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Abstract

The idea of using phonological features instead of phonemes as

input to sequence-to-sequence TTS has been recently proposed

for zero-shot multilingual speech synthesis. This approach is

useful for code-switching, as it facilitates the seamless uttering

of foreign text embedded in a stream of native text. In our work,

we train a language-agnostic multispeaker model conditioned

on a set of phonologically derived features common across

different languages, with the goal of achieving cross-lingual

speaker adaptation. We first experiment with the effect of lan-

guage phonological similarity on cross-lingual TTS of several

source-target language combinations. Subsequently, we fine-

tune the model with very limited data of a new speaker’s voice

in either a seen or an unseen language, and achieve synthetic

speech of equal quality, while preserving the target speaker’s

identity. With as few as 32 and 8 utterances of target speaker

data, we obtain high speaker similarity scores and naturalness

comparable to the corresponding literature. In the extreme case

of only 2 available adaptation utterances, we find that our model

behaves as a few-shot learner, as the performance is similar in

both the seen and unseen adaptation language scenarios.

Index Terms: cross-lingual, multilingual, speaker adaptation,

speech synthesis, low resource

1. Introduction

Text-to-speech (TTS) systems have traditionally used se-

quences of discrete symbols as inputs. Recently proposed neu-

ral architectures [1, 2] have shown that an efficient end-to-end

acoustic model is possible by directly consuming text charac-

ters. The inputs to state-of-the-art TTS systems consist of either

text characters (graphemes) or phonemes, with the superiority

of phoneme-based systems recently quantified [3]. In multilin-

gual TTS, these inputs may originate from various speakers and

languages introducing variable factors in the model’s logic.

Synthesizing speech from multiple speakers with the use

of learnable speaker embeddings has been thoroughly exam-

ined from the very start of neural TTS [4] up to most recent

efforts [5]. Controlling language with learnable embeddings is

also straightforward [6, 7] and recently, the concept of meta-

learning has been shown effective for this purpose [8]. In order

to avert the inherent problem of language-dependent speaker

representations, domain adaptation has been utilized [9].

It is common for the input phoneme representations to be

mapped into trainable embeddings, which can be shared across

phonemes in the multilingual setting [6]. For this purpose, the

International Phonetic Alphabet (IPA) [10] can be used [11].

However, tasks such as code-switching and low-resource lan-

guage TTS introduce the need for multi-valued representations

⋆Equal contribution

that will allow the learning of shared qualities across phonemes

enabling generalization to previously unseen combinations.

1.1. Related work

When investigating multilingual TTS, the input linguistic se-

quence plays an important role as it incorporates all the distinct

language characteristics. Gutkin et al. [12–15] use phonolog-

ical features (PFs) combining them with phonemes as inputs

to multilingual neural TTS models and show improvements in

intelligibility across seen and even unseen languages [12]. Ef-

fectively, approaches which concatenate PFs to phonemes do

not allow synthesis of unseen phonemes without further train-

ing. To this end, Unicode-bytes-based multispeaker multilin-

gual models have been proposed [16, 17]. This alternative ap-

proach allows unseen characters to be synthesized without en-

tailing any model changes, but since bytes only encode typo-

graphical relations, transfer learning of phonological informa-

tion cannot be achieved for unseen byte combinations. Staib et

al. [18] train a multispeaker variant of Tacotron 2 solely on PFs

and show that their model remains unchanged across seen and

unseen languages, while enabling the approximation of sounds

absent in the training set. As they aim at code-switched speech,

they only train a monolingual and a small multilingual model.

Our work extends the idea of utilizing phonological features

to achieve cross-lingual speaker adaptation. In addition, we

present extended experimental results that investigate the effect

of language phonological similarity as well as the effect of the

adaptation data size. Similar features have been used in a feed-

forward acoustic model for cross-lingual speaker adaptation us-

ing ground truth target phoneme durations [19].

