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Abstract

Keyword spotting is an important research field because it plays
a key role in device wake-up and user interaction on smart
devices. However, it is challenging to minimize errors while
operating efficiently in devices with limited resources such as
mobile phones. We present a broadcasted residual learning
method to achieve high accuracy with small model size and
computational load. Our method configures most of the resid-
ual functions as 1D temporal convolution while still allows
2D convolution together using a broadcasted-residual connec-
tion that expands temporal output to frequency-temporal di-
mension. This residual mapping enables the network to effec-
tively represent useful audio features with much less computa-
tion than conventional convolutional neural networks. We also
propose a novel network architecture, Broadcasting-residual
network (BC-ResNet), based on broadcasted residual learn-
ing and describe how to scale up the model according to the
target device’s resources. BC-ResNets achieve state-of-the-art
98.0% and 98.7% top-1 accuracy on Google speech com-
mand datasets vl and v2, respectively, and consistently out-
perform previous approaches, using fewer computations and
parameters. Code is available at https://github.com/Qualcomm-
Al-research/bcresnet.

Index Terms: keyword spotting, speech command recognition,
deep neural network, efficient neural network, residual learning

1. Introduction

Designing efficient architecture is an important topic in neural
speech processing. In particular, for keyword spotting (KWS),
which aims to detect a predefined keyword, network efficiency
is essential because it is usually performed in edge devices
while requiring low latency. Recent efficient CNNs [1, 2, 3, 4]
are usually made up of repeated blocks of the same struc-
ture and are based on residual learning [5] and depthwise sep-
arable convolutions [6]. This trend continues in CNN-based
KWS approaches, and they use either 1D temporal or 2D
frequency X temporal convolutions with pros and cons. In the
case of using temporal convolution [7, 8, 9], they require less
computing than 2D approaches. However, the convolution’s in-
ternal biases, such as translation equivariance, cannot be ob-
tained for the frequency dimension. On the other hand, the ap-
proaches based on 2D convolution still require more computa-
tions than 1D methods despite efficient designs like using depth-
wise separable convolution [10, 11].

In this paper, we introduce broadcasted residual learning
to address these problems of 1D or 2D convolution. Instead of
processing all features in 1D or 2D, frequency-wise convolution
performs on the 2D features. Then, we average the 2D features
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Figure 1: Model Size vs. Google speech command dataset
vl Test Accuracy. The proposed BC-ResNets significantly out-
perform other KWS approaches. The smallest BC-ResNet-1
achieves 96.6% accruacy with less than 10k parameters. We
scale the BC-ResNet-1 by channel width with a factor of 8, and
BC-ResNet-8 achieves the state-of-the-art 98.0%. The details
are in Table 3.

by frequency to get temporal features. After some temporal op-
erations, we can apply residual mapping to the input 2D fea-
ture by broadcasting the 1D residual information. This learning
method enables convolutional processing in the frequency di-
rection to obtain the advantage of 2D CNNs while minimizing
computational cost. Based on this residual learning method, we
propose a novel network named broadcasting-residual network
(BC-ResNet). BC-ResNet achieves top-1 accuracy 96.6% and
96.9%, respectively on the Google speech command datasets,
vl and v2 [12] with less than 10k parameters. And by scaling up
BC-ResNet, our method achieves state-of-the-art performance
with a much smaller memory footprint than other keyword spot-
ting methods, as shown in Figure 1.

Our contributions are summarized as follows:

(1) We introduce a brand new framework termed, broad-
casted residual learning, which utilizes the advantage of 1D
temporal and 2D convolution while minimizing the increase of
computation.

(2) We propose a novel model architecture, BC-ResNet,
based on broadcasted residual learning and obtain a family of
networks, BC-ResNets, by increasing the model width.

(3) The comprehensive experiments show our method’s ef-
fectiveness in keyword spotting, and our model achieves state-
of-the-art accuracy while reducing model parameters and com-
putation.

2. Proposed Method

In this session, we introduce broadcasted residual learning that
can obtain the advantages of 1D and 2D convolution while min-
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imizing an increase of computation. First, we define the broad-
casted residual learning and describe a novel network architec-
ture, the broadcasting-residual network (BC-ResNet). Follow-
ing, we introduce a family of models, BC-ResNets, by channel
scaling.

