
Expressive Text-to-Speech using Style Tag

Minchan Kim1, Sung Jun Cheon1, Byoung Jin Choi1, Jong Jin Kim2, Nam Soo Kim1

1Department of Electrical and Computer Engineering and INMC,
Seoul National University, Seoul, South Korea

2SK Telecom
{mckim, sjcheon, bjchoi}@hi.snu.ac.kr, kimjj.geek@sk.com, nkim@snu.ac.kr

Abstract
As recent text-to-speech (TTS) systems have been rapidly
improved in speech quality and generation speed, many re-
searchers now focus on a more challenging issue: expressive
TTS. To control speaking styles, existing expressive TTS mod-
els use categorical style index or reference speech as style in-
put. In this work, we propose StyleTagging-TTS (ST-TTS), a
novel expressive TTS model that utilizes a style tag written in
natural language. Using a style-tagged TTS dataset and a pre-
trained language model, we modeled the relationship between
linguistic embedding and speaking style domain, which enables
our model to work even with style tags unseen during train-
ing. As style tag is written in natural language, it can control
speaking style in a more intuitive, interpretable, and scalable
way compared with style index or reference speech. In addition,
in terms of model architecture, we propose an efficient non-
autoregressive (NAR) TTS architecture with single-stage train-
ing. The experimental result shows that ST-TTS outperforms
the existing expressive TTS model, Tacotron2-GST in speech
quality and expressiveness.
Index Terms: speech synthesis, expressive TTS, language
model, non-autoregressive TTS

1. Introduction
Recently, end-to-end (e2e) speech synthesis systems have
achieved significant improvement and now show almost human-
like speech quality. Among e2e speech synthesis systems, au-
toregressive (AR) models such as Tacotron2 [1] and Trans-
former TTS [2] first showed state-of-the-art performance by ex-
ploiting the attention mechanism. However, as AR models suf-
fer from slow generation speed and a lack of stability due to
attention failure, non-autoregressive (NAR) models [3–8] have
been proposed in recent years. By explicitly modeling the du-
ration of each text unit and generating speech in parallel, NAR
models can synthesize speech much faster than real-time with
comparable speech quality with AR models. Such development
enables e2e speech synthesis systems to be successfully adopted
in many real-world applications.

Meanwhile, to imitate the non-phonetic expressions of hu-
man utterance, expressive TTS [9–14] has been studied in line
with the development of the e2e TTS systems. In expressive
TTS, the speaking style is modeled in a supervised or unsuper-
vised manner and usually combined with an existing TTS archi-
tecture. In terms of style control, there are two approaches for
expressive TTS. Several models exploit the categorical style la-
bels, which indicate speaking styles such as emotions [9–11].
Trained with a style-labeled dataset in a supervised manner,
these models can control style using explicit labels. However,
there are limitations in the diversity of expression, as these
models can only express a few pre-defined styles. On the other

hand, some models use reference speech as style input [12–14].
In these models, style information is extracted from the refer-
ence speech using a reference encoder and transferred to the
generated speech. Although these methods don’t require a la-
beled dataset and can express unbounded speaking styles, the
extracted style information is not intuitive and interpretable.
Moreover, choosing a reference speech every time is time-
consuming and memory inefficient, which makes these methods
less practical.

In this paper, we introduce a novel style interface for ex-
pressive TTS: style tag. Style tag is a short phrase or word rep-
resenting the style of an utterance, such as emotion, intention,
and tone of voice. As style is tagged in the natural language, it
is intuitive and interpretable for controlling the speaking style.
In addition, we propose Style Tagging TTS (ST-TTS), which
is a novel non-autoregressive expressive TTS model utilizing
style tag as a style input. Using a pre-trained language model
as an interpreter for transforming natural language to linguistic
embedding, ST-TTS can learn the relationship between linguis-
tic embedding and style embedding space. Due to the gener-
alization capabilities of the language model, even a style tag
unseen in the training dataset can be expressed by ST-TTS.
Besides, ST-TTS also has several advantages in model archi-
tecture. To find alignments between text and speech, ST-TTS
uses Monotonic Alignment Search (MAS) algorithm [5] and
normalizing flow (NF) [15, 16] as an aligner. As the aligner is
jointly optimized with the entire TTS system, ST-TTS can be
trained in single-stage, unlike other NAR models such as Fast-
Speech [3, 4] and SpeedySpeech [8]. Additionally, at the infer-
ence phase, we can optionally use either style tag or reference
speech as a style input by building a shared embedding space of
reference speech and style tag.