Cross-lingual speaker adaptation can leverage the benefits

of a fixed phoneme representation such as IPA. In [11], such

a model is fine-tuned to the voice of a speaker using 20 min-

utes of data, while in [20], cross-lingual cloning is achieved

without further training by utilizing x-vectors extracted from a

pretrained system and a common ARPABET phoneme set aug-

mented with stress and tone embeddings. Language-dependent

phones can also be used, as in [21] where a transformer-based

model is trained on a large set of 50 language locales following

data imbalance strategies and allowing extensions to new lan-

guages with as few as 6 minutes of data. In the low-resource

setting, [22] apply different language encoders on language-

dependent phones and [23] show that a learnable linguistic em-

bedding trained in a VAE-like structure can generalize to other

languages and adapt to new speakers with few data.

1.2. Proposed method

In this paper, we apply handcrafted phonological features in

cross-lingual TTS and speaker adaptation with very few data.

We follow prior work [24] in order to train a multilingual
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end-to-end model [6] without the addition of language embed-

dings, since we aim at a model independent of input or out-

put language identity. First, we investigate if cross-lingual

TTS based on phonological features can be improved by us-

ing additional training data from typologically related and unre-

lated languages, and explore the relation of the ratio of unseen

phonemes and the perceived intelligibility and naturalness of

cross-lingual speech. Second, we experiment with cross-lingual

speaker adaptation and the amount of adaptation data irrespec-

tive of the target speakers’ native language. Our results demon-

strate that as little as 6 s of adaptation data suffice to achieve

synthesized speech highly similar to the target speaker’s voice,

which is a notable advancement to phoneme-based cross lin-

gual adaptation models requiring 20min of data for the same

task [11]. The limited data scenario combined with the absence

of restrictions to either the target language or the language of the

target speaker enables applications such as multilingual TTS of

a low-resource language speaker and personalized TTS as long

as IPA definitions of the language’s phonemes are available.

2. Method

2.1. Feature set

According to PFs’ theories, each phoneme of a language can be

decomposed into a bundle of simultaneous features. Jakobson et

al. [25,26] were the first to introduce a small set of acoustically-

defined universal distinctive features. These were later replaced

by articulatory features emphasizing their innate nature [27].

In our work, features are derived from the articulatory-

inspired IPA definitions [10], as categorical multi-valued fea-

tures. Each feature is encoded into a varied number of di-

mensions, resulting in an initial 23-dimensional PFs vector.

The features are 1-hot encoded, except for vowel openness and

frontness which assume continuous values. All phonemes are

split into semi-phonemes before they are fed to the acoustic

model to account for cases of changing phoneme quality (diph-

thongs, affricates). Each semi-phoneme is mapped to the corre-

sponding PFs vector, resulting in 46 dimensions per phoneme.

For monophthongs, the PFs vector is replicated twice. Each

phoneme is then appended with: a binary duration feature

differentiating between diphthongs/long vowels/double conso-

nants and regular phonemes; a binary stress feature for primary

and secondary stress; 7 dimensions for 1-hot encoded punctua-

tion, word boundary, padding and end-of-sequence tokens.

2.2. Acoustic model architecture

The acoustic model follows an attention-based sequence-to-

sequence architecture which converts the input linguistic se-

quence into a sequence of acoustic frames for the LPCNet

vocoder [28]. In our case, the input text of any given language is

transformed into internal phonemes by the corresponding fron-

tend module, then mapped to its phonological features’ repre-

sentation using a dictionary lookup, first to IPA phonemes and

then to the PFs vectors. We leverage the benefits of the reduced

dimensionality of the LPCNet features together with a stable

Mixture-of-Logistics (MoL) attention module in order to con-

struct a robust model with near natural speech quality [24].

Since we are working on a multispeaker setup, each speaker

is assigned a learnable speaker embedding, which is used to

condition the decoder at each step. A speaker classifier which

predicts the identity of each speaker from the encoder outputs

is also used during training as introduced in [6]. This classi-

fier is trained by utilizing the concept of domain adversarial

Table 1: Training dataset details

Language Code Hours Speakers Phonemes

US English en 125.9 3 49

German de 107.0 4 58

French fr 84.7 4 40

Spanish es 89.4 4 33

Italian it 97.2 4 57

Korean ko 164.6 3 46

training [29] in order to introduce a degree of disentanglement

between the linguistic representations and the speaker identity.

