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Abstract

Recently, Mixture of Experts (MoE) based Transformer has
shown promising results in many domains. This is largely due
to the following advantages of this architecture: firstly, MoE
based Transformer can increase model capacity without com-
putational cost increasing both at training and inference time.
Besides, MoE based Transformer is a dynamic network which
can adapt to the varying complexity of input instances in real-
world applications. In this work, we explore the MoE based
model for speech recognition, named SpeechMoE. To further
control the sparsity of router activation and improve the diver-
sity of gate values, we propose a sparsity L1 loss and a mean
importance loss respectively. In addition, a new router archi-
tecture is used in SpeechMoE which can simultaneously utilize
the information from a shared embedding network and the hier-
archical representation of different MoE layers. Experimental
results show that SpeechMoE can achieve lower character error
rate (CER) with comparable computation cost than traditional
static networks, providing 7.0%~ 23.0% relative CER improve-
ments on four evaluation datasets.

Index Terms: mixture of experts, dynamic routing, acoustic
model, speech recognition

1. Introduction

Owing to powerful representation, Deep Neural Networks
(DNN) have gained great success in speech recognition [[1} 2].
Various types of neural network architectures have been em-
ployed in ASR systems, such as convolutional neural networks
(CNNBs) [3, 4], long short-term memory (LSTM) [3], gated re-
current unit[6], time-delayed neural network [7], feedforward
sequential memory networks (FSMN) [8], etc. Recently, more
powerful deep models such as Transformer[9], Emformer[/10]
and Conformer[11] have proved their efficacy to further im-
prove the speech recognition performance.

Increasing model and training data size has been shown
an effective way to improve the system performance, which
is especially demonstrated in the field of language model-
ing [12, [13]. Recently, deep mixture of experts (MoE) based
approaches [ 14} [15] have been intensively investigated and ap-
plied in different tasks such as language modeling [16}[17] and
image classification[/18} {19} 120} 21]]. The benefits mainly come
from two aspects: First, MoE is an effective way to increase
model capacity. Second, with introduction of the sparsely-gated
mixture-of-experts layer [22], an attractive property of MoE
models is the sparsely dynamic routing, which enables us to sat-
isfy training and inference efficiency by having a sub-network
activated on a per-example basis.

*Equal contribution.

In real-world applications, speech recognition systems need
to be robust with different input conditions such as speakers,
recording channels and acoustic environments. Larger models
are appealing while the increase of training and inference cost
can not be afforded. The major problem is that the computation
cost of a static model is fixed and can not be adaptive to the
varying complexity of input instances. Therefore, developing
mixture of expert models for speech recognition with dynamic
routing mechanism is a promising exploration.

In this study, we explore mixture of experts approach for
speech recognition. We propose a novel dynamic routing mix-
ture of experts architecture, similar to [17], which comprises of
a set of experts and a router network. The router takes output of
the previous layer as input and routes it to the best determined
expert network. We find that the balance loss proposed in [[17]
achieves balanced routing but the sparsity of router activation
can not always be guaranteed. Here, we propose a sparsity L1
loss to encourage the router activation to be sparse for each ex-
ample. Besides, we use a mean importance loss to further im-
prove the balance of expert utilization. Furthermore, a shared
embedding network is used in our architecture to improve the
route decisions, whose output will be combined with the output
of previous layers as the input of routers.

The rest of the paper is organized as follows. Section 2 re-
views the related works of MoE and Section 3 represents our
proposed method SpeechMoE. The experimental setup is de-
scribed in Section 4 and the experimental results are reported in
Section 5. Finally, we conclude this paper in Section 6.

2. Related works

In this section, we mainly describe two different architectures
of MoE.

2.1. DeepMoE

The DeepMoE architecture proposed in [20] can achieve lower
computation cost and higher prediction accuracy than stan-
dard convolutional networks. The architecture designs a sparse
gating network which can dynamically select and re-weight
the channels in each layer of the base convolutional network.
Fig.1(a) shows the detailed architecture of DeepMoE. The
DeepMOoE consists of a base convolutinal network, a shared
embedding network and a multi-headed sparse gating network.
The gating network transforms the output of the shared embed-
ding network into sparse mixture weights:

g'(e) = f(W, -e) (1)

where g'(e) is the sparse mixture weights of I-th convolutional
layer, e is the output of the shared embedding network, and f
is the activation operation(i.e., Relu). Then, the output of [-th
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Figure 1: (a), (b) and (c) represent the architecture of DeepMoE, Switch Transformer and SpeechMoE respectively. Similar to Switch
Transformer, only one expert with the largest router probability in each MoE layer is used in the SpeechMoE, which is different from
DeepMoE. Besides, the SpeechMoE utilizes a shared embedding and output of the previous layer as the input of each router.

convolutional layer can be formulated as:
n
y' =Y 4FE ©)
i=1

where n is the input channels number of [-th convolutional layer
and E! is the i-th channel of I-th convolutional layer, treated as
the i-th expert in [-th layer.

