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Abstract
Many previous audio-visual voice-related works focus on
speech, ignoring the singing voice in the growing number of
musical video streams on the Internet. For processing diverse
musical video data, voice activity detection is a necessary step.
This paper attempts to detect the speech and singing voices
of target performers in musical video streams using audio-
visual information. To integrate information of audio and vi-
sual modalities, a multi-branch network is proposed to learn au-
dio and image representations, and the representations are fused
by attention based on semantic similarity to shape the acous-
tic representations through the probability of anchor vocaliza-
tion. Experiments show the proposed audio-visual multi-branch
network far outperforms the audio-only model in challenging
acoustic environments, indicating the cross-modal information
fusion based on semantic correlation is sensible and successful.
Index Terms: Audio-visual voice activity detection, cross-
modal fusion, attention, multimedia signal processing

1. Introduction
With the popularity of musical videos on social platforms, a
wide variety of musical videos have been uploaded to the In-
ternet. To recognize speech and singing voices in these videos,
voice activity detection (VAD) is a necessary preprocessing to
identify the start and end time of human voice activities. VAD
has attracted many interests due to its wide applications such as
speech [1, 2] and music information processing [3].

In scenes of musical video streams, usually one or more
anchors (performers) sing or talk to the audience in front of the
camera, while music is being played in the background, contain-
ing voices of other people and accompaniments. Besides, there
may be other sounds such as applause, cheers, and screams
from audiences. This paper aims to detect the singing voice and
speech of an anchor (the target performer) in musical videos,
which have a challenging acoustic environment like a cocktail
party. In such noisy environments, audio-only VAD methods
[4, 5, 6, 7] are difficult to work accurately and effectively be-
cause the sound of various musical instruments, cheers and ap-
plause from audiences, and other non-target sound signals, will
interfere with the audio-only VAD. Besides, voices from other
non-target people in the background music can be mistaken as
active voices. It is difficult to distinguish the target voice from
various non-target sounds using only audio information, and it
is more difficult to further identify the target singing voice and
speech when they are embedded in transient interferences and
highly non-stationary noises [8] from the background. That is,
audio-only VAD methods do not work well in musical videos.
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The visual information from video is more robust than the
audio information from noisy acoustic environments. The facial
information of an anchor can directly reflect whether the anchor
is vocalizing. So, audio-visual VAD (AVVAD) is introduced to
utilize the visual modality to make up for deficiencies of audio-
only VAD in complex acoustic environments. Visual features
are used to identify natures of lips in AVVAD [9] for speech pro-
cessing. By analyzing lip shapes during speech and non-speech,
an appropriate visual parameter [10] is used for detecting sec-
tions of voice activity in speech embedded in non-stationary
noise. Even in clean acoustic conditions using visual channels
in addition to speech results in significantly improved classifica-
tion performance [11]. However, the above audio-visual works
mainly focus on speech but not on general sounds such as mu-
sic and singing voice. This paper aims to detect the anchor’s
speech and singing voice in musical video streams, which is
more challenging because there are not only a lot of speech-like
noises but also other people’s voices in audio streams.

To ignore the interference of acoustic noise and pay atten-
tion to detect voices of the anchor (target performer) in musical
videos, this paper uses visual information that is not affected
by acoustic noises to assist the model to more accurately judge
voices source. Therefore, how to fuse information between two
modalities to achieve a better combination effect is the core
challenge of this work. Audio-visual integration strategies in
previous works can be divided into three categories: feature fu-
sion (FF ) [12], decision fusion (DF ) [13], intermediate fusion
(IF ) [14]. FF is simple splicing of audio and visual features
to form a new feature set and modeling it. Based on the mod-
eling of audio and image stream respectively, DF controls the
final decision result by stream weight. IF attempts to model the
fusion of intermediate representations of audio and visual fea-
tures. Compared with IF, DF cannot take advantage of the tem-
poral and semantic correlation between audio and visual fea-
tures. To exploit the correlation between audio and visual fea-
tures in musical videos, this paper uses IF to integrate audio and
visual vectors and make comprehensive decisions, that is, high-
level representations of acoustic and image features are fused
with the attention mechanism based on the semantic similarity.

