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Abstract
Source-filter modelling is among the fundamental techniques in
speech processing with a wide range of applications. In acoustic
modelling, features such as MFCC and PLP which parametrise
the filter component are widely employed. In this paper, we in-
vestigate the efficacy of building acoustic models from the raw
filter and source components. The raw magnitude spectrum, as
the primary information stream, is decomposed into the excita-
tion and vocal tract information streams via cepstral liftering.
Then, acoustic models are built via multi-head CNNs which,
among others, allow for processing each individual stream via
a sequence of bespoke transforms and fusing them at an opti-
mal level of abstraction. We discuss the possible advantages of
such information factorisation and recombination, investigate
the dynamics of these models and explore the optimal fusion
level. Furthermore, we illustrate the CNN’s learned filters and
provide some interpretation for the captured patterns. The pro-
posed approach with optimal fusion scheme results in up to 14%
and 7% relative WER reduction in WSJ and Aurora-4 tasks.

Index Terms: Source-filter separation, multi-stream informa-
tion processing, raw spectrum-based acoustic modelling, ASR

1. Introduction
Source-filter modelling [1, 2] is among the fundamental tech-
niques in speech processing. Based on the properties of human
speech production system, this model characterises the speech
signal as a temporal convolution of some random or quasi-
periodic excitation (Exc) signal (source) passing through a lin-
ear filter representing the vocal tract (VT). These two elements
can be separated via deconvolution in the time domain. Cepstral
low-pass liftering (CLPL) [3,4] and linear prediction (LP) [5,6]
are two popular methods for extracting the VT part.

It is well-established that the filter component is primarily
associated with the linguistic content of the speech signal while
the source element reflects the attributes correlated with the
speaker [4]. Based on these properties, source-filter modelling
has been widely applied in speech processing, e.g., in speech
coding [7], speech synthesis [8–12], voice activity detection
[13] and feature extraction for speech recognition/classification
[14, 15]. Front-ends such as MFCC [14] and PLP [15], loosely
speaking, parametrise the filter part using non-parametric CLPL
and parametric LP methods, respectively.

In [16], we investigated the possibility of building acoustic
models using different representations of the raw1 phase spec-
trum including its source and filter components separated us-
ing the phase-based source-filter separation algorithm proposed
in [17–19]. In this paper, we extend that study to the magni-
tude spectrum domain and scrutinise some unexplored aspects
of acoustic modelling using raw source and filter components.

Supported by EPSRC Project EP/R012180/1 (SpeechWave).
1By raw we mean using the entire spectrum (positive frequencies).

Having separated these two components via CLPL, we re-
combine these two information streams via multi-head convolu-
tional neural networks (CNN) with multiple information fusion
schemes. We also examine the dynamics of such approach in
terms of evolution of the cross entropy (CE) loss and word er-
ror rate (WER) vs epoch. In addition, the learned filters of the
first convolutional layer are depicted and some interpretations
for the captured patterns are provided. The proposed frame-
work could lead to up to 14% and 7% relative WER reduction
in the WSJ [20] and Aurora-4 [21] tasks, respectively.

After briefly reviewing the source-filter modelling and sep-
aration in Section 2, we discuss the ”why” and ”how” of recom-
bining the source and filter components via multi-head CNNs in
Section 3. In Section 4 the learned filters are analysed and some
interpretation for the captured patterns is presented. Section 5 is
dedicated to the experimental results along with discussion and
Section 6 concludes the paper.

2. Source-filter Separation
In this section, we briefly review the magnitude-based source-
filter separation using CLPL [4]. This technique is a well-
established method within the generic Homomorphic Speech
Analysis [3] framework which aims at solving non-linear prob-
lems such as deconvolution via linear filtering in some domain.

The CLPL method is predicated on the assumption that the
log of the magnitude spectrum (Fig. 1(b)) can be interpreted as
a superposition of two components: a rapidly oscillating com-
ponent modulated by a slowly varying element which are as-
sociated with the excitation and vocal tract parts, respectively.
The slowly varying component (the vocal tract) can be extracted
through convolution with a low-pass filter in the frequency do-
main or multiplication in a low-pass lifter in the quefrency (cep-
stral) domain. Fig. 1 illustrates the separated source and filer
components via cepstral low-pass liftering.

To implement the low-pass liftering, we deploy a brick-wall
(ideal low-pass) lifter of length L0 in the quefrency domain
which is equivalent to convolution with a cardinal sine (sinc)
function in the frequency domain. To extract the VT part, L0

should be slightly smaller than the fundamental periodicity, T0.
This requirement necessitates tracking T0 per frame.

To keep the setup as simple as possible, we do not compute
T0 per frame and set the L0 based on the minimum possible
fundamental periodicity, TMin

0 . Assuming the maximum