The loss function for training DeepMOoE is defined as:

L(z;y) = Lo(2;y) + aLg(z;y) + BLe(xsy)  (3)

where = and y are the input image feature and target label, re-
spectively. Ly is the classification loss, Ly is the L1 regulariza-
tion term which controls sparsity of the gating network and L.
is the additional classification loss which encourages the diver-
sity of shared embedding network.

2.2. Switch Transformer

Fedus et al. proposed the Switch Transformer [17] for language
modeling, which further reduces computation and communica-
tion costs by simplifying the MoE routing algorithm. The archi-
tecture of Switch Transformer is described in Fig.1(b), where
experts refer to feed-forward networks and the non-expert lay-
ers refer to the self-attention layers. Each MoE layer consists
of n experts and a router layer. It takes output for the previous
layer as input and routes it to the top-1 expert with the largest
router probability. Let W and o'~' be the router weights of
the /-th layer an the output of the previous layer, then the router
probability can be defined as follows:

rt=wlo ! @)
1
exp”i
P= T )
Zj:l exp J

Then, the selected expert’s output is also gated by router proba-
bility to get output of the MoE layer,

y = piE; (6)

Since only one expert is active in each layer, the Switch
Transformer can keep the computation cost constant while scal-
ing to a very large model. To encourage a balance load across
experts, the balancing loss [17]] is added into the loss function
and defined as:

Ly=n-Y si-P, ™
i=1

where s; is the fraction of samples dispatched to expert i, P; is
the fraction of router probability allocated for expert 4.

3. SpeechMoE
3.1. Model architecture

Fig.1(c) shows an overview of the architecture of our proposed
SpeechMOoE. For speech recognition, its input is speech features
(e.g. fbanks) and the input frames will be dispatched to experts
in each layer. Similar to the Switch Transformer, SpeechMoE
only selects one expert in each layer to reduce the computation
cost. Compared with Switch Transformer and DeepMoE, the
SpeechMoE concatenates the shared embedding with output of
the previous layer as the input of routers, which can be defined
as:

rt=wl. Concat(e; ol_l) 8)

This router mechanism comes from two considerations: (1)
All gating values in DeepMoE are controlled by the shared em-
bedding, which may decay to similar gating results in each
layer. Utilizing the hierarchical representation from output of
each layer may lead to diverse routing results for SpeechMoE.
(2) The shared embedding relative to the goal task may be help-
ful to get a better routing strategy, providing a high-level dis-
tinctive representation and making the experts specialized to
process distinct input frames.

3.2. Training objective

3.2.1. sparsity L1 loss

In our study, we find that the router probability distribution
tends to be uniform when we only use the balancing loss pro-
posed in [17], resulting in a bad performance. In order to en-



courage the sparsity of router activation, we propose a sparsity
L1 loss, defined as follows:

I e~ ;
L =— i 9
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where fl = —fi_ stands for the unit normalized router proba-
I1fill2

bility distribution of sample ¢, and m is the number of samples
in this mini-batch. Due to the unit normalization, minimizing
the L1 norm will force the distribution close to space axes and
attain sparsity.

3.2.2. Mean importance loss

We have also observed that model isn’t balanced enough when
increasing the number of experts. To solve this problem, we use
a modified importance loss[22] to replace the balancing loss,
defined as follows:

1 m
Imp= — ; 10
mp m;p (10)
L= nZImij (1D
j=1

The mean importance is defined as the mean activation of ex-
perts on batch of samples and the loss is defined as the squared
sum of mean importance of each expert. It’s clear that when
mean importance of each expert is averaged %, the loss reaches
the minimum. Compared with the balancing loss in which s;
is not differentiable, the mean importance loss is more smooth,
leading to a more balanced routing strategy.