2.1. Broadcasted Residual Learning

A typical residual block [5] can be expressed as y = = + f(x),
where x and y are input and output features and function f com-
putes the residuals. Here the identity shortcut x and residual
f(x) are usually in same dimension and summed by simple ad-
dition. To utilize both 1D and 2D features together, we decom-
pose the function f into f; and fo which are the temporal and
2D operations, respectively. We average the 2D features after
f2 by frequency to get temporal features and expand the tem-
poral feature back to the 2D shape after f1. We repeatedly do
the averaging and expanding at each residual block and propose
Broadcasted residual learning. Broadcasted residual learning
employs a residual block of the form,

y = x + BC(f1(avgpool(f>(x)))), e

as depicted in Figure 2 left, where BC, the Broadcasting im-
plies the expanding operation to frequency dimension, and avg-
pool is average pooling by frequency dimension. In this way,
broadcasted residual learning expands and adds a residual in-
formation to bigger dimension of identity shortcut.
BC-ResNet Block The overall architecture is depicted in Fig-
ure 2 right. In equation 1, we ignore batch and channel dimen-
sions for clarity, and the input feature z is in R"*%, where h
and w correspond to the frequency and time dimensions, re-
spectively. The 2D feature part, fo consists of a 3x1 frequency-
depthwise convolution and SubSpectral Normalization (SSN)
[13] which splits the input frequency into multi-groups to sepa-
rately normalize them. Here we use SSN instead of Batchnorm
(BN) [14] to achieve frequency-aware temporal features. After
averaging by frequency, we get features in R1*%. The f; is a
composite of a 1x3 temporal depthwise convolution followed
by BN, swish activation [15], 1x1 pointwise convolution, and
channel-wise dropout of dropout rate p. The broadcasting (BC)
operation expands the feature in R'** to R <%,

To be frequency convolution aware over the blocks, we add
an auxiliary 2D residual connection from 2D features. In sum-
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Figure 2: Left, Broadcasted Residual Learning described in Equation 1, where x € R®*" ™ with number of channels c. Right, BC-
ResBlock. The BC-ResNet block contains a frequency-depthwise convolution with a SubSpectralNorm. Then the feature is averaged
by frequency followed by temporal-depthwise separable convolution. Temporal feature is broadcasted to 2D features at residual con-
nection. In a transition block, we have an additional 1x1 convolution on the front to change the number of channel without identity
shortcut.

Table 1: BC-ResNet-1. Each row is a sequence of one or
more identical modules repeated n times with input shape of
channel X frequency x time, total time steps W, and the number
of output channels c. Changes in number of channels and down-
sampling by stride s belong to the first block of each sequence of
BC-ResBlocks. The temporal convolutions in all BC-ResBlocks
use dilation of d.

Input | Operator [n ] ¢ | s | d
1 x40 x W conv2d 5x5 - BN - ReLU - 16 2,1) 1
16 x 20 x W BC-ResBlock 2 8 1 1
8x20x W BC-ResBlock 2 12| ey | 12
12x 10 x W BC-ResBlock 4116 | @) | 14
16 x 5 x W BC-ResBlock 4 20 1 (1,8)
20 x5 x W DWconv 5x5 - 20 1 1
20x 1 x W conv2d 1x1 - BN - ReLU - 32 1 1
32x1xW avgpool - - - -
32x1x1 conv2d 1x1 - 12 - -
mary, the proposed BC-ResBlock becomes
y =z + fa(z) + BC(f1(avgpool(fa(x)))). @

We also define a transition block (Where the number of In/Out
channels are different) with two additional modifications; (a)
add pointwise convolution where channel changing occurs fol-
lowed by BN and ReLU activation. (b) No identity shortcut.

Using the proposed block, we can achieve an efficient KWS
design while keeping 2D features. In a tiny network, pointwise
convolution takes the most computations [3]. We perform the
temporal depthwise and the pointwise convolution on temporal
features and reduce their computing load by a factor of h com-
pared to that of 2D depthwise separable convolutions.