In this paper, the correlation in the semantic space between
the voice representations and the anchor vocalization represen-
tations is used to determine whether the voice comes from the
anchor. The voice representations are adjusted according to the
corresponding correlation coefficient based on attention. This
paper attempts to explore the possibility of cross-modal fusion
based on semantic similarity between different modalities to
help the model actively learn how to fuse cross-modal informa-
tion, let the model decide “how” to combine given multi-modal
information most optimally, rather than based on artificial rules.
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Figure 1: The proposed attention-based AVVAD (ATT-AVVAD) framework.

The main contributions of this paper are: 1) a multi-branch
network is proposed for AVVAD to learn the high-level repre-
sentations of different target events, and fuse the cross-modal
information based on the semantic correlation by attention; 2)
the possibility of detecting both the speech and singing voice of
the target performer in challenging noisy acoustic environments
is explored; 3) the intermediate representations of the proposed
AVVAD model are visually analyzed to further investigate the
performance of the model. This paper is organized as follows,
Section 2 shows the attention-based audio-visual framework.
Section 3 describes the dataset, baseline, experimental setup,
and analyzes the results. Section 4 gives conclusions.

2. Multi-branch ATT-AVVAD framework
The proposed attention-based AVVAD (ATT-AVVAD) frame-
work in Figure 1 consists of the audio-based module, image-
based module, and attention-based fusion module. The audio-
based module produces acoustic representation vectors for four
target audio events: Speech of the anchor, Singing voice of the
anchor, Silence, and Others. The image-based module aims to
obtain the possibility of anchor vocalization based on facial pa-
rameters. Finally, an attention-based module fuses audio-visual
information to comprehensively consider the bi-modal informa-
tion to make final decisions at the audio-visual level.

2.1. The audio-based module (audio branch)

The goal of the audio-based module is to predict the probability
of four target event classes (Silence, Speech, Singing, Others)
at the audio level, wherein Singing and Speech only refer to
the singing voice and speech of the anchor, rather than those
from other people. Different from typical sound event detection
(SED) [15] models, the audio branch in Figure 1 attempts to
generate high-level core acoustic representations for each target
event class at the end of each output. In Figure 1, a multi-output
convolutional recurrent neural network (CRNN) is used to ex-
tract the core representations of different event classes. The log
mel-spectrogram [16] is extracted from the audio clip and input
into the network. Then there are four blocks and each block
contains gated linear units (GLUs) [17], a convolutional layer, a
batch normalization layer [18], and a ReLU [19]. GLUs can be
used to effectively learn local shift-invariant patterns and acous-
tic representations of target events from the spectrogram [20].

To obtain a separate acoustic representation vector for each
target event, after the blocks there are four independent em-
bedding layers to extract core representation. Each embedding
layer includes a GRU layer to capture temporal information,
followed by two fully connected layers. The output of the first

fully connected layer is regarded as the core representation vec-
tor of the corresponding event, and will be used to combine with
the visual embedding vector. The second fully connected layer
with one unit is a binary classification with sigmoid [21] to pre-
dict the probability of the corresponding event in the current au-
dio branch input. Please visit the source code on our homepage
(https://github.com/Yuanbo2020/Attention-based-AV-VAD) for
the specific parameters and real video detection demos.

2.2. The image-based module (visual branch)

In musical videos, there are both a lot of speech-like instrumen-
tal accompaniment sounds and other people’s voices. These
interferences result in the poor performance of relying on the
audio signal to detect the anchor’s speech and singing voice be-
cause it is difficult to determine the source of voices with audio
alone. Hence, it is necessary to combine the anchor’s visual
information, such as the change of eye and lip contours, to dis-
tinguish whether voices are from the anchor or other people.