The fact that language identity is absent from the model makes

this module even more necessary. Finally, the model is aug-

mented with a residual variational encoder [6,30] which aims to

encode latent factors of audio and increase the naturalness and

robustness of the model in the cross-lingual transfer setting.

2.3. Speaker adaptation

We want to test the feasibility of adapting the model to an un-

seen speaker with limited data and enabling them to speak an

arbitrary number of languages, regardless of the languages con-

tained in the training set or the speaker’s native language. Our

choice of PFs allows the model to be language-independent and

as a result there are no restrictions to which speaker or language

are compatible with the model without applying any modifica-

tions. We select a random same-gender speaker-id which is as-

signed to the target speaker and fine-tune the model for a small

number of iterations in a single speaker setting. During the ini-

tial training the encoder has learned meaningful representations

of the input PFs and the attention module has learned to align

these representations with the acoustic frames. Since the target

speaker’s data are limited, we freeze these modules’ weights in

order to preserve them from forgetting their generic targets. We

found this method helps in terms of pronunciation and native-

ness of the target language.

3. Experiments and results

3.1. Data and training setup

To train our models, we use an internal multilingual multi-

speaker dataset comprising 668.8 hours of speech in 6 lan-

guages, 22 speakers and 134 unique phonemes. Details about

the dataset are shown in Table 1. Varied language configura-

tions’ chunks are drawn from this dataset and used as training

data throughout our experiments in Sections 3.3 and 3.4. We use

24 kHz audio data in order to extract the output 22-dimensional

acoustic features which consist of 20 Bark-scale cepstral coef-

ficients, the pitch period and the pitch correlation. The model

parameters are trained using the Adam optimizer [31], a batch

size of 64 and an initial learning rate of 10−3, which linearly

decays to 3 · 10−5 in 600K iterations. For speaker adaptation

the learning rate is kept stable for another 5K iterations.

3.2. Formal evaluation

Our models were assessed against naturalness, intelligibility

and speaker similarity. Naturalness was evaluated via mean

opinion score (MOS) ranging from 1 to 5, with 1 indicating

unnatural and 5 natural speech. No natural sample of the target

language was available for the speakers, as all experiments are

cross-lingual, and inserting natural samples of different speak-

ers in the single-speaker tests might affect scores reflecting

voice preference. Speaker similarity evaluation was based on



Table 2: Cross-lingual TTS setup and results of naturalness

(MOS with 95% confidence interval) and intelligibility (WER)

Setup Results

Train Test UPR% WER% MOS

de en 18.6 ±4.7 23.41 3.47±0.10

fr 20.3 ±7.4 11.97 3.23±0.11

it 38.3 ±6.6 3.19 2.30±0.08

de+es en 11.3 ±3.9 15.71 3.68±0.06

fr 6.6 ±3.9 11.68 3.06±0.08

it 7.4 ±4.1 4.95 2.12±0.06

de+es+ko en 9.1 ±3.8 13.90 3.59±0.05

fr 6.6 ±3.9 12.11 3.09±0.06

it 7.4 ±4.1 3.05 2.78±0.05

es+ko en 30.3 ±6.3 32.87 3.05±0.07

fr 30.4 ±8.5 33.27 1.70±0.06

it 11.2 ±5.4 5.80 2.06±0.06

en+es de 27.1 ±5.9 17.77 2.48±0.09

fr 15.1 ±6.0 15.69 2.56±0.09

it 6.9 ±4.1 3.10 2.72±0.06

en+fr de 25.8 ±4.7 26.86 2.21±0.10

es 5.2 ±3.2 19.03 2.58±0.06

it 13.8 ±3.7 6.11 2.35±0.06

a Likert scale, ranging from “1: Sounds like a totally different

person” to “5: Sounds like exactly the same person” compared

to the reference sample. For intelligibility, listeners were asked

to transcribe the generated samples as accurately as possible,

and the word error rate (WER) of their responses was computed.