This paper is organized as follows. In Section 2, we first
describe the dataset we used. Then we explain the proposed ST-
TTS model in section 3, and experiment results are reported in
section 4. Lastly, the conclusion and discussion are covered in
section 5.

2. Style Tagging Dataset
As existing expressive TTS datasets [17–19] have only a few
numbers of speaking styles, a dataset with much more various
styles is required for our proposed method. We introduce a Ko-
rean Style Tagging TTS dataset: FSNR01. FSNR0 consists of
{speech, transcript, style tag} tuples and the entire transcripts
and style tags are written in Korean. The transcripts are recorded
by a voice actress expressing given style tags.

1FSNR0 is a part of SMART-TTS corpus, a Korean TTS corpus for
an expressive TTS project named SMART-TTS. We are planning to re-
lease this corpus as an open-resource.

ar
X

iv
:2

10
4.

00
43

6v
2

 [
ee

ss
.A

S]
 6

 O
ct

 2
02

2

In FSNR0, There are 327 style tags including various emo-
tions, intentions, voice tone and speed. Each style tag appears
from one to hundreds of times in the whole dataset except for
the normal reading book style, which takes up about 25% of the
total data. The entire speech data is about 26 hours long and
consists of about 18,700 sentences. Several examples of style
tags are shown in Table 1. In training, the style tags are aug-
mented by several rules such as switching adverbs and adjec-
tives, and extending keywords to plausible phrase forms. One
of the augmented style tag is sampled every iteration.

Table 1: Examples of style tag. We additionally provide the
translated ones to help understanding.

style tag translated style tag translated

다정하게 with affection 매정하게 heartless
화가난듯 seem angry 기쁜듯 pleased
씁쓸한듯 bitter 다급하게 in a hurry
큰소리로 in a loud voice 속삭이듯 whispering
졸린듯 sleepy 술취한듯 drunken

3. Style Tagging TTS
3.1. Model architecture

In this section, we introduce the ST-TTS architecture. Our pro-
posed model takes grapheme sequence and style tag as input
and returns log mel-spectrogram. Reference speech is addition-
ally used for training and optionally used for inference. The en-
tire structure is based on non-autoregressive feedforward TTS
models [3, 4, 8], and end-to-end trainable by jointly optimizing
duration information with the entire system. The entire archi-
tecture is shown in Figure 1, and described as follows.

3.1.1. Sentence BERT

As style tag is an infinite set, we used a pre-trained language
model to embed a style tag to a meaningful space without Out-
Of-Vocabulary (OOV) problem. It is the core component in ST-
TTS that enables generalization of unseen style tags. We em-
ployed Sentence BERT (SBERT) [20] for our proposed model.
BERT [21] is one of the most widely used representation learn-
ing for natural language process (NLP). It is composed of Trans-
former [22] blocks and trained with masking and slot filling
task. Although BERT performs well in various NLP tasks such
as machine translation, it lacks the ability to extract a sentence-
level embedding. SBERT is a fine-tuned model of BERT opti-
mized for sentence-level similarity using contrastive learning.
SBERT shows better performance in measuring sentence simi-
larity and clustering sentences than original BERT. We regard
style tags as extremely short sentences and used pre-trained
SBERT as a component for the style encoder.

