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Abstract
We propose a new paradigm for maintaining speaker iden-
tity in dysarthric voice conversion (DVC). The poor quality of
dysarthric speech can be greatly improved by statistical VC, but
as the normal speech utterances of a dysarthria patient are nearly
impossible to collect, previous work failed to recover the indi-
viduality of the patient. In light of this, we suggest a novel,
two-stage approach for DVC, which is highly flexible in that no
normal speech of the patient is required. First, a powerful par-
allel sequence-to-sequence model converts the input dysarthric
speech into a normal speech of a reference speaker as an inter-
mediate product, and a nonparallel, frame-wise VC model re-
alized with a variational autoencoder then converts the speaker
identity of the reference speech back to that of the patient while
assumed to be capable of preserving the enhanced quality. We
investigate several design options. Experimental evaluation re-
sults demonstrate the potential of our approach to improving the
quality of the dysarthric speech while maintaining the speaker
identity.
Index Terms: dysarthric voice conversion, sequence-to-
sequence modeling, nonparallel voice conversion, variational
autoencoder

1. Introduction
Dysarthria refers to a type of speech disorder caused by dis-
ruptions in the neuromotor interface such as cerebral palsy or
amyotrophic lateral sclerosis [1]. Dysarthria patients lack nor-
mal control of the primary vocal articulators, resulting in ab-
normal and unintelligible speech with phoneme loss, unstable
prosody, and imprecise articulation. The ability to communi-
cate with speech in everyday life is therefore degraded, and it
is of urgent need to improve the intelligibility of the distorted
dysarthric speech.1

Voice conversion (VC), a technique that aims to convert
the speech from a source to that of a target without changing
the linguistic content [2], has been a dominant approach for
dysarthric speech enhancement. We hereafter refer to this task
as DVC. Rule-based transformation based on signal process-
ing [3] is limited in that each patient needs to be individually
considered. Statistical approaches adopt models ranging from
Gaussian mixture models [4], exemplar-based methods [5, 6]
and deep neural networks [7, 8, 9].

One of the most difficult problems in not only DVC but VC
for other disordered speech such as alaryngeal speech [10] is
how to maintain the patient identity after conversion. This is
mainly because collecting normal speech of the patient is al-
most impossible. There have been attempts to tackle this prob-

1In the field of VC, orthogonal descriptions such as “naturalness”
and “intelligibility” are often used, but we use the term “quality” in this
paper interchangeably.

lem. A one-to-many VC system based on eigenvoice conversion
was proposed for alaryngeal speech enhancement, whose set-
ting was still considered too idealized since they assumed that a
few normal samples of the patient can still be accessed [11].

Our goal in this work is to utilize VC techniques to con-
vert the patient’s dysarthric speech into a more intelligible, more
natural speech while maintaining the speaker identity of the pa-
tient. In light of this, we propose a novel, two-stage approach
that combines recent advances in the field of VC. Figure 1
depicts the general idea of the proposed method. In the first
stage, a sequence-to-sequence (seq2seq) model converts the in-
put dysarthric speech into that of a reference normal speaker,
where we adopted a Transformer-based model named Voice
Transformer Network (VTN) [12]. The ability of seq2seq VC
models to convert suprasegmental information and the parallel
training strategy can greatly improve the naturalness and intel-
ligibility, though the speaker identity is changed into that of the
reference speaker. Next, a frame-wise, nonparallel VC model
realized by a variational autoencoder (VAE) [13, 14, 15] takes
the converted speech with the identity of the reference speaker
as input and restores the identity of the patient. An important as-
sumption we make here is that due to the frame-wise constraint,
the VAE model changes only time-invariant characteristics such
as the speaker identity, while preserving time-variant character-
istics, such as pronunciation. As a result, the converted speech
has the speaker identity of the patient while maintaining high
intelligibility and naturalness. We acknowledge that recently a
very similar idea was proposed for preserving speaker identity
in not DVC but dysarthric TTS [16].

We evaluate our proposed method on a Mandarin corpus
collected from a female cerebral palsy patient. We investigate
the importance of the reference speaker choice, and examine
how much the aforementioned assumption holds with the cur-
rent VAE model we adopt. Finally, objective and subjective
evaluations show that our approach can improve the naturalness
and intelligibility of the dysarthric speech.

Our main contributions in this work are as follows:

• We show that the proposed two-stage method for DVC
can restore the patient identity without any normal
speech of the patient while improving naturalness and
intelligibility.

• To our knowledge, this is the first work to evaluate
seq2seq modeling for DVC with a more complex dataset
rather than single-worded datasets [8].

