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Abstract

Integrating external language models (LMs) into end-to-end

(E2E) models remains a challenging task for domain-adaptive

speech recognition. Recently, internal language model estimation

(ILME)-based LM fusion has shown significant word error rate

(WER) reduction from Shallow Fusion by subtracting a weighted

internal LM score from an interpolation of E2E model and ex-

ternal LM scores during beam search. However, on different test

sets, the optimal LM interpolation weights vary over a wide range

and have to be tuned extensively on well-matched validation

sets. In this work, we perform LM fusion in the minimum WER

(MWER) training of an E2E model to obviate the need for LM

weights tuning during inference. Besides MWER training with

Shallow Fusion (MWER-SF), we propose a novel MWER train-

ing with ILME (MWER-ILME) where the ILME-based fusion

is conducted to generate N-best hypotheses and their posteriors.

Additional gradient is induced when internal LM is engaged in

MWER-ILME loss computation. During inference, LM weights

pre-determined in MWER training enable robust LM integrations

on test sets from different domains. Experimented with 30K-hour

trained transformer transducers, MWER-ILME achieves on aver-

age 8.8% and 5.8% relative WER reductions from MWER and

MWER-SF training, respectively, on 6 different test sets.

Index Terms: speech recognition, language model, transformer-

transducer, end-to-end models

1. Introduction

End-to-end (E2E) models have achieved state-of-the-art perfor-

mance for automatic speech recognition (ASR) [1, 2, 3]. The

most popular E2E models include connectionist temporal clas-

sification (CTC) [4, 5, 6], recurrent neural network transducer

(RNN-T) [7, 8, 9] and attention-based encoder-decoder (AED)

models [10, 11, 12, 13]. E2E models are commonly trained to

maximize the log posteriors of token sequences given speech se-

quences while the ASR performance is measured by the word

error rate (WER). Therefore, a minimum WER (MWER) crite-

rion was proposed to train CTC [14], AED [15], RNN-T [16, 17]

and hybrid autoregressive transducer (HAT) [18] models, leading

to improved ASR performance.

However, an E2E model is more susceptible to domain shift

[19] from training to testing than a hybrid system [20]. Numer-

ous methods have been proposed to adapt ASR models, such as

regularization methods [21, 22, 23, 24], teacher-student learn-

ing [25, 26, 27, 28], transformation methods [29, 30], and ad-

versarial learning [31, 32, 33, 34]. However, all these methods

require audio as the adaptation data when applied to E2E models

[35, 36, 37]. A promising solution is to integrate an external lan-

guage model (LM) into the E2E model during inference or during

MWER training [38, 16, 39]. With no clear separation of acoustic

and language models in an E2E model, LM fusion remains to be

a challenging task.

Shallow Fusion [5, 40, 41] is a simple yet effective LM fusion

method which combines the probabilities of an E2E model and an

LM through a log-linear interpolation at each step of beam search.

The Density Ratio method [42, 43] improves Shallow Fusion by

subtracting a source-domain LM score from the Shallow Fusion.

Recently, inspired by HAT [44], we proposed an internal LM es-

timation (ILME)-based Fusion [45] which estimates the internal

LM score of an E2E model and subtracts it from the Shallow Fu-

sion score. ILME-based Fusion has shown consistent WER re-

ductions from both Shallow Fusion and Density Ratio methods.

Further, we proposed an internal LM training (ILMT) [46] that

minimizes an internal LM loss in addition to the standard E2E

loss. ILMT enables a more effective ILME-based Fusion during

inference. However, with these methods, large WER reductions

are only obtained when we carefully tune the LM interpolation

weights on well-matched validation sets because the optimal LM

weights often fluctuate dramatically on different test sets.

In this work, we perform LM fusion in the MWER training of

E2E models to obviate the need for LM weights tuning. We first

apply Shallow Fusion to generate the N-best hypotheses and com-

pute their posteriors for MWER training (i.e., MWER-SF). Note

that our MWER-SF differs from [38] in that the E2E and LM

scores are interpolated in the log domain and the combined scores

are re-normalized over N-best hypotheses. Further, we propose

a MWER training with ILME (MWER-ILME) in which the N-

best hypotheses are generated by an ILME-based Fusion and their

posteriors are computed by the probabilities of the E2E model,

internal LM and external LM. The participation of internal LM

in MWER-ILME loss computation induces additional gradient.