3.1.2. Style encoder

Style encoder is a module that extracts style embedding for the
TTS system, and it consists of a reference encoder and a style
tag encoder. Reference encoder extracts style embedding from
reference speech. It has almost the same architecture with ref-
erence encoder of Global Style Tokens (GSTs) [12]. The dif-
ference is that the proposed module does not use style token,
and batch normalization [23] layers are replaced with weight
normalization [24]. Style tag encoder is a module for extract-

ing a style embedding from a style tag. It consists of pre-trained
SBERT and adaptation layers. As mentioned in 3.1.1, SBERT
transforms style tag to semantic embedding. Adaptation layers
are made up of three linear layers with ReLU activation and
learn to map from linguistic semantic space to style embedding
space.

In training, style embedding from reference encoder is used
for TTS system, and then the embedding from style tag en-
coder learns reference embedding by mean squared error (MSE)
loss named style embedding loss. This bi-modal conditioning
method has the following advantages. 1) By building a bi-modal
embedding space of style tag and reference speech, either style
tag or reference speech can be used to extract a style embedding
for inference. 2) Style tag embedding functions as an anchor of
reference speeches with the same style tag, which means the
reference encoder learns to form clusters of reference speeches
with the same style tags. As speeches with similar speaking
styles are mapped adjacently in embedding space by the refer-
ence encoder, style tags with similar meanings are also located
closely in embedding space. This property helps to form a well-
defined embedding space, and adaptation layers can easily learn
the relationship between style domain and linguistic domain.
While training, we freeze SBERT, and the other components
are optimized for the entire TTS loss and the style embedding
loss.

3.1.3. Text encoder

Text encoder takes a grapheme sequence and returns a text em-
bedding sequence. it consists of residual dilated convolution
blocks used in parallel wavegan2 [25]. We used 12 residual
blocks with dilation rates (1, 2, 4) 4 times. The kernel size and
hidden dimensions are 5 and 256 respectively.

The output embedding sequence is used for the aligner, du-
ration predictor, and mel decoder. When used for mel decoder,
the text embeddings are copied multiple times to match text and
speech length using duration information from aligner or dura-
tion predictor.

3.1.4. Aligner

Aligner calculates alignment between text and log mel-
spectrogram and returns duration of each grapheme. For aligner,
we exploit the method devised in Glow-TTS which uses nor-
malizing flow (NF) and Monotonic Alignment Search (MAS)
algorithm [5]. To calculate alignment, mel-spectrogram x1:T is
first mapped to latent variable z1:T by NF f−1

NF : x → z. Text
encoder output is then projected to the latent space with a linear
layer and regarded as parameter µ1:N of the latent variable. T
andN denote the length of mel-spectrogram and text tokens re-
spectively. For a possible alignment A, A(j) = i represents zj
∼ N (µi, σi), where σi of the entire frame is set to 1 for stable
training. By change of variables formula used in NF, the condi-
tional log likelihood of mel-spectrogram given text input c1:N
and an alignment A can be expressed as Eq. (1) and Eq. (2):

logPX(x|c;A) = logPZ(z|c;A)+log

∣∣∣∣det ∂f−1
NF (x)

∂x

∣∣∣∣ , (1)

logPZ(z|c;A) =
T∑

j=1

logN (zj ;µA(j), σA(j)). (2)

2referred code : https://github.com/kan-bayashi/ParallelWaveGAN

Reference
Encoder

Text
EncoderSBERT

Text SequenceStyle Tag

Length Expansion

Predicted
Mel Spect.

Mel
Decoder

Adaptation
Layers

Reference Speech

Duration

StyleTag Enc.

Style Embedding
Loss

Target
Mel Spect.

Mel Reconstruction
Loss

[2, 3, 1, 3 …]

Style Encoder

(a) speech synthesis procedure
Mel Spectrogram

Normalizing
Flow

Aligner

Duration
Predictor

Text
Embedding

Text Embedding

Style
Embedding

Alignment Loss Calculated
Duration

Predicted
Duration

Training Inference

Linear

Duration
Loss

[2, 2, 1…] [2, 2, 1…]

z

μ
2

2

1

Monotonic Alignment Search

(b) modules for duration extraction and prediction

Figure 1: the entire architecture of ST-TTS

The optimal alignment path A∗ for maximizing Eq. (1) can be
obtained by the MAS algorithm. In training, NF and text en-
coder are optimized for maximizing logPX(x|c;A∗), and du-
ration for length expansion is calculated by summation A∗ over
mel-spectrogram axis.