2. Related works
2.1. Sequence-to-sequence voice conversion

Compared with conventional frame-wise VC methods [2, 17],
seq2seq VC has shown its extraordinary ability in converting
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Figure 1: Illustration of the conversion process in the proposed two-stage method for preserving speaker identity in dysarthric voice
conversion.

speaker identity [12, 18, 19, 20, 21]. Seq2seq modeling is ca-
pable of generating outputs of various lengths and capturing
long-term dependencies [22], making it a suitable choice for
handling suprasegmental characteristics in speech including F0
and duration patterns. However, due to parallel training, apply-
ing seq2seq modeling to DVC results in unwanted change of
speaker identity.

2.2. Nonparallel frame-wise voice conversion based on vari-
ational autoencoder

Nonparallel VC is attractive in that no parallel utterances be-
tween the source and target are required, and one of the ma-
jor trends is autoencoder-based methods [14, 23, 24, 25, 26].
Specifically, the encoder first encodes the input feature into a
latent code, and the decoder then mixes the latent code and a
specified target speaker embedding to generate the converted
feature. Autoencoders are usually trained with a reconstruc-
tion loss, but many techniques have been applied to solve var-
ious problems in training. The use of a variational autoen-
coder (VAE) [13] is the most widely adopted method since it
greatly stablizes training [14, 23, 26]. Other techniques in-
clude using generative adversarial networks (GANs) to allevi-
ate oversmoothing [23, 24, 26], introducing a cyclic objective
to improve conversion performance [25], or applying vector-
quantization [27] which introduces discreteness into the latent
space to capture the categorial property of the linguistic con-
tents in speech.

VAE-based VC is categorized into the frame-based method,
which tends not to convert supra-segmental features very well.
Although the conversion similarity is therefore inferior to
seq2seq-based methods, there are applications where it would
be better to keep them unchanged, such as cross-linugal VC
and, DVC.

3. Proposed method
An overview of our proposed method is illustrated in Figure 1.
Assume that we have a parallel corpus between the dysarthria
patient and multiple reference speakers. Our proposed method
consists of two models: a seq2seq model that converts the
acoustic feature sequence extracted from the input dysarthric
speech into that of a reference normal speaker to be more intel-
ligible and natural, and a nonparallel frame-wise model that re-
stores the identity of the patient, which is realized by a VAE. To
generate the converted waveform from the acoustic feature, we
used the parallel waveGAN (PWG) neural vocoder [28] as the
waveform synthesis module, which enables parallel, real-time
waveform generation. Note that we do not perform waveform
generation between the two models. In the following sections
we explain details and design choices of the respective modules.

3.1. Sequence-to-sequence modeling

We adopted the many-to-many Voice Transformer Network
(VTN) with text-to-speech (TTS) pretraining. VTN is a seq2seq
model for VC based on the Transformer model [29], which re-
lies on multi-head self-attention layers to efficiently capture lo-
cal and global dependencies. It takes acoustic features (e.g. log
mel spectrograms) as input and outputs converted acoustic fea-
tures. It was extended to a many-to-many version in [30], which
was shown to be more effective when a parallel corpus between
multiple speakers is available.

The TTS pretraining technique is a two-stage process that
transfers the core ability of a seq2seq VC model, which is to
encode linguistic-rich hidden representations, from large-scale
TTS datasets [12, 31]. First, the decoder pretraining essentially
involves training a TTS model on a large-scale TTS dataset. Us-
ing the same TTS corpus as input and target, the encoder is then
pretrained with a reconstruction loss by fixing the learned de-
coder from the first stage. Since the decoder was trained to rec-
ognize the linguistic-rich hidden representations encoded from
text, the encoder hence learns to extract representations of sim-
ilar properties from speech. The VC model training is finally
performed with the VC corpus, which can be completely differ-
ent from the TTS corpus in terms of speaker and content.

It is worth investigating the choice of the reference speaker.
Although the corpus was designed to be parallel among the pa-
tient and all reference speakers, due to the difference in charac-
teristics such as the speaking rate and F0 pattern, some speak-
ers can be easier to convert to, compared to others. We thus
hypothesize that by choosing a reference speaker with similar
characteristics to the patient, conversion might be made easier.
We define the similarity between the patient and the reference
speaker to be the best performance the VC model can obtain.
In later sections, we present our analysis on how the choice of
reference speaker affects the conversion performance in various
aspects.

3.2. Nonparallel frame-wise model

For the VAE model, we used crank [15], an open-source VC
software that combines recent advances in autoencoder-based
VC methods, including the use of hierarchical architectures,
cyclic loss and adversarial training. To take full advantage of
unsupervised learning, we trained the network using not only
the data of the patient and the reference speakers but also a
multi-speaker TTS dataset.