2.2. Network Architecture

We design the base model, BC-ResNet-1, with parameters less
than 10k as shown in Table 1. The model has a 5x5 convolution
on the front for downsampling by frequency with a BN and a
non-linearity and followed by a total of 12 BC-ResBlocks. We
split the blocks into four stages which stand for a sequence of
BC-ResBlocks whose activations are the same width. Inspired
by [4], we explore the several choices and get the combination,
2,2,4, and 4 blocks for each stage, which implies that the model
focuses more on performing high-level features. If the channel



width c is different from the input width, the first block of a
stage is a transition block as in Figure 2 right. To do residual
learning, we keep the frequency and temporal dimension by
using zero-padding for each depthwise convolution. After the
BC-ResBlocks, there is a 5x5 depthwise convolution without
zero-padding in frequency dimension followed by a pointwise
convolution that increases the number of channels before av-
erage pooling. Here we add the 5x5 depthwise convolution to
reduce the computations of the pointwise convolution behind it.
Many CNN-based KWS approaches use dilated convolu-
tions to achieve required receptive fields [10, 11, 9], and the
proposed BC-ResNet also utilizes dilated convolutions. We em-
pirically found that it is beneficial to keep the temporal dimen-
sion. Therefore we used stride s in the frequency direction and
dilation d in the temporal dimension.
Model Scaling Previous KWS works usually scale their models
by changing depth and width together [7, 9, 8] which makes
it difficult to fit each computational or memory constraint. We
explore compound [4], depth only, and width only scaling and
decide to scale up the base model, BC-ResNet-1, by increasing
the channel width 7 times to get a BC-ResNet-7. Therefore the
model is easy to scale with any predefined resources.

3. Related Works

Efficient CNN-based KWS While NASNet [16] and Amoe-
baNet [17] introduced automatic ways to optimize networks,
there are successful handcrafted CNN designs such as Mo-
bileNets [1, 2] and ShuffleNet [3] which utilize depthwise sepa-
rable convolution, inverted bottleneck blocks, and channel shuf-
fle. Inspired by the designs, there have been various CNN-
based KWS approaches. [10] uses residual learning and DS-
ResNet [11] adds depthwise separable convolutions upon [10].
TC-ResNet [7] uses temporal convolution and treats frequency
dimension as channel for better efficiency and TENet [8] and
MatchBoxNet [9] improve further with depthwise separable
convolutions. While the approaches use either 1D or 2D con-
volution, the BC-ResNets suggest combining both.

Other Approaches There are other approaches that are not
fully CNNs. Some of them use CNNs at the front and per-
form high-level features with recurrent neural networks (RNNs)
[18, 19]. MHAttt-RNN [20] utilizes multi-head attention over it.
On the other hand, there are automatic speech recognition based
approaches [21, 22]. Note that the approaches are successful but
typically are not efficient in terms of the number of parameters
compared to CNN-based approaches.

4. Experiments
4.1. Experimental Setup

Datasets We evaluate the performance of proposed BC-
ResNets on Google speech commands datasets v1 and v2 [12].
Version 1 contains 64,727 utterances from 1,881 speakers.
There are total thirty words and we use ten classes of “Yes”,
“No”, “Up”, “Down”, “Left”, “Right”, “On”, “Off”, “Stop”,
and “Go” with two additional classes “Unknown Word (remain-
ing twenty words)” and “Silence (no speech detected)” follow-
ing the settings of [12]. Version 2 has 105,829 utterances from
2,618 speakers. There are 35 words and split into 12 classes as
version 1. Each utterance is 1 sec long, and the sampling rate
is 16 kHz. We divide the dataset into training, validation and
testing set based on the validation and testing file lists [12]. We
re-balance the “Unknown Word” and “Silence” with the aver-

Table 2: Impact of Broadcasted Residual Learning and Ab-
lation Study. We demonstrate how each component affects the
base model, BC-ResNet-1, on Google speech command datasets
vl and v2. We show mean and standard deviation of Top-1 test
accuracy (%). (averaged over 5 seeds).

Model | vl v2 #Param  #Mult

ResNet-1D (w=2) 950+£025 9574046 273k 32M
ResNet-2D (w=1) 948 £042 949+0.32 7.9k 5.9M
ResNet-2D (w=1) w/SSN | 955 £0.22 95.6 +0.24 9.4k 5.9M
BC-ResNet-Attn 96.0 £0.14 962 £0.24 9.2k 3.1M

BC-ResNet-1 96.6 + 0.21  96.9 + 0.30 9.2k 3.1M
w/o auxiliary 2D residual | 96.2 +0.20  96.5 +0.10 9.2k 3.1M
wi/o shortcut 96.44+0.34 96.8 +0.18 9.2k 3.IM
w/o SSN 96.1 £0.11  96.5+0.12 7.8k 3.IM
w/o SSN (w=1.125) 96.2+0.26 96.7 +0.12 9.1k 3. M
w/o 2D residual and SSN | 954 4+0.29 95.7 +0.32 7.9k 3.IM

96.3+0.25 96.8+0.11 9.2k 3.IM

w/ Freq MaxPool

age number of utterances in the remaining ten classes following
common settings of [12, 10, 20] and especially we use the stan-
dard testing sets of v1 and v2 that the Google speech commands
dataset offers.