In Glow-TTS, NF is itself a generator of mel-spectrogram,
but we only exploit NF as an aligner whose role is just provid-
ing an accurate alignment. We used the same architecture with
Glow-TTS3 in a much smaller size. The NF is consists of 6 flow
blocks, and the affine coupling layers in each flow block are
a stack of 4 residual convolution layers with kernel size 5 and
hidden dimension 128. Unlike Glow-TTS, we did not squeeze
mel-spectrogram for better alignment.

As this aligning method only considers monotonic align-
ments between text and speech, ST-TTS can be trained much
faster and robustly compared with the attention mechanism gen-
erally used for TTS alignment. In addition, it does not require
auxiliary methods such as guided attention loss [26] or posi-
tional encoding [22] for attention mechanism.

3.1.5. Duration predictor

Duration predictor predicts the number of frames for each
grapheme in log scale. Duration predictor is made up of the
same residual convolution blocks used in the text encoder. As
different style yields different speaking speed, duration predic-
tor also takes a style embedding to predict style dependent du-
ration. Style embedding is duplicated to the equal length of text
embedding and conditioned to each residual block by the same
method used in [25]. Duration predictor is composed of five
residual blocks without dilation, and kernel size and hidden di-
mension are 5 and 256.

3.1.6. Mel decoder

Mel decoder transforms duration-expanded text embedding to
log mel-spectrogram conditioned on a style embedding. It has
the same architecture with the duration predictor in a much
larger size. Mel decoder consists of 30 residual blocks with di-
lation rate (1, 2, 4, 8, 16) 6 times. The kernel size used in the
mel decoder is 3, and the hidden dimension is 256.

3referred code : https://github.com/jaywalnut310/glow-tts

3.2. Training and inference

In training, the total loss is the sum of the following four losses.

• Mel reconstruction loss: mean-absolute-error (MAE) be-
tween predicted and target log mel-spectrogram.

• Duration loss: huber loss [27] between output of duration
predictor and log duration acquired by aligner.

• Alignment loss: negative log likelihood loss for training
aligner described in 3.1.3

• Style embedding loss : MSE loss between style embed-
dings from reference encoder and style tag encoder as
described in 3.1.2

These losses are summed with equal weights and jointly opti-
mized for the entire model except for SBERT in style encoder.

During inference, ST-TTS uses duration from the duration
predictor. As the duration predictor predicts duration in log
scale, it is transformed by exponential operation and rounded to
the nearest integer. To prevent skipping text units, the predicted
durations less than one are clamped to one. We can optionally
use style embedding extracted from reference speech or style
tag depend on user convenience, as mentioned in 3.1.2.

4. Experiments
4.1. Experimental setup

For our experiments, we used the FSNR0 dataset described in
section 2. The audio is downsampled from 48 kHz to 22.05 kHz,
and 80-dimensional log mel-spectrogram was used for the target
and reference speech. For input text, we used Korean grapheme
without G2P. Style tags are tokenized by pre-trained SBERT.
We trained our model using the Adam optimizier [28] with
learning rate of 0.02 and the Noam learning scheduler [22]. To-
tal training took about 87 hours for 500k iteration with a single
GeForce GTX 2080 GPU. As a vocoder, we used HiFiGAN [29]
which shows state-of-the-art audio quality for speech synthe-
sis. For the subjective evaluations, 18 native Korean participants
joined the tests described in 4.2.1 and 4.2.2. The audio samples
of ST-TTS are available on the demo website4.