During inference, the LM fusion with LM weights preset in train-

ing are expected to achieve steady performance improvement on

multiple different test sets. Experimented with a 30 thousand (K)-

hour trained transformer transducer, MWER-ILME achieves on

average 8.8% and 5.8% relative WER reductions from MWER

and MWER-SF, respectively, on a multi-domain test set, and the

reductions are consistent over all subsets from different domains.

2. Related Work

2.1. Minimum Word Error Rate Training

Given a sequence of speech features X = {x1, . . . ,xT } where

xt ∈ R

d, an E2E model is typically trained to minimize the

negative log posterior of the reference token sequence Y
∗ =

{y∗
1 , . . . , y

∗
U} where y∗

u ∈ V and V is the set of output tokens

LE2E(X,Y∗) = − logP (Y∗|X; θS
E2E), (1)

where θS
E2E is the parameters of a source-domain E2E model.
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With MWER training [14, 15, 16], the E2E model is further

fine-tuned to directly minimize the expected number of word er-

rors on the training corpus. As a closer objective to the ASR

performance metric, the MWER training is expected to outper-

form the standard E2E training. The MWER loss is commonly

approximated as the expected number of word errors over the top

N hypotheses {Y1, . . . ,YN} of X as follows

LMWER =

N
∑

n=1

P̄ (Yn|X; θS
E2E)R(Yn,Y∗), (2)

where P̄ (Yn|X; θS
E2E) =

P (Yn|X;θS
E2E)∑

N

n=1
P (Yn|X;θS

E2E
)

is the re-

normalized posterior over the N-best hypotheses, and

R(Yn,Y∗) is the number of word errors in a hypothesis

Y
n compared to the reference Y

∗.

2.2. Shallow Fusion

During inference, Shallow Fusion [5, 40] searches for an optimal

hypothesis Ŷ that maximizes a log-linear interpolation between

the E2E model and the external LM probabilities.

Ŷ = argmax
Y

[

logP (Y|X; θS
E2E) + λT logP (Y; θT

LM)
]

, (3)

where P (Y; θT
LM) is the probability of an external LM trained

with target-domain text, and λT is the interpolation weight for

the external LM.

2.3. Internal LM Estimation-based Fusion

An E2E model implicitly learns an internal LM P (Yn; θS
E2E) that

characterizes the distribution of source-domain training text. The

internal LM probability P (Y; θS
E2E) can be estimated as the out-

put of an E2E model by removing the contribution of the acoustic

encoder (with parameters θS
enc) [44, 45].

With the internal LM, we are able to compute the hypothe-

sis posterior predicted by a target-domain E2E model θT
E2E with

Bayes’ Theorem as follows [45]:

P (Y|X; θT
E2E) =P (Y|X; θS

E2E)
P (Y; θT

LM)
λT

P (Y; θS
E2E)

λS
g(X), (4)

where g(X) = P (X; θS
E2E)/P (X; θT

E2E) = PS(X)/PT(X) is the

ratio of acoustic priors shared by all hypotheses. ILME-based

Fusion [45] searches for the optimal hypothesis Ŷ with highest

target-domain posterior P (Y|X; θT
E2E) as follows:

Ŷ = argmax
Y

[

logP (Y|X; θS
E2E) + λT logP (Y; θT

LM)

−λS logP (Y; θS
E2E)

]

, (5)

where λS is the interpolation weight for the internal LM.