Implementation Details We use input features of 40-
dimensional log Mel spectrograms with a 30ms window size
and a 10ms frame shift. We followed the data augmentation set-
tings of [10], time shift in the range of -100 to 100ms, back-
ground noise [ | 2] with the probability of 0.8, and SpecAugment
[23] with two time and two frequency masks except time warp-
ing. We also found it beneficial to provide stronger augmen-
tation as the model capacity increases. In specific, the small-
est model, BC-ResNet-1 does not use SpecAugment and BC-
ResNet-{1.5, 2, 3, 6, 8} use SpecAugment with {1, 3, 5, 7, 7}
of frequency mask parameters, respectively with fixed temporal
mask parameter of 20 [23]. Dropout rate is always p = 0.1.
Also, we use SSN with five sub-bands [13]. All models are
trained for 200 epochs with stochastic gradient descent (SGD)
optimizer with momentum to 0.9, weight decay to 0.001, mini-
batch size to 100, and a learning rate which linearly increases
from zero to 0.1 over the first five epochs as warmup [24] before
decaying to zero with cosine annealing [25].

4.2. Impact of Broadcasted Residual Learning

We compare BC-ResNet with fully 1D (ResNet-1D) and fully
2D (ResNet-2D) models to verify our method’s effectiveness.
These models consist of residual blocks with depthwise sep-
arable convolution instead of BC-ResBlock while maintain-
ing the basic network architecture of BC-ResNet. ResNet-2D
uses depthwise separable convolution with a 3x3 kernel, and
ResNet-1D uses a 1x3 kernel. ResNet-1D requires a 1.1M
multiply-accumulate (MAC) operation at the same width, which
is smaller than BC-ResNet-1, so we scaled up the model by dou-
bling its width for a fair comparison. Table 2 shows the compar-
ison results of these baselines and our method.

ResNet-1D has about three times more parameters, but it
is still more than 1% less accurate than our method. ResNet-
2D has about 16% fewer parameters than BC-ResNet by us-
ing batch normalization (BN) between depthwise convolution
and pointwise convolution, and it requires a higher amount of
computation due to more 2D operations. This 2D model shows
about 2% lower accuracy than our method. When we apply SSN
to ResNet-2D instead of BN, ResNet-2D w/ SSN, the model
size is similar to BC-ResNet-1, and it can obtain 0.7% accu-
racy improvement without an increase in computation. This
result shows that we can effectively apply SSN even in 2D
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Figure 3: MACs vs. Google speech command dataset v2 Accu-
racy. Details are in Table 3.

CNNs. However, BC-ResNet still outperforms these baselines
by a large margin. As shown in this result, broadcasted residual
learning reduces the computation and can represent more dis-
criminative information in keyword spotting. BC-ResNet-Attn
denotes the model using attention instead of broadcasted resid-
ual mapping like [26, 27]. Sigmoid is applied to f1 of equa-
tion 2, then element-wise multiplication is performed. It can be
considered temporal-channel attention since the output of f; is
a temporal feature. This model performs better than 1D and 2D
baselines, but BC-ResNet is still more than 0.6% accurate.

4.3. Ablation Study of BC-ResBlock

Broadcasted residual learning plays a crucial role in BC-
ResNet, but BC-ResBlock consists of other core components;
auxiliary 2D residual connection and SSN for frequency aware-
ness of BC-ResBlocks. We evaluate how these components af-
fect the model’s performance. BC-ResNet without the auxiliary
2D residual shows accurate results. However, with this addi-
tional connection, BC-ResNet can obtain about 0.4% perfor-
mance improvement without increasing the model size. And the
shortcut connection of the identity also contributes slightly to
performance.