4demo site: https://gannnn123.github.io/styletaggingtts-demo

4.2. Evaluation

4.2.1. Audio quality

We measure the 5 scale Mean Opinion Score (MOS) to esti-
mate the speech quality of the proposed model. Since ST-TTS
is the first TTS model which can control style with the unde-
fined label or reference speech, we chose Tacotron2-GST [12]
as a baseline. The result of five groups: ground truth (GT),
GT with vocoder reconstruction, Tacotron2-GST, ST-TTS (ref-
erence speech), ST-TTS (style tag) is shown in Table 2. ST-
TTS (reference speech) and ST-TTS (style tag) mean ST-TTS
using reference speech and style tag for style input respectively.
The reference speech used for Tacotron2-GST and ST-TTS (ref-
erence speech) is the target speech itself because it shows better
performance for these models. We tested 30 samples each for
normal reading book style samples and expressive samples with
style tags, randomly chosen from the test set. According to Ta-
ble 2, ST-TTS with either style tag or reference speech shows
better speech quality than the baseline.

Table 2: Mean Opinion Scores with 95% confidence intervals

Method Normal Expressive

GT 4.77 ± 0.04 4.80 ± 0.04
GT (+ HifiGAN) 4.64 ± 0.05 4.67 ± 0.05
Tacotron2-GST 3.37 ± 0.08 3.44 ± 0.08
ST-TTS (reference) 4.15 ± 0.06 4.12 ± 0.06
ST-TTS (style tag) 4.17 ± 0.06 4.08 ± 0.06

4.2.2. Preference test

To demonstrate that the style tag can control the style of gen-
erated speech intuitively, we tested a preference test with ST-
TTS and Tacotron2-GST. In this test, the participants listened
to two samples from ST-TTS and Tacotron2-GST, and rated
which sample reflected the given style tag better in 7 scale5.
As Tacotron2-GST cannot directly use the style tag, we used
the average style token weights of 10 utterances tagged with the
given style tag. We regarded these weights as a representation of
the given style tag for Tacotron2-GST. We tested 30 sentences
with randomly selected style tags from the test set. The tran-
scripts are sampled from another dataset. As a result, ST-TTS
got the preference score 1.37 (±0.14, 95% confidence interval),
where the score is ranged in (-3, 3), and a higher score means
better performance. This result shows that ST-TTS can express
various speaking styles recognized as reflecting style tags.

4.2.3. Visualization of style tag embedding

In Figure 2, we visualized the style embeddings of style tags
using t-SNE [30]. There are all the style tags in the dataset and
several style tags unseen in training. This visualization shows
that style tags with similar meanings are embedded adjacently.
Particularly, we can see that even the unseen style tags are prop-
erly located in the embedding space, which means the available
style tag is not limited to the training dataset.

5The score is rated in the criterion: A is () than B. Each score is
described below.
-3: much worse, -2: worse, -1: little worse, 0: about same, 1: little better,
2: better, 3: much better