In [46], ILMT was proposed to encourage the acoustically-

conditioned LM of an E2E model with parameters θS
E2E\θ

S
enc (e.g.,

the predictor and joint network of a transducer [47], the decoder

of AED [48, 49]) to also behave like a standalone LM, and thus

facilitates a better external LM integration. In ILMT training, an

internal LM loss below is jointly minimized with the E2E loss

LE2E(X,Yn) by updating the E2E model

LILM(Y
n) = − logP (Y; θS

E2E)

= −

U+1
∑

u=1

logP (yu|Y0:u−1; θ
S
E2E \ θS

enc), (6)

3. Minimum Word Error Rate Training with
LM Fusion

LM Fusion has remarkably improved the ASR performance of an

E2E model with optimal LM weights carefully tuned on a valida-

tion set. However, the optimal LM interpolation weights fluctuate

dramatically on different test sets. It may even happen that the op-

timal LM weights on one test set degrade the E2E model perfor-

mance on the other set. Therefore, for each test set, the search for

optimal LM weights relies on extensive tuning on a well-matched

validation set, taking huge computational resources and human

efforts. In many scenarios, such compatible validation sets are

not even available. To obviate the need for LM weight tuning, we

perform LM fusion in MWER training of E2E models.

3.1. MWER Training with Shallow Fusion

In [38], Shallow Fusion is performed during MWER training to

generate N-best hypotheses {Y1, . . . ,YN} of X. The poste-

rior of each hypothesis is computed by a linear combination of

E2E model and LM probabilities. Different from [38], the hy-

pothesis posterior in this work is obtained by interpolating the

log-probabilities of the E2E model and the external LM to better

match the Shallow Fusion inference, and the word errors of each

hypothesis is weighted by a re-normalized probability. Therefore,

the MWER-SF loss is formulated as

LSF
MWER =

N
∑

n=1

P̄ (Yn|X; θS
E2E, θ

T
LM)R(Yn,Y∗), (7)

where P̄ (Yn|X; θT
E2E, θ

T
LM) is the re-normalized Shallow Fusion

probability over N-best hypotheses below

P̄ (Yn|X; θS
E2E, θ

T
LM) =

P (Yn|X; θS
E2E)P (Yn|θT

LM)
λT

∑

N

i=1 P (Yi|X; θS
E2E)P (Yi|θT

LM)λT

.

(8)

During inference, the pre-defined LM weight in MWER-SF train-

ing is used for Shallow Fusion. MWER-SF adapts the E2E model

to a fixed external LM and its interpolation weight, and mitigates

the importance of the LM weight tuning.

3.2. MWER Training with Internal LM Estimation

We propose an MWER training of E2E models with ILME

(MWER-ILME) by performing ILME-based Fusion in MWER

training. MWER-ILME differs from standard MWER training

in that: 1) we apply ILME-based Fusion to generate the N-best

hypotheses of training utterances; 2) we compute hypothesis pos-

teriors using probabilities of the E2E model, internal LM and ex-

ternal LM.

Therefore, an MWER-ILME loss function is defined as:

LILME
MWER =

N
∑

n=1

P̄ (Yn|X; θT
E2E)R(Yn,Y∗). (9)

Here, {Y1, . . . ,YN} are the N-best hypotheses of X generated

by ILME-based Fusion performed with a source-domain E2E

model, an internal LM and a fixed external LM. P̄ (Yn|X; θT
E2E)

is the re-normalized posterior over N-best hypotheses below:

P̄ (Yn|X; θT
E2E) =

P (Yn|X; θT
E2E)

∑

N

i=1 P (Yi|X; θT
E2E)

. (10)



The posteriors of N-best hypotheses are computed by Eq. (4) as

P (Yn|X; θT
E2E) =P (Yn|X; θS

E2E)
P (Yn; θT

LM)
λT

P (Yn; θS
E2E)

λS
g(X). (11)

MWER-ILME training is essentially minimizing the expected

number of word errors over the N-best hypotheses generated by

a target-domain E2E model θT
E2E.

With Eqs. (9) to (11), we express the MWER-ILME loss

by P (Yn|X; θS
E2E), P (Yn; θT

LM) and P (Yn; θS
E2E). Note that,

during MWER-ILME training, the only learnable parameters are

θSE2E, and the inclusion of internal LM P (Yn; θS
E2E) in loss func-

tion results in additional gradient compared to MWER training.

The derivative of MWER-ILME loss with respect to θS
E2E is

∂LILME
MWER

∂θS
E2E

=
N
∑

n=1

∂LILME
MWER

∂ logP (Yn|X; θT
E2E)

∂ logP (Yn|X; θT
E2E)

∂θSE2E

.