4. Experimental Evaluations
4.1. Experimental settings

To collect the dysarthric speech dataset, a female patient
was asked to read the prompts in the phonetically-balanced



Figure 2: Scatter plots of the MCD and SER scores of each
speaker. Both MCD and SER are the lower the better. Red and
blue dots denote female and male speakers, respectively.

TMHINT dataset [32], where each of the 320 sentences con-
tained 10 Mandarin characters. For the reference speakers, we
used the audio recordings of 17 speakers (13 male and 4 fe-
male speakers)2 in the TMSV dataset [33], which was also
collected with the TMHINT prompts. We used a 240/40/40
train/validation/test split. All speech utterances were downsam-
pled to 16 kHz, and 80-dimensional mel spectrograms with a 16
ms frame shift were extracted as the acoustic feature.

The implementation of the VTN was based on the open-
source toolkit ESPnet [34, 35]. The detailed configuration can
be found online3. The TTS pretraining was conducted with the
Sinica COSPRO multi-speaker Mandarin dataset [36], which is
44 hr long. The implementation of VAE was based on crank,
which can also be accessed freely4. Sinica COSPRO was used
along with the TMSV and the patient’s voice as training data
for the VAE training. For the PWG, we followed an open-source
implementation5. The training data of PWG contained the audio
recordings of the 18 TMSV speakers.

4.2. Objective evaluation

We carried out two types of objective evaluation. First, the
mel cepstrum distortion (MCD) is a commonly used measure
of spectral distortion in VC, which can only be calculated when
the ground truth sample is available. We thus only used this
metric in the evaluation of the VTN model. Second, to evalu-
ate the intelligibility of the VC system, we used a Transformer-
based automatic speech recognition (ASR) engine pretrained on
the AISHELL-1 dataset [37] to transcribe the converted speech,
and directly calculated the character error rate (CER) based on
the ASR outputs. We then converted the characters into pinyin
and discarded the tone to obtain the syllable error rate (SER) of
the converted speech.

4.2.1. Investigation of the choice of reference speaker

We first examine our hypothesis on the importance of the choice
of reference speaker, as described in Section 3.1. Since we car-

2Speaker SP11 was excluded due to labeling error.
3https://github.com/espnet/espnet/tree/

master/egs/arctic/vc1
4https://github.com/k2kobayashi/crank
5https://github.com/kan-bayashi/

ParallelWaveGAN

Figure 3: SER values of the patient’s dysarthric voice and the
output speech after the VTN model and the VAE model. The
values are the smaller the better.

ried out two types of objective metrics, it is worthwhile to ex-
amine which is a more proper selection criterion. We trained the
VTN model for 2000 epochs, and we selected the best perform-
ing models based on MCD. The results are shown in Figure 2.

First, for MCD, female reference speakers tend to yield
lower scores, which is reasonable since the patient is also a fe-
male. On the other hand, the SER scores did not differ much
between genders, and none of the genders gave obviously lower
scores. Nonetheless, the speaker with the lowest MCD score
(SP07) did not necessarily give the lowest SER value (SP09
gave the lowest SER value), and vice versa. To examine which
criterion is better, we conducted a listening test as a more reli-
able proof, which will be presented in later sections.

4.2.2. Intelligibility degradation from VAE

As stated in Section 1, an important assumption in this work is
that the intelligibility should be consistent throughout the VAE
model. We examine how valid this assumption is by compar-
ing the SERs of the original dysarthric voice as well as the
output speech after the VTN model and the VAE model. The
results are shown in Figure 3. It can be clearly observed that
our assumption was not held, as all SER values after the VAE
model are much higher than those of the VTN model output.
This is because of insufficient unsupervised factorization in the
VAE model we used. As a result, a well-shared linguistic repre-
sentations space between the normal speech and the dysarthric
speech cannot be learned.

Nonetheless, the conversion pairs with most of the refer-
ence speakers still yielded lower values compared with the orig-
inal dysarthric speech. Specifically, speaker SP09 gave the low-
est SER of 75.8 after the complete conversion process, which
was 18.2 points lower than the original 94.0. This result demon-
strates the effectiveness of the proposed two-stage method. In
later sections, we will further examine the degradation of natu-
ralness with the listening test results.

https://github.com/espnet/espnet/tree/master/egs/arctic/vc1
https://github.com/espnet/espnet/tree/master/egs/arctic/vc1
https://github.com/k2kobayashi/crank
https://github.com/kan-bayashi/ParallelWaveGAN
https://github.com/kan-bayashi/ParallelWaveGAN


Table 1: Results of subjective evaluation using the test set with 95% confidence intervals. All values are higher the better.