3.2.3. Loss function

Given the input = and the target y, the full loss function of our
method is defined as

L(z;y) = Lr(z;y) + aLs(z) + BLm(x) + vLe(259y) (12)

Among these items, L, is the CTC loss[23] for speech recogni-
tion, L and L,, are the mentioned sparsity L1 loss and mean
importance loss, used to encourage sparsity and diversity of the
SpeechMoE model. Similar to [20], we introduce an additional
embedding loss L., which is also the CTC loss. It shares the
same goal with our SpeechMoE model and provides reliable
embeddings for the routers. «, 3, and +y are the scale for L,
L, and L. respectively.

4. Experimental Setup
4.1. Training setup

The speech features used in all the experiments are 40-
dimensional log-Mel filterbank features appended with the first-
order and the second-order derivatives. Log-mel filterbank fea-
tures are computed with a 25ms window and shifted every
10ms. We stack 8 consecutive frames and subsample the in-
put frames with 3. A global mean and variance normalization
is applied for each frame. All the experiments are based on the
CTC learning framework. We use the CI-syllable-based acous-
tic modeling method [24]] for CTC learning. The target labels of
CTC learning are defined to include 1394 Mandarin syllables,
39 English phones, and a blank. Character error rate results
are measured on the test sets and the floating point operations

(FLOPs) for a one-second example is used to evaluate the in-
ference computation cost. We use a pruned, first pass, 5-gram
language model. All the systems use a vocabulary that con-
sists of millions of words. Decoding is performed with a beam
search algorithm by using the weighted finite-state transducers
(WESTs).

4.2. Datasets

Our training corpus is mixed data sets collected from several
different application domains, all in Mandarin. In order to
improve system robustness, a set of simulated room impulse
responses (RIRs) are created with different rectangular room
sizes, speaker positions, and microphone positions, as proposed
in [25]. Totally, It comes to a 10k hours training corpus.

To evaluate the performance of our proposed method, we
report performance on 3 types of test sets which consist of
hand-transcribed anonymized utterances extracted from read-
ing speech (1001 utterances), conversation speech (1665 ut-
terances) and spontaneous speech (2952 utterances). We refer
them as Read, Chat, and Spon respectively. In addition, to pro-
vide a public benchmark, we also use AISHELL-2 development
set (2500 utterances) recorded by high fidelity microphone as
the test set.

4.3. Acoustic Model

Our acoustic models consist of four components: MoE layer,
sequential memory layer [26], self-attention layer [27] and the
output softmax layer. Each MoE layer includes a router and a
set of experts which is a feed forward network with one hidden
layer of size 1024 activated by ReLU and an projection layer
of size 512. For the sequential memory layer, the look-back
order and look-ahead order of each memory block is 5 and 1
respectively, and the strides are 2 and 1 respectively. For the
self-attention layer, we set the model dimension d = 512 and
the number of heads h = 8. For every layer excluding the
output softmax layer, the residual connection is applied.

The backbone of our model consists of 30 MoE layers, 30
sequential memory layers and 3 self-attention layers. Each MoE
layer is followed by one sequential memory layer, and a self-
attention layer is inserted after each 10 consecutive MoE and se-
quential memory layers. In our experiments, we vary the num-
ber of experts of MoE layers to be 2, 4 and 8, which are marked
as MoE-2e, MoE-4e and MoE-8e respectively. The shared em-
bedding network is a static model without MoE layers but a
similar structure to the backbone.

In our study, we built two baseline systems for evaluating
the performance of our proposed method:

- Baseline 1 (B1): The static model without MoE layers
but a similar structure to the backbone of SpeechMoE
models, which can also be treated as MoE-1e. Since the
proposed method uses an extra embedding network, B1
model is designed to have 60 layers to be FLOP-matched
with our MoE models.

- Baseline 2 (B2): The model with 4 experts in each MoE
layer, which does not have the shared embedding net-
work and is trained with only the auxiliary balancing loss
proposed in Switch Transformer.

For all experiments on MoE models, we set the hyper-
parameters o = 0.1, § = 0.1 and v = 0.01.



Table 1: Results of adding sparseness L1 loss.

Test set
Model | Params | FLOPS |5 —par T Spon | AISHELL
BI 7IM | 23B | 20 | 2292 | 2495 y)
B2 134M | 23B | 1.81 | 2249 | 2490 | 4.50
MoE-L1 | 134M | 23B | 1.69 | 2247 | 2470 | 425

Table 2: Results of augmenting shared embedding network and
utilizing mean importance loss.