#황급히
#hastily

#기겁하듯
#frighteningly

#놀란듯
#surprised

#당황한듯
#not to know what

to do

#재촉하듯
#urging

#둘러대는
#evasive

#서두르듯
#in a hurry

#긴박한
#tense

#다급하게
#in a rush

#조급하게
#impatiently

#급박하게
#urgently

#열받은듯
#upset

#미운듯
#hateful

#화가난듯
#seem angry

#분개한
#resentful#기가찬듯

#outrageous

#불쾌한듯
#unpleasant

#분노한듯
#outraged#쫑알대듯

#nagging

#흥분한듯
#raging

#비난하듯
#criticizing

#짜증내듯
#irritating

#못마땅한듯
#displeased

#기막힌듯
#dumbfounded #씁쓸한듯

#bitter

#쓸쓸한듯
#feel lonely

#무기력한
#lethargic

#침울하게
#melancholy

#울적한
#feel blue

#우울한
#depressed

#자조적인
#self-mocking

#암울한
#gloomy#멍한

#vacant

#넋나간듯
#out of one’s mind

#면목없는
#no excuse

#마음이무거운듯
#heavy-hearted

#낙심한듯
#disappointed

#힘겨운듯
#hard

#처량하게
#pitifully

#후회하는
#regretful

#참담한
#disastrous

#뭉클한
#touching

#우물쭈물하듯
#dithering

#부끄러운듯
#shy

#쑥스러운듯
#embarrassed

#멋쩍은듯
#awkward

#겸연쩍은듯
#abashed

#수줍은듯
#bashful

#기쁜듯
#pleased

#기특한
#praiseworthy

#고마운듯
#thankful #뿌듯한

#proud
#자신만만한

#confident

#시원시원한
#cool

#신난듯
#excited

#반가운
#welcoming

#대견한
#proud of #기분좋은

#agreeable

#자랑하듯
#proudly

#행복한듯
#happy

#만족한듯
#contented

#즐거운듯
#joyful #발랄하게

#lively #유쾌한듯
#pleasant

#기운차게
#energetic

#상쾌하게
#refreshingly

#흔쾌하게
#willingly

Figure 2: Style embedding visualization using t-SNE. The en-
tire t-SNE plot is at the center, and five local regions are en-
larged for closer observation. The blue points and red points
indicate the style tags seen and unseen in training, respectively.
The translations with similar nuance are provided to help un-
derstanding.

5. Conclusion and Discussion
In this paper, we proposed a novel expressive TTS model named
ST-TTS, which uses style tag as a style interface. ST-TTS has
several advantages in convenience and performance. 1) As style
tag is written in natural language, users can intuitively con-
trol the style of generated speech with ST-TTS. The language
model, SBERT enables ST-TTS to express even the style tags
unseen during training. 2) ST-TTS has a bi-modal embedding
space of reference speech and style tag, so either reference style
tag or reference speech can be used in inference. 3) ST-TTS is a
non-autoregressive TTS model which can be trained in single-
stage. For this reason, ST-TTS can be easily trained and has fast
generation speed.

As ST-TTS is the first TTS model that uses style tag, there
are still remaining research topics as our future works. The most
important issue in ST-TTS is the generalization performance for
style tags. There are countless style tags in natural language,
and the model should express as many style tags as possible for
human-level expressiveness. This issue can be addressed in two
directions. In terms of data configuration, it is important to use
as many style tags as possible in training. We can augment style
tags using synonyms to expand the covered linguistic embed-
ding region. Next, as style tags are usually much shorter than
common sentences, investigating a language model which can
embed short phrases better can be a solution for better gener-
alization. Meanwhile, there may be styles that cannot be ex-
pressed with a single style tag. We are planning to consider the
methods using multi-style tags to express various characteristics
together.

6. Acknowledgements
This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
funded by the Korea Government (MSIT) under Grant 2020-
0-00059 (Deep learning multi-speaker prosody and emotion
cloning technology based on a high quality end-to-end model
using small amount of data).

7. References
[1] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,

Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural
tts synthesis by conditioning wavenet on mel spectrogram pre-
dictions,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 4779–
4783.

[2] N. Li, S. Liu, Y. Liu, S. Zhao, and M. Liu, “Neural speech synthe-
sis with transformer network,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 6706–
6713.

[3] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“Fastspeech: Fast, robust and controllable text to speech,” arXiv
preprint arXiv:1905.09263, 2019.

[4] Y. Ren, C. Hu, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Fast-
speech 2: Fast and high-quality end-to-end text-to-speech,” arXiv
preprint arXiv:2006.04558, 2020.

[5] J. Kim, S. Kim, J. Kong, and S. Yoon, “Glow-tts: A generative
flow for text-to-speech via monotonic alignment search,” arXiv
preprint arXiv:2005.11129, 2020.

[6] C. Miao, S. Liang, M. Chen, J. Ma, S. Wang, and J. Xiao, “Flow-
tts: A non-autoregressive network for text to speech based on
flow,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 7209–7213.

[7] J. Donahue, S. Dieleman, M. Bińkowski, E. Elsen, and K. Si-
monyan, “End-to-end adversarial text-to-speech,” arXiv preprint
arXiv:2006.03575, 2020.

[8] J. Vainer and O. Dušek, “Speedyspeech: Efficient neural speech
synthesis,” arXiv preprint arXiv:2008.03802, 2020.

[9] Y. Lee, A. Rabiee, and S.-Y. Lee, “Emotional end-to-end neural
speech synthesizer,” arXiv preprint arXiv:1711.05447, 2017.

