-50, TESS and
TUT datasets under multiple low-resource settings. We create
low-resource settings by subsampling the original training data
with a certain percentage. The main findings of this table are
i.) CNN+VIB can always outperform baseline methods in all
settings. ii.) in extremely low-resource settings like only using
5% training data, CNN+VIB outperforms the baseline methods
by a significant margin and the margin decreases as the training
data size increases.

4.2. Ablation Study

To analyze the effect of VIB on reducing overfitting, we investi-
gate the effect of the β on training and validation cross-entropy
(CE) losses since β controls the trade-off between removing in-
formation from the audio features (high β) and keeping infor-
mation that is predictive of the target y (low β). In Fig. 3, we
fix the bottleneck size (K = 20) and train CNN+VIB on two
datasets (ESC-50 and TUT) for varying values of β and plot
the validation (red solid) and training (blue dotted) CE losses.
Fig. 3a displays a typical pattern of how training and valida-
tion losses evolve with the increase of β. For small values of
β (left side of Fig. 3a), where VIB has little effect, the vali-
dation loss is substantially higher than the training loss, which
indicates overfitting. This is because the network learns to be
more deterministic (Σ ≈ 0), thereby retaining too much irrele-



(a) Training process of CNN and CNN+VIB on ESC-50 dataset (b) Training process of CNN and CNN+VIB on TUT data

Figure 2: The loss and accuracy of CNN+VIB (Red lines) versus CNN (Blue lines) on two datasets: ESC-50 and TUT. The dashed lines
present the loss and accuracy on training sets, whereas the solid lines exhibit loss and accuracy on validation sets.

Table 3: The performance (accuracy and F1 score) of four methods on audio-MNIST, ESC-50, TESS and TUT datasets under multiple
low-resource settings that are characterized by varying the percentage of training data. Bold values indicate the best ones. The
hyper-parameters are tuned by grid search.

Data Model 5% 10% 30% 50% 100%
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

audio-
MNIST

CNN 0.543 0.541 0.842 0.835 0.953 0.951 0.991 0.990 0.991 0.993
+Dropout 0.572 0.572 0.824 0.821 0.952 0.951 0.991 0.991 0.990 0.990
+Weight Decay 0.578 0.573 0.844 0.833 0.954 0.949 0.990 0.992 0.993 0.991
CNN+VIB 0.587 0.584 0.868 0.869 0.975 0.975 0.997 0.997 1.000 1.000

ESC-50

CNN 0.159 0.155 0.192 0.190 0.303 0.303 0.396 0.392 0.552 0.507
+Dropout 0.162 0.161 0.213 0.207 0.295 0.287 0.502 0.436 0.551 0.503
+Weight Decay 0.178 0.176 0.210 0.198 0.358 0.357 0.421 0.420 0.568 0.563
CNN+VIB 0.224 0.184 0.239 0.210 0.363 0.336 0.532 0.528 0.581 0.589

TESS

CNN 0.936 0.934 0.952 0.952 0.921 0.916 0.998 0.998 0.997 0.997
+Dropout 0.938 0.937 0.967 0.964 0.991 0.991 0.993 0.993 0.997 0.997
+Weight Decay 0.927 0.920 0.946 0.947 0.925 0.920 0.993 0.992 0.998 0.998
CNN+VIB 0.954 0.957 0.971 0.968 0.997 0.997 0.998 0.998 0.998 0.998

TUT

CNN 0.411 0.373 0.652 0.650 0.811 0.803 0.867 0.862 0.891 0.892
+Dropout 0.551 0.542 0.611 0.601 0.815 0.810 0.903 0.902 0.893 0.892
+Weight Decay 0.571 0.553 0.623 0.617 0.834 0.831 0.869 0.864 0.927 0.925
CNN+VIB 0.607 0.595 0.674 0.670 0.855 0.857 0.912 0.913 0.942 0.943

(a) Fixed K = 20 on ESC-50 (b) Fixed K = 20 on TUT data

Figure 3: Validation and training cross-entropy losses of
CNN+VIB for varying β with K fixed at 20.

vant information. As we increase β, where VIB has an effect,
we observe better generalization performance with less overfit-
ting. As β becomes too large (right side of the plot), both the
training and validation CE losses shoot up because the amount
of preserved information is insufficient to differentiate between
the classes. Fig. 3b shows a slightly different case. When β is

too small, the model performs poorly on both the training and
validation sets. As β rises, both training and validation losses
reduce greatly. Therefore, a proper β is helpful for reaching a
good local minima.

5. Conclusion
We present a deep VIB framework to address overfitting when
training CNN classifiers on low-resource audio datasets. We
conduct extensive experiments to verify its effectiveness in re-
moving redundant information. Although we implement VIB
method on CNNs in this paper, it is also suitable with other
deep learning feature extractors. Therefore, our approach has
good potential in audio classification tasks.
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