Test set

Model | Params | FLOPS |5 e par T Spon | AISHELL

MoE-L1 134M 2.3B 1.69 | 22.47 | 24.70 425
+emb 170M 2.3B 1.63 | 22.15 | 24.15 4.16
+imp loss | 170M 2.3B 1.58 | 21.57 | 23.31 4.00

5. Experimental Results
5.1. Adding sparsity L1 loss

In this section, we investigate the performance of adding the
sparsity L1 loss in training. We have trained two baseline sys-
tems for this evaluation. The first baseline system(B1) is the
static model trained based on L, loss and The other one(B2) is
trained based on L, and L; loss mentioned above. Our result
of adding sparsity L1 loss relative to B2 is marked as MoE-L1.

As shown in table 1, B2 performs a little better than B1 with
more parameters and comparable computation cost. It is as ex-
pected that the MoE-L1 which uses both balancing loss and
sparsity L1 loss achieves the best performance compared with
two baseline systems. This indicates that the additional sparsity
L1 loss brings about more sparsity to router probability distri-
bution. The routers become more distinctive and specialized for
varying input frames so that the model get a better performance.

5.2. Augmenting shared embedding network

In this section, we evaluate the performance of the new router
architecture which concatenates the shared embedding with out-
put of the previous layer as the input of the router. As can be
observed in table 2, the proposed router architecture achieves
lower character error rate comparing with MoE-L1 model.

It is worthy to note that only using output of previous
layer as input does not work very well, which contradict with
the method used in [17]. A reasonable explanation is that for
language modeling, the word input as high-level representa-
tion already has good distinction, while for speech recognition
the spectrum input is low-level feature which can not provide
enough distinction information for routers, so the shared em-
bedding network which converts low-level features to high-level
embedding, is necessary to help router attain better selecting ef-
fect.

5.3. Utilizing mean importance loss

The last line of table 2 presents the effects of the mean impor-
tance loss in place of the balancing loss. We observe that the
proposed loss can further achieve lower character error rate than
MoE-L1 model with embedding network on the four test sets.
Since the mean importance loss encourages all experts to have
equal importance, it will help the routers dispatch input frames
to experts in a balanced way, avoiding the situation that some
experts get no samples for training. Thus, the experts will be
more diverse and result in a better performance.
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Figure 2: Validation CTC loss for increasing expert number

Table 3: Results of increasing the number of experts.

Test set
Model | Params | FLOPs |—p o q Chat Spon | AISHELL
BI 7IM | 23B 20 292 | 2495 152
MoE-2¢ | 105M | 23B 1.62 2082 | 2352 4.08
MoE-4e | 170M | 23B 1.58 2157 | 2331 4.00
154 2131 | 2297 3.98
MoE-8e | 297M | 23B | (230%) | (:7.0%) | (7.9%) | (11.9%)

5.4. Increasing the number of experts

In this section, we investigate the effect of increasing the num-
ber of experts. Table 3 shows the performance comparison on
different number of experts with SpeechMoE. Line 2 presents
the results of the baseline system (B1). The following three
lines present results of 3 different number of experts which are
marked as MoE-2e, MoE-4e and MoE-8e respectively. The re-
sults clearly show that performance get better as the number of
experts increases. Specifically, MoE-8e achieves up to 23.0%
relative CER improvement over the baseline model on the Read
test set, and the gain is between 7.0%~11.9% for other more
realistic test sets.

Figure 2 shows the validation CTC loss of MoE with dif-
ferent number of experts and the baseline model. As shown,
the MoE-8e model produces the lowest CTC loss compared
with both the baseline model and the other SpeechMoE models.
Moreover, we observe that having more experts speeds up train-
ing. This suggests that increasing the number of expert leads to
more powerful models.

6. Conclusions and future work

In this paper, we explore a mixture of experts approach for
speech recognition. We propose a novel dynamic routing acous-
tic model architecture, the router module is enhanced by com-
bining the previous layer’s output and embedding from an iso-
lated embedding network. We also improve the training loss
that can both achieve better sparsity and balancing among dif-
ferent experts. Thorough experiments are conducted on training
with different loss and varied number of experts. Future work
includes both extending training data scale and number of ex-
perts, increasing by one or two orders of magnitudes, and ex-
ploring the proposed SpeechMoE model with other end-to-end
training framework such as transformer transducers.
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