All formal evaluations were conducted online via Amazon

Mechanical Turk [32]. Only native speakers of the target lan-

guage were recruited. Every audio sample was evaluated by

20 unique participants. In MOS tests, a validation sample was

inserted in each test page to control for potential spurious par-

ticipants: for naturalness, listeners were instructed to select one

response from 1 to 5; for speaker similarity, a different gen-

der voice was used in one of the samples, and the listener was

expected to select 1. After excluding test pages where partici-

pants failed to pass validation, and the responses of participants

whose WER was over 80%, the responses of 260 subjects were

analyzed for MOS, 174 for intelligibility and 144 for similarity.

For each test language, 300 sentences were randomly sam-

pled from conversational corpora and Wikipedia articles. As

we were eager to conduct the models’ evaluation in the most

challenging stress-test setups, we subsequently converted the

sentences into phonemes and used the corpus selection tool in-

troduced in [33], so as to sort them in descending phonetic cov-

erage order. The top 35 phonologically diverse sentences per

language comprised each language’s test set for all evaluations.

3.3. Cross-lingual text-to-speech

In our first set of experiments, we attempted cross-lingual text-

to-speech; that is, synthesis in languages that are unseen in our

models’ training data, using combinations of the data described

in Table 1. PFs of unseen phonemes are derived from the IPA.

Due to the nature of our method, the resulting speech is ac-

cented and may retain prosodic characteristics of the source lan-

guages. We started with a de monolingual multispeaker model,

and gradually augmented the training data with es and then ko,

while we evaluated the models’ performance in synthesizing en,

fr and it. As we could only conduct formal evaluations for a

limited number of language configurations, in this experiment

we opted to investigate whether the addition of data from: (i)

a language phylogenetically close to the target language can

favour cross-lingual synthesis (the addition of es data for fr and

it), (ii) a typologically diverse language (ko) can degrade syn-

thesis of a cross-lingual model based on PFs. Subsequently,

we trained two models on English and one Romance language

(en+es, en+fr) as well as an es+ko model which we aimed to

compare to de+es+ko with regards to the effect of the propor-

tion of the distanced language data within the training data.

For each training setup, we conducted the experiments us-

ing as many test speakers as are the languages in the training

setup, and for each language, one female speaker was selected

as test voice. That is, for the de+es setup, the en, fr, it sam-

ples have been generated by a de female speaker as well as an

es female speaker.1 We follow this protocol aiming to control

a potential effect of the proximity of the source speaker’s lan-

guage to any of the target languages. As no significant variation

was observed, the results presented in Table 2 are the averaged

values among all test speakers.

The intelligibility evaluation of the models was conducted

first. For any given test speaker and target language combina-

tion, we created 1-4 intelligibility tests, as many as the number

of training setups in which the speaker’s data were contained.

Each of the tests comprised the 35 test sentences, where we

randomly drew samples from all training setups for the target

language, such that each listener would evaluate several models

without listening to each sentence more than once. We con-

ducted minimal processing of the responses prior to analysis,

i.e. removed punctuation and normalized case, while we could

not resolve homographs or correct spelling mistakes. In the

second test, we evaluated how natural the cross-lingual sam-

ples were. As we are interested in the relationship between the

count of unseen phonemes and the target language intelligibility

and naturalness, we calculate the unseen phoneme rate (UPR)

for each train-test setup. The UPR is computed per test utter-

ance, as the number of phonemes not present in the training

language(s), divided by the total number of phonemes in the ut-

terance. We report the mean and standard deviation of the UPR

over all test language’s utterances.

Table 2 shows that augmenting the training data of a mono-

lingual or multilingual PFs model with diverse language data

can improve intelligibility and naturalness in an unseen lan-

guage. This improvement is apparent for en, first generated

from a monolingual, then a small multilingual and finally an

augmented model with ko. Interestingly, the addition of a ty-

pologically diverse language in the latter setup improves intel-

ligibility, while MOS is not significantly affected. We observe

that when the unrelated language data exceed in quantity the

data of the related language, the PFs model’s intelligibility is

severely affected; es+ko, where the size of ko data is almost

double the size of es, performs poorly in intelligibility in all test

languages. Replacing ko with en results in a more intelligible

model. We note that naive listeners assign low MOS scores to

accented speech, even if the speech is highly intelligible. This

is the case especially for it, where WER is the lowest across

all languages but listeners consistently assign low values across

setups. This could also be linked to cultural factors of percep-

tion of accented speech. For most target languages, we observe

that MOS is negatively correlated to UPR and WER is corre-

lated to UPR, suggesting that in high UPR stress test scenarios,

the approximation of unseen phonemes cannot attenuate the ef-

1Samples at: https://innoetics.github.io/publications/phonological-
features/index.html



Table 3: Cross-lingual speaker adaptation setup and MOS results of naturalness and speaker similarity with 95% confidence interval

Adaptation Setup Naturalness (MOS) Speaker Similarity (MOS)

utt dur(s) de fr it es de fr it es

en 32 217 3.63±0.14 3.72±0.11 3.22±0.09 3.30±0.08 4.15±0.12 4.28±0.11 3.82±0.10 4.28±0.09

(seen) 8 41 3.78±0.15 3.84±0.11 3.38±0.08 3.38±0.07 3.99±0.14 4.22±0.12 3.83±0.10 4.13±0.09

2 6 3.25±0.18 3.11±0.13 2.88±0.10 2.89±0.09 3.60±0.17 3.68±0.14 2.99±0.11 3.44±0.12

gr 32 262 3.04±0.15 3.22±0.12 2.98±0.09 3.07±0.09 3.82±0.18 4.05±0.12 3.56±0.12 4.04±0.09

(unseen) 8 78 3.45±0.13 3.54±0.12 3.17±0.09 3.14±0.09 3.84±0.17 4.21±0.11 3.63±0.12 4.13±0.09

2 20 3.20±0.13 3.22±0.12 2.97±0.09 2.91±0.09 3.80±0.17 4.13±0.12 3.48±0.12 4.00±0.10

fects of pronunciation errors in quality. Our informal evaluation

showed that although in most cases the approximations made

by the model are to neighbouring phonemes, in de+es→it some

phonemes collapse to inappropriate phonemes, affecting results

for this model. Notably, its performance is improved with the

addition of the unrelated language data, even if UPR remains

unchanged (de+es+ko outperforms de+es for it).

3.4. Cross-lingual speaker adaptation

Our PFs model is trained on the entire dataset (Table 1) for

600K iterations, as diverse language data have been shown to

ameliorate its performance. Then, it is fine-tuned to the speaker

adaptation data for 5K iterations. An informal evaluation of

adaptation configurations is conducted by alternatively freezing

the weights of the attention, the encoder and both. We conclude

that the frozen encoder is key to preserving the pronunciation

of the target language, while the frozen attention contributes to

the stability of the model, preventing end-of-sentence attention

failures. We keep both modules frozen in our adaptation setup.

Due to our choice of PFs and the language-independent na-

ture of the model, there are no restrictions to either the target

language the model can generate speech in, or to the language

of the speaker adaptation data (adaptation language). As we aim

to investigate how the quality of the adapted speech synthesized

by the PFs model is affected by the presence of the adaptation

language in the training data, we select 2 male voices from an

internal dataset, a native American English speaker (en) and a

Greek native speaker (gr). Our corpus selection tool [33] was

used to sort each voice’s corpus on the basis of phonetic cover-

age of the language, and the 32 most phonologically rich sen-

tences were selected as the adaptation corpus per speaker. In

our first set of experiments, we fine-tune the model using the

speaker adaptation data from the seen language (en), while in

the second, we use the adaptation data from the unseen language

(gr). Furthermore, within each language setup, we experiment

with decreasing the amount of adaptation data. We are primar-

ily interested in the extent to which we can limit the adaptation

data for the multilingual PFs model. Also, we are eager to ex-

amine whether there is any difference in the quantity of adapta-

tion data required to achieve comparable quality results in case

of a seen and an unseen adaptation language. We formally eval-

uate models fine-tuned on 32, 8, 2 top utterances, as sorted by

the corpus selection tool. Since these sentences in each of the

languages differ in length, and the voices differ in speaking rate,

the setups may vary in audio duration. We formally evaluate all

models’ performance in test languages unseen in the adaptation

data, i.e. de, fr, it, es, against naturalness and speaker similarity

to the original speaker. For the similarity tests, the speaker’s

reference sample is provided in the original language.

As expected, the adapted models presented here perform

better than cross-lingual TTS models (Table 2) as the test lan-

guages are seen during training and thus the output speech is not

accented. The results in Table 3 show a tendency of slight dete-

rioration of the quality of the adapted speech with the decrease

in the amount of adaptation data, across languages. However,

for most languages and setups the differences are not statisti-

cally significant and fall within the confidence interval range

of the mean, showing that the proposed PFs model is robust

to very limited data. For the seen adaptation language, the de-

crease from 32 to 8 utterances, i.e to 41 s of speech, bears no

significant changes in perceived naturalness or speaker similar-

ity of the adapted speech, across all languages. The extreme

en-2 scenario, i.e. adaptation with 6 s of speech deteriorates

the model. For the unseen adaptation language, the same pat-

tern is observed. Notably, gr-8 appears significantly better in

naturalness compared to few setup-test language combinations

(gr-32:de, gr-2:it, gr-2:es), but given the generalized tendency

of en-8 and gr-8 models to perform better, we suspect that

models adapted on 8 utterances were favoured by the number

of fine-tuning iterations used throughout the adaptation exper-

iments (5K). Speaker similarity is retained notably high across

data quantity setups without statistically significant differences.

Comparing the two adaptation language setups, we conclude

that the use of an unseen language for adapting the PFs model

does not entail more data for achieving comparable results to

adapting with a seen language.

4. Conclusions

In this work, we train a language-agnostic multispeaker

Tacotron-based model conditioned on a set of IPA-derived

phonological features. The model can perform cross-lingual

TTS in any language and is evaluated in high unseen phoneme

rate scenarios of various source-target language configurations.

We find that augmenting the training data with diverse language

data can improve intelligibility and naturalness in an unseen

language. We observe that the cross-lingual speech quality is

negatively correlated to the ratio of unseen phonemes. Sub-

sequently, we show that cross-lingual speaker adaptation with

very few data is possible by fine-tuning the model on a new

speaker of a seen or unseen language. We experiment with the

effect of the size of the adaptation data on speech quality and

find that speaker similarity is retained notably high across data

quantity setups. With as few as 32 and 8 utterances of target

speaker data, we achieve high speaker similarity scores and nat-

uralness comparable to similar works. In the extreme case of

2 utterances, performance is similar for seen and unseen adap-

tation languages, showing that our PFs model is robust to very

limited data. In future work, we plan to form a better under-

standing of how the speaker-id assigned to the unseen adapta-

tion language’s speaker affects the model. Moreover, we plan to

investigate alternative phonological features as well as whether

the benefits of such representations can be leveraged for mono-

lingual speaker adaptation in extreme low resource scenarios.



5. References

[1] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss,
N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron:
Towards end-to-end speech synthesis,” in Proc. Interspeech, 2017,
pp. 4006–4010.

[2] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural tts
synthesis by conditioning wavenet on mel spectrogram predic-
tions,” in Proc. ICASSP, 2018, pp. 4779–4783.

[3] J. Fong, J. Taylor, K. Richmond, and S. King, “A comparison be-
tween letters and phones as input to sequence-to-sequence models
for speech synthesis,” in Proc. ISCA Speech Synthesis Workshop,
2019, pp. 223–227.

[4] W. Ping, K. Peng, A. Gibiansky, S. Ö. Arik, A. Kannan,
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