(12)

In Eq. (12), the gradient of MWER-ILME loss with respect to

the target-domain hypothesis posterior is computed as

∂LILME
MWER

∂ logP (Yn|X; θT
E2E)

= P̄ (Yn|X; θT
E2E)

[

R(Yn,Y∗)− R̄
]

,

(13)

where R̄ =
∑

N

n=1 P̄ (Yn|X; θT
E2E)R(Yn,Y∗) is the expected

number of word errors over the N-best hypotheses. Given Eq.

(4), the gradient of the target-domain hypothesis posterior with

respect to θSE2E in Eq. (12) can be expressed as

∂ logP (Yn|X; θT
E2E)

∂θS
E2E

=
∂ logP (Yn|X; θS

E2E)

∂θS
E2E

− λS
∂ logP (Yn; θS

E2E)

∂θS
E2E

= −
∂LE2E(X,Yn)

∂θS
E2E

+ λS
∂LILM(Y

n)

∂
(

θS
E2E \ θS

enc

) , (14)

where LE2E(X,Yn) and LILM(Y
n) are E2E and ILM losses in

Eq. (1) and Eq. (6), respectively. LE2E for AED and LILM are

both cross-entropy losses with simple gradients. For a transducer

model, the gradient of LE2E is derived in [7]. Therefore, the gra-

dient of MWER-ILME loss with respect to θSE2E is obtained by

substituting Eqs. (13) and (14) into Eq. (12).

Through MWER-ILME training, we adapt the E2E model

towards a fixed external LM along with the internal LM weight

λS and external LM weight λT. Therefore, during evaluation,

the E2E model adapted by a multi-domain LM is expected to get

robust WER reductions on multiple different test sets if ILME-

based Fusion is performed with the same set of LM weights.

4. Experiments

In this work, we train streaming transformer transducer (T-T)

models [47] to minimize transducer [7], MWER [15], MWER-

SF and MWER-ILME losses, and evaluate it on a multi-domain

test set. A multi-domain external LM is used in LM fusion for

both MWER-SF and MWER-ILME training and evaluation. We

also investigate the generalizability of MWER-SF and MWER-

ILME training by evaluating with an out-of-domain LM on an

out-of-domain test set.

In all experiments, beam search and N-best generation are

both performed with a beam size of 5. 3999 word-piece units

generated by byte-pair encoding [50] are used as the output token

set V for both T-T and the external LM. A word-count weighted

average of subset WERs is computed for each test set.

4.1. Language Models Training

We use the same external LMs as in [45, 46].

Multi-domain LM: We first train a uni-directional long

short-term memory (LSTM) [51, 52, 53] LM on 2 billion words

of anonymized text corpus comprising conversational data such

as talks, interviews, meeting transcripts, and short message dicta-

tion from Microsoft services. The multi-domain LM has 2 hidden

layers with 2048 units for each layer and in total 58 million (M)

parameters.

LibriSpeech LM: We train another LSTM-LM with the

9.4M-word transcript of the 960-hour training speech and the

813M-word text in LibriSpeech corpus [54]. The LibriSpeech

LM has exactly the same architecture as the multi-domain LM.

4.2. Transformer Transducer Models Training

We train T-T models with 30 thousand (K) hours of anonymized

and transcribed data as in [45, 46] collected from Microsoft ser-

vices, including voice search, short message dictation, conversa-

tions, command and control recorded in various conditions.

The T-T encoder starts with four 2D convolution layers that

sub-sample the input 80-dimensional (dim) log Mel-filter bank

features in time by a factor of 4 and project them to 512 dimen-

sions. This is followed by a transformer with 18 layers, each layer

has an 8-head attention sub-layer with relative positional encod-

ing [55] and a 2048-dim fully-connected sub-layer. The encoder

has a look-ahead of 360 ms on average. The T-T predictor is a

2-layer transformer with each layer containing a 4-head attention

sub-layer followed by a 1024-dim fully-connected sub-layer. The

input to the predictor are 512-dim word-piece embedding vec-

tors with positional encoding. The attention dimension is fixed at

512 for both encoder and predictor. The outputs of encoder and

predictor are projected to 512-dim vectors. Dropout [56] with a

probability of 0.1 is deployed in both the encoder and the predic-

tor. The T-T model has 67 million (M) parameters.