[10] N. Tits, K. El Haddad, and T. Dutoit, “Exploring transfer learning
for low resource emotional tts,” in Proceedings of SAI Intelligent
Systems Conference. Springer, 2019, pp. 52–60.

[11] N. Tits, F. Wang, K. E. Haddad, V. Pagel, and T. Dutoit, “Vi-
sualization and interpretation of latent spaces for controlling ex-
pressive speech synthesis through audio analysis,” arXiv preprint
arXiv:1903.11570, 2019.

[12] Y. Wang, D. Stanton, Y. Zhang, R.-S. Ryan, E. Battenberg, J. Shor,
Y. Xiao, Y. Jia, F. Ren, and R. A. Saurous, “Style tokens: Unsu-
pervised style modeling, control and transfer in end-to-end speech
synthesis,” in International Conference on Machine Learning.
PMLR, 2018, pp. 5180–5189.

[13] R. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stan-
ton, J. Shor, R. Weiss, R. Clark, and R. A. Saurous, “To-
wards end-to-end prosody transfer for expressive speech synthesis
with tacotron,” in international conference on machine learning.
PMLR, 2018, pp. 4693–4702.

[14] Y. Jia, Y. Zhang, R. J. Weiss, Q. Wang, J. Shen, F. Ren, Z. Chen,
P. Nguyen, R. Pang, I. L. Moreno et al., “Transfer learning
from speaker verification to multispeaker text-to-speech synthe-
sis,” arXiv preprint arXiv:1806.04558, 2018.

[15] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation
using real nvp,” arXiv preprint arXiv:1605.08803, 2016.

[16] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with
invertible 1x1 convolutions,” arXiv preprint arXiv:1807.03039,
2018.

[17] A. Adigwe, N. Tits, K. E. Haddad, S. Ostadabbas, and T. Du-
toit, “The emotional voices database: Towards controlling the
emotion dimension in voice generation systems,” arXiv preprint
arXiv:1806.09514, 2018.

[18] S. R. Livingstone and F. A. Russo, “The ryerson audio-visual
database of emotional speech and song (ravdess): A dynamic,
multimodal set of facial and vocal expressions in north american
english,” PloS one, vol. 13, no. 5, p. e0196391, 2018.

[19] K. Zhou, B. Sisman, R. Liu, and H. Li, “Seen and unseen emo-
tional style transfer for voice conversion with a new emotional
speech dataset,” arXiv preprint arXiv:2010.14794, 2020.

[20] N. Reimers and I. Gurevych, “Sentence-bert: Sentence
embeddings using siamese bert-networks,” arXiv preprint
arXiv:1908.10084, 2019.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional conference on machine learning. PMLR, 2015, pp. 448–
456.

[24] T. Salimans and D. P. Kingma, “Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural net-
works,” arXiv preprint arXiv:1602.07868, 2016.

[25] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel wavegan: A fast
waveform generation model based on generative adversarial net-
works with multi-resolution spectrogram,” in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 6199–6203.

[26] H. Tachibana, K. Uenoyama, and S. Aihara, “Efficiently train-
able text-to-speech system based on deep convolutional networks
with guided attention,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 4784–4788.

[27] P. J. Huber, “Robust estimation of a location parameter,” in Break-
throughs in statistics. Springer, 1992, pp. 492–518.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[29] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial
networks for efficient and high fidelity speech synthesis,” arXiv
preprint arXiv:2010.05646, 2020.

[30] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.

	1 Introduction
	2 Style Tagging Dataset
	3 Style Tagging TTS
	3.1 Model architecture
	3.1.1 Sentence BERT
	3.1.2 Style encoder
	3.1.3 Text encoder
	3.1.4 Aligner
	3.1.5 Duration predictor
	3.1.6 Mel decoder

	3.2 Training and inference

	4 Experiments
	4.1 Experimental setup
	4.2 Evaluation
	4.2.1 Audio quality
	4.2.2 Preference test
	4.2.3 Visualization of style tag embedding

	5 Conclusion and Discussion
	6 Acknowledgements
	7 References