Naturalness Similarity

Description SP04 SP09 SP07 SP13 SP04 SP09 SP07 SP13

Dysarthric 2.37 ± .19 —
TMSV 4.99 ± .01 9% ± 7%
VTN 3.29 ± .32 3.16 ± .27 3.45 ± .37 3.74 ± .27 8% ± 8% 8% ± 9% 30% ± 11% 25% ± 14%

VTN+VAE 2.42 ± .30 2.38 ± .41 2.65 ± .39 2.60 ± .35 45% ± 10% 45% ± 14% 49% ± 11% 42% ± 11%

4.3. Subjective evaluation

We conducted subjective tests on naturalness and conversion
similarity to evaluate the perceptual performance. Since it is
impractical to evaluate all converted samples of the 17 refer-
ence speakers, for both metrics we chose two speakers with the
lowest values (MCD: SP07, SP13; SER: SP04, SP09). For nat-
uralness, participants were asked to evaluate the naturalness of
the speech by the mean opinion score (MOS) test on a five-point
scale. For conversion similarity, each listener was presented a
natural target speech and a converted speech, and asked to judge
whether they were produced by the same speaker on a four-
point scale (Definitely the same, the same, different, definitely
different). We recruited 11 native Mandarin speakers. Table 1
shows the results. Audio samples are available online6.

4.3.1. Investigation of the choice of reference speaker

We first continued our investigation on the reference speaker.
For naturalness, as expected, the reference speakers with lower
MCD values (SP07, SP13) outperformed the other two speak-
ers (Sp04, SP09). Surprisingly, even after the VAE conversion,
SP07 and SP13 still yielded better performances. This shows
that listeners payed less attention to the intelligibility, but val-
ued other factors such as fluency and stability more. This also
explains why the dysarthric speech, although with extremely
low intelligibility, still yielded a MOS score of 2.37. On the
other hand, for similarity, such trend was not so obvious, as
only SP07 slightly outperformed the other two speakers, and
the difference was not significant. Overall, the best perform-
ing reference speaker was SP07, whose naturalness (2.65) and
similarity (49%) scores were the best among all other speakers
after VTN and VAE.

4.3.2. Naturalness degradation from VAE

Next, we continued to examine the naturalness consistency as-
sumption described in Section 1. it could be clearly observed
that, regardless of which reference speaker, the naturalness
scores degraded for almost 1 MOS point, showing that the cur-
rent VAE model could not guarantee such consistency, which is
similar to the findings in Section 4.2.2. Nonetheless, the best
performing speaker, SP07, yielded a naturalness MOS of 2.65,
which was shown to be significantly better than 2.37, the MOS
given by the dysarthric speech. This result again demonstrated
the effectiveness of the proposed method.

4.3.3. Identity preservation ability

We finally examined the ability of our proposed method in
maintaining speaker identity. Although the best similarity score
of our method could achieve was only 49%, feedbacks from the
listeners suggested that it was easy to find the converted speech

6https://bit.ly/3sHxaGY

different from that of the dysarthric speech due to its special
characteristics. Since the normal speech of the patient is impos-
sible to obtain, it is essentially difficult to evaluate conversion
similarity. To this end, we concluded that the result was ac-
ceptable in this preliminary study, and would like to leave the
improvement as future work.

5. Conclusions and Discussions
In this paper, we proposed a novel two-stage paradigm for main-
taining speaker identity in DVC, where a parallel seq2seq model
first converts the source dysarthric speech into that of a ref-
erence speaker with the quality enhanced, and a nonparallel
frame-wise model realized by a VAE then converts the speaker
identity back to the patient while preserving the quality. The
experimental results showed that (1) the reference speaker with
lower MCD is considered better, (2) the current VAE model
does not guarantee quality consistency, and (3) our method can
still improve the quality to a certain extent while preserving
speaker identity. Yet, the current performance is still far from
satisfactory, and below we discuss several improving directions.
Improve seq2seq modeling. The current intelligibility after
the first seq2seq conversion stage was much worse than that of
past DVC works on simpler datasets [8]. Although we believe
this is due to the more complex, limited dataset we used, it is
worthwhile to apply techniques like text supervision [20] or data
augmentation [21].
Quality consistency assumption. The current VAE model we
employed could not guarantee to preserve the enhanced quality.
Possible directions include a hierarchical structure to modify
solely time-invariant characteristics, or resorting to other frame-
wise models such as PPG-based methods [38].
Automatic reference speaker selection. In this work, we
chose the best reference speaker by examining the MCD and
SER scores of the converted speech, which was an ad-hoc ap-
proach. To quickly decide the suitable reference speaker for an
arbitrary patient, we may further use pretrained speaker repre-
sentations like x-vectors [39] as a measurement.
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