First, a T-T model is trained to minimize the transducer loss

with the 30K-hour data. The baseline T-T is then fine-tuned

with the same data to minimize MWER, MWER-SF and MWER-

ILME losses using Adam optimizer [57] with a constant learning

rate of 10−5. The multi-domain LM is used as the external LM

for both MWER-SF and MWER-ILME training. In MWER-SF

training, the external LM weight is set to 0.25. In MWER-ILME

training, the external and internal LM weights are set to 0.25 and

0.05, respectively.

4.3. Multi-Domain Evaluations

We collect a multi-domain test set containing 6 subsets from do-

mains covered by the multi-domain LM to evaluate T-Ts trained

in Section 4.2 as follows.

Call: 30K-word conversational speech collected from real

online phone calls.

Meeting: 5K-word conversational speech collected from real

meetings.

Search: 29K-word voice search speech collected from mul-

tiple microphone arrays.

Keyboard: 15K-word dictated speech collected from key-

board voice input.

Email: 9K-word dictated speech from email applications.

Common: the Common Voice [58] test set consisting of

125k-word spoken text from blog posts, old books, movies, etc.

Except for Common, the other five anonymized subsets are all

collected from Microsoft services.



Test

Subset
T-T MWER

MWER-

SF

MWER-

ILME
WERR

Call 8.70 8.37 7.70 7.58 9.4

Meeting 16.34 16.07 17.54 15.87 1.2

Search 12.56 12.35 12.13 11.73 5.0

Keyboard 7.95 7.56 7.60 7.37 2.5

Email 19.16 17.67 16.94 16.31 7.7

Common 12.43 11.75 11.34 10.51 10.6

Avg. 12.00 11.43 11.07 10.43 8.8

Table 1: WERs (%) of T-T models trained with 4 different objec-

tives on a multi-domain test set including 6 subsets. WERR (%)

is the relative WER reduction of MWER-ILME from MWER.

Test

Subset
No LM

Oracle Call Oracle All

SF ILME SF ILME

Call 8.37 7.74 7.33 7.74 7.33

Meeting 16.07 18.99 17.98 15.97 15.78

Search 12.35 12.27 12.01 11.97 11.66

Keyboard 7.56 7.92 7.92 7.54 7.37

Email 17.67 17.85 16.55 16.74 16.19

Common 11.75 12.35 11.94 11.33 11.05

Avg. 11.43 11.78 11.37 11.00 10.69

Table 2: WERs (%) of MWER trained T-T model on a multi-

domain test set. “Oracle Call” uses optimal LM weights tuned

on Call subset for LM fusion on all 6 subsets. “Oracle All” uses

optimal LM weights tuned on each subset for LM fusion.

The baseline and MWER-trained T-Ts are evaluated on the

muliti-domain test set without using external LM. As shown in

Table 1, the baseline T-T achieves 12.00% WER on average over

6 subsets. MWER training leads to 4.8% relative WER reduction

from the baseline T-T. In Table 2, we evaluate the MWER-trained

T-T with Shallow Fusion and ILME-based Fusion. We first tune

the LM weights on the Call subset and apply the optimal weights

for all 6 subsets (i.e., Oracle Call). Although both LM fusions

achieve significant WER reductions on Call and Search, the per-

formance degrades severely on Meeting, Keyboard and Common.

This indicates that the optimal LM weights fluctuate dramatically

on different test sets. Further, we conduct LM fusions on each

subset with the optimal LM weights tuned on itself (i.e., Oracle

All). Both LM fusions result in consistent WER reductions on

all subsets, with ILME-based Fusion performing better on each

subset.