‘w/o SSN’ shows the result when BN is used in BC-
ResBlock instead of SSN, which eliminates inter-frequency de-
flection and provides frequency awareness. We can reduce some
parameters by removing the SSN, but a more than 0.4% ac-
curacy drop occurs. We also compare the model that uses the
base channel’s size 9, ‘w/o SSN (w=1.125)’, to compensate for
the loss in parameters due to BN. This model requires about
20% more computation but still has lower performance than
BC-ResNet. ‘w/o 2D residual and SSN’ is the model without
using both the 2D residual and SSN in BC-ResBlock. These two
components help reduce information loss due to eliminating the
frequency dimension. Removing all of them increases the error
more significantly than when removing them one by one. These
results show that the two components play an essential role in
broadcasted residual learning. We also evaluate the model,‘w/
Freq MaxPool,” which uses max-pooling as a frequency dimen-
sion reduction method instead of average pooling. The model
records a slightly lower accuracy than BC-ResNet-1. However,
it still shows much higher accuracy than fully 1D and 2D mod-
els. It means that broadcasted residual learning can be effective
with other frequency dimension reduction functions.

4.4. Comparison with Baseline

We compare the efficiency of KWS models in two aspects: per-
formance per parameter and performance per MAC. In Figure 1,
BC-ResNets are consistently efficient than other approaches

Table 3: BC-ResNets Top-1 test accuracy (%) on Google
speech command datasets vl and v2. Each BC-ResNet is scaled
up with a coefficient of T in Section 4.3 and KWS approaches
are grouped by accuracy for easier comparison.

Model | vl | v2 | #Param | #Mult
Att-RNN [18] 95.6 | 96.9 202k 22.3M
ResNet-15 [10] 95.8 - 238k 894M
DS-ResNetl14 [11] 95.9 - 15.2k 15.7M
TC-ResNetl14-1.5 [7] 96.6 - 305k 6.7M
TENet12 [8] 96.6 - 100k 2.9M
BC-ResNet-1 96.6 | 96.9 9.2k 3.1M
DS-ResNet18 [11] 96.7 - 72k 285M
BC-ResNet-1.5 97.2 | 97.6 17.2k 5.5M

MatchboxNet-3x1x64 [9] | 97.2 | 96.9 77k 9.3M
Embedding+head [29] - 97.7 385k -
BC-ResNet-2 97.3 | 97.8 | 27.3k 8.5M

MatchboxNet-3x2x64 [9] | 97.5 | 97.2 93k 11.3M
MatchboxNet-6x2x64 [9] - 97.4 140k 17.1M
MHALtt-RNN [20] 97.2 | 98.0 743k 22.7TM

BC-ResNet-3 97.6 | 98.2 | 542k | 16.2M
BC-ResNet-6 97.9 | 98.6 188k 53.1M
BC-ResNet-8 98.0 | 98.7 321k 89.1IM

in terms of accuracy per parameter on Google speech com-
mand dataset v1. We also compare MAC-accuracy curves on the
datasets v2 as depicted in Figure 3. BC-ResNets achieve higher
accuracy than 1D-based MatchboxNets [9] and state-of-the-art
MHAUtt-RNN [20] by a large margin while doing smaller com-
putations. In the case of MatchboxNet, it shows better efficiency
with dataset vl compared to its v2 results as in Table 3, but still,
BC-ResNets require x2.6 smaller number of parameters while
achieving higher accuracy.

The details of the figures are in Table 3. We get the av-
erage performances of BC-ResNets in 10 random seeds each.
The smallest model, BC-ResNet-1 matches the performance of
1D convolution-based approaches, TC-ResNet14-1.5 [7] and
TeNetl2 [8] with x10.9 smaller number of parameters while
using 1D approach-level number of multiplies. BC-ResNet-3
works better than the state-of-the-art method, MHAtt-RNN [20]
with x13.7 smaller number of parameters. The biggest model
achieves the new state-of-the-art accuracy, 98.0 % and 98.7 %
on Google speech command dataset v1 and v2 respectively, and
is still x2.3 smaller than MHAtt-RNN [20].

5. Conclusions

Existing CNN-based KWS approaches usually process all fea-
tures by 1D or 2D convolutions with pros and cons. Using
1D convolution enables efficient design in terms of both the
number of parameters and amount of computation, but it lacks
the characteristics such as translation equivariance in the fre-
quency direction. On the other hand, 2D convolution requires
more computing compared to 1D approaches. To address the
issues, we propose broadcasted residual learning that allows
ID and 2D features together. Broadcasted residual learning
repeatedly averages 2D features to 1D features and expands
1D features back to the 2D. Leveraging the broadcasted resid-
ual learning and simple scaling by width, we design a family
of networks called BC-ResNets and surpass state-of-the-art on
Google speech command dataset v1 and v2.
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