The visual branch aims to obtain the core representation
vector of the anchor vocalization and to assist in judging
whether voices are from the anchor. To obtain the probabil-
ity of the anchor vocalization, a fixed-length image sequence
corresponding to the input time of the audio branch is input to
the network. The visual branch and audio branch have a simi-
lar structure with different parameters. Experiments [22] show
convolutional layers are more effective than GRU layers in im-
age feature extraction, so there are no GRU layers in the visual
branch. Similar to the structure of the audio branch, there are
two fully connected layers after four blocks in the visual branch.
The output of the dense layer with 128 units is regarded as the
core representation vector of the anchor vocalization, the final
classification layer with one unit is a binary classification with
sigmoid to predict the probability of the anchor vocalization.

2.3. Attention-based fusion module

In videos, visual events usually occur together with acoustic
events and they are coordinated. The facial information can
reflect whether the anchor is vocalizing or not. To explore the
correlation between the anchor’s voice activity and face param-
eters, this paper attempts to fuse the audio and visual high-level
representation vectors based on the semantic similarity by atten-
tion mechanism to make comprehensive decisions for detecting
the four target event classes at the audio-visual level.

In Figure 1, the subbranches in the audio branch output the
high-level representation vector of Silence, Speech, Singing,
and Others, respectively. The visual branch outputs the rep-
resentation vector to represent the anchor vocalization. By the
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attention module, the correlation between acoustic representa-
tion vectors and visual vocalization vector in the semantic space
is calculated to strengthen audio-level representations, then the
network can pay more attention to sound events related to the
anchor. Given {q1, q2, q3, q4}∈ R

128×1 denote the acoustic
embedding vector of Silence, Speech, Singing and Others in the
audio branch, respectively. Q = [q1, q2, q3, q4]. K∈ R

128×1

denotes the visual vocalization vector. The attention (ATT )
[23] can be defined as:

ATT = Softmax(QTK/
√

dk) (1)

where dk is the dimension of K. ATT is a 4× 1 vector con-
taining the scaling factors to be applied to the representation
vector of the corresponding acoustic event. After multiplying
the acoustic event vector with the corresponding attention scale
factor, the audio-visual event vector is obtained.

Figure 2 shows the core idea of the attention-based fusion,
when the audio branch detects the speech or singing voice, and
the visual branch predicts the anchor is vocalizing at this time,
the corresponding acoustic event vector will be given more at-
tention and transmitted to the audio-visual module. With the
scaling effect of the attention factor, we try to train the model to
find such a relationship: when the audio branch detects speech
or singing voice, and the visual branch indicates the anchor is
vocalizing, then representations of the speech or singing voice
will be relatively enhanced, that is, representations of the au-
dio branch is confirmed in the audio-visual module. Represen-
tations given by the audio branch are corrected, and errors of
the audio-visual module are reduced. That is, only when repre-
sentations of the audio and visual branch are consistent in the
semantic space, the corresponding acoustic representations will
be relatively enhanced, while the importance of other acoustic
event representations will be relatively weakened.

To consider the information of audio, visual, and audio-
visual modality at the same time in the training phase, the losses
of different modules are calculated together. The final loss func-
tion of the ATT-AVVAD model is:

L =λ1La−sil + λ2La−spe + λ3La−sin + λ4La−oth

+ λ5Lv−voc + λ6Lav−sil+

λ7Lav−spe + λ8Lav−sin + λ9Lav−oth

(2)

where La, Lv and Lav denote the loss of audio branch, visual
branch and audio-visual module; sil, spe, sin and oth denote
silence, speech, singing and others; voc denotes vocalizing. λi

is the scale factor of each loss function, the size of λi determines
the importance of each loss function in training.

3. Experiments and results
3.1. Dataset, Baseline, and Evaluation metrics

To train the ATT-AVVAD model to detect both target speech
and singing voice in challenging acoustic environments, a 500-
minute video dataset with frame-level labels is used. The du-
ration of the dataset for training, validation, and testing is 360
mins, 40 mins, and 100 mins, respectively. To prevent the model
bias caused by the unbalanced number of male and female an-
chors in the training phase, the total duration of live broadcasts
of male and female anchors is close in the dataset.

In training, log mel-bank energy with 64 banks [24] of the
input audio stream is used in the audio branch, which is ex-
tracted by STFT with Hamming window length of 44 ms and
overlap of 50% between the window. To comprehensively con-
sider the contextual information, the input of audio branch is
a moving feature block whose time length is consistent with
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Figure 2: The main idea of attention-based fusion. Subgraph (a)
shows the audio and visual representation vectors in the same
semantic space. Subgraph (b) is the final audio-visual represen-
tation vector of target events after the attention-based fusion.

that represented by the image sequence of the visual branch.
ATT-AVVAD model is expected to be used online, a short la-
tency is required. So a lightweight face detection algorithm
[25] is used to pre-mark the face in visual inputs, to reduce
the computational burden of the model and help it to find fo-
cal areas faster and more accurately. The output of each branch
in ATT-AVVAD is binary classification, hence Adam optimizer
[26] with a learning rate of 0.001 is used to minimize the binary
cross-entropy. Dropout [27] is used to prevent overfitting.

To compare the performance of our proposed method com-
prehensively, two baseline systems are considered. A common
and typical multi-modal recurrent neural model [28] with two
branches similar to the proposed ATT-AVVAD is used as the
audio-visual baseline (Base-AV ). A compound convolutional
recurrent neural network [3] trained by transfer learning is used
as the audio-only baseline (Base-A ) to compare the perfor-
mance of the ATT-AVVAD from more perspectives.

For evaluation metrics, event-based precision (P ), recall
(R ), F-score and Error rate (ER ) [29] are used to analyze the
performance of the model. Compared with segment-based met-
rics used in previous studies [30], event-based metrics are more
rigorous and accurate to measure the location of events. Higher
P, R, F and lower ER indicate a better performance.

3.2. Results and Analysis

This section tries to analyze the performance of the proposed
method based on the following Research Questions (RQ):

• RQ1: λi in the final loss function determines the importance
of each loss function in training [31]. What effect do different
values of λi have on the performance of the model?

The four classes of target events in our task are equally im-
portant, so λi related to the event sub-branch in the audio branch
are the same in Table 1. The same goes for audio-visual branch.
In Table 1, given λ1 is 1 and λ5 is 0.5, it is equivalent to attach-
ing importance to the audio silence branch and reducing the im-
portance of the visual vocalization branch. Different values of
λi represent the difference in importance between audio infor-
mation, visual information, and audio-visual information. Table
1 shows that for the VAD task, the joint audio-visual informa-
tion is more important than the audio information, and the audio
information is more important than the visual information.

Table 1: Results of different values of λi on the test dataset.
{λ1, λ2, λ3, λ4} {λ5} {λ6, λ7, λ8, λ9} F-score (%)

{1, 1, 1, 1} {1} {0.5, 0.5, 0.5, 0.5} 76.38

{1, 1, 1, 1} {0.5} {1, 1, 1, 1} 77.01
{0.5, 0.5, 0.5, 0.5} {1} {1, 1, 1, 1} 76.73

{1, 1, 1, 1} {1} {1, 1, 1, 1} 77.81

{0.5, 0.5, 0.5, 0.5} {0.5} {1, 1, 1, 1} 77.90

{0.5, 0.5, 0.5, 0.5} {0.5} {0.5, 0.5, 0.5, 0.5} 77.12
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Figure 3: Visualization of core representation vectors distribu-
tion from a test sample using t-SNE [32]. The vectors in sub-
graph (a) are from the audio branch, vectors in subgraph (b)
are from audio-visual modules after attention-based fusion.

• RQ2: Does the proposed ATT-AVVAD in this paper perform
better than the audio-visual baseline Base-AV? Are the detec-
tion results of ATT-AVVAD better than audio-only VAD base-
line Base-A, and how much improvement is there?

To compare the performance of the proposed method, Ta-
ble 2 shows the detailed results of the proposed ATT-AVVAD,
Base-AV and Base-A. The last classification layer of Base-AV
uses the Softmax activation function to make decisions, which
means that each event class in the classification layer is equally
important. As mentioned before, λi is the scale factor of each
loss function. For a fair comparison between the proposed ATT-
AVVAD model and audio-visual baseline Base-AV, all λi in L
are equal to 1 in the following results.

The results in Table 2 show that: 1) in challenging noisy
environments like musical video, the performance of anchor’s
voices detection based on audio-visual information (Base-AV
and ATT-AVVAD ) far outperforms that of the audio only ap-
proach (Base-A ). Compared with the audio-only Base-A with
an ER of 0.86 and F-score of 40.93%, the ER and F-score of
the ATT-AVVAD in this paper are 0.39 and 77.81%. 2) Even
though both are based on audio-visual information, the cross-
modal learning method based on attention fusion proposed in
this paper has a lower ER and more accurate detection results
than the typical audio-visual model Base-AV, which means the
bi-modal framework proposed in this paper is effective, and the
attention-based fusion mechanism is helpful.
• RQ3: What changes have taken place in the model learning
before and after the attention-based fusion?

To gain deeper insights into the effect of attention-based fu-
sion on the model, the distribution of the core representation
vector representing four target event classes before and after
the fusion is visualized. The representation vectors of target
events in the audio branch can reflect the decision tendency of
the model before the fusion, and the corresponding audio-visual
representation vectors can reflect modified results of the model
after the attention fusion. As shown in Figure 3, before fu-
sion, the model can roughly divide different target classes in the
audio branch, but the classification boundary interval between
each class is not obvious, and each cluster is not compact. Af-
ter focusing on the visual vector based on attention, there is
a clear classification boundary between different classes, and

Table 2: Event-based evaluation of detection results.
ER P (%) R (%) F-score (%)

Base-A 0.86 47.93 35.72 40.93
Base-AV 0.72 66.17 53.41 59.11

ATT-AVVAD 0.39 85.24 71.57 77.81

Figure 4: Visualization of acoustic representation vectors and
visual vocalization vector distribution from a test sample using
t-SNE. The vector (black dots) representing the vocalizing of the
anchor is distributed on the side representing the voices of the
anchor (green dots for singing, red dots for speech).

each class is more tightly clustered. This indicates the pro-
posed attention-based fusion does play a regulating role and
makes the final joint classification in the audio-visual module
easier. Based on attention fusion, the distribution of acoustic
core representation vectors and visual vocalization vector in se-
mantic space tends to be aligned as shown in Figure 4. The
visual vocalization vector is distributed on the side of the vec-
tors of speech and singing voice, and is away from the event
vectors without the anchor’s voices, which means the semantics
of audio and visual vectors are consistent and the cross-modal
information fusion based on the correlation between acoustic
embeddings and visual vocalization vectors is reasonable.

The bi-modal ATT-AVVAD is effective, but how big is the
effect of different modal branches? The ablation studies [33] in
Table 3 show the results of ATT-AVVAD after removing certain
structures. The detection result based on pure visual informa-
tion is the worst, perhaps because the opening and closing of the
mouth of the anchor are binary, it is difficult to use the binary in-
formation to detect four types of target events. Compared with
the audio-only detection results, the bi-modal detection results
have been improved, indicating that it is useful to use visual
information to correct audio information to assist judgment.

4. Conclusion
To detect the speech and singing voice of the anchor in musical
video streams, a multi-branch ATT-AVVAD framework is pro-
posed with attention-based fusion by semantic similarity, which
performs well in noisy environments. Experiments show that:
1) the performance of the audio-visual model far outperforms
that of the audio-only model in challenging acoustic environ-
ments; 2) the multi-branch network that can produce core rep-
resentation vectors for target events, and attention-based fusion
are effective; 3) the cross-modal information fusion based on
semantic similarity is successful.
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Table 3: Ablation experiments of the ATT-AVVAD model.
Audio module Visual module Fusion module F-score (%)

� � � 68.59

� � � 33.92

� � � 77.81
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