We then evaluate the MWER-SF trained T-T with Shallow

Fusion by using the same multi-domain LM and LM weight

(0.25) as in training. In Table 1, although MWER-SF improves

MWER training by 3.1% relatively in terms of averaged WER, it

degrades WERs on Meeting and Keyboard subsets by 9.1% and

5.3% relatively, respectively. Finally, we evaluate the MWER-

ILME trained T-T with ILME-based Fusion by using the same

multi-domain LM and external/internal LM weights (0.25/0.05)

as in training. Among all 4 training objectives, MWER-ILME

performs the best on every subset of the multi-domain test set,

achieving on average 8.8% and 5.8% relative WER reductions

from the MWER and MWER-SF training, respectively. MWER-

ILME consistently improves MWER training by 1.2% to 10.6%

relatively on 6 subsets with no performance degradation. With

MWER-ILME training, ILME-based Fusion is able to achieve

significant and robust relative WER reductions on test sets from

multiple domains by applying the same multi-domain LM and

LM weights during training.

Note that MWER-ILME in Table 1 even outperforms the

Test Set T-T MWER
MWER-

SF

MWER-

ILME
WERR

dev-clean 6.11 6.03 4.46 4.42 26.7

dev-other 14.34 13.87 11.29 11.09 20.0

test-clean 6.18 5.98 4.46 4.42 26.1

test-other 14.51 14.15 11.67 11.43 19.2

Avg. 10.21 9.94 7.91 7.78 21.7

Table 3: WERs (%) of T-T models trained with 4 different objec-

tives on out-of-domain LibriSpeech dev and test sets. WERR (%)

is the relative WER reduction of MWER-ILME from MWER.

MWER-trained T-T with ILME-based Fusion and “Oracle All”

in Table 2 by 2.4% relatively on average. This shows that, dur-

ing MWER-ILME, the adaptation of T-T towards external LM

also facilitates a more effective fusion between these two models.

The need for LM weight tuning is thus entirely eliminated.

4.4. Out-of-Domain Evaluations

We further investigate the generalizability of MWER-SF and

MWER-ILME trained T-Ts by integrating out-of-domain LMs

into them, and performing the evaluation on an out-of-domain

test set. We choose LiriSpeech LM and the LibriSpeech test set

for out-of-domain evaluation since neither the training data of T-

T nor that of the multi-domain LM contains LibriSpeech data.

The LibriSpeech test set consists of 4 subsets, “dev-clean”, “test-

clean”, “dev-other”, “test-other”, including 54K, 53K, 51K and

52K words, respectively [54].

The baseline and MWER-trained T-Ts are evaluated with-

out external LM. The MWER-SF and MWER-ILME trained T-

Ts are evaluated with Shallow Fusion and ILME-based Fusion,

respectively. During evaluation, the LM fusions are performed

with LibriSpeech LM and the same LM weights as in training.

In Table 3, the MWER trained T-T achieves on average 9.94%

WER on LibriSpeech test set, with a 2.6% relative WER reduc-

tion from baseline T-T. MWER-SF outperforms MWER training

by 20.42% relatively on average, and the improvement is consis-

tent over all subsets. Among all 4 methods, MWER-ILME per-

forms the best on every subset, achieving an on average 21.7%

relative WER reduction from MWER training.

The results show that, even performed with a multi-domain

LM, neither MWER-SF nor MWER-ILME training biases the T-

T entirely towards the domains covered by the external LM. In-

stead, they equip T-Ts with the generalizability to be integrated

with an out-of-domain LM and achieve a significant WER reduc-

tion on an out-of-domain test set.

5. Conclusion

In this work, we perform the LM fusion in the MWER training of

a T-T model to eliminate the need for LM weight tuning during

inference. In addition to Shallow Fusion, we propose to apply

ILME-based Fusion for the N-best generation and the hypothesis

score computation in the MWER training. With LM weights pre-

set in MWER-ILME training, ILME-based fusion significantly

and consistently outperforms MWER and MWER-SF trained

models on multiple different test sets, achieving on average 8.8%

and 5.8% relative WER reductions, respectively. MWER-ILME

even outperforms MWER-trained model with ILME-based Fu-

sion and oracle LM weights. With great generalizability, both

MWER-SF and MWER-ILME trained E2E models perform more

than 20% relatively better than MWER trained model on an out-

of-domain test set when integrated with an out-of-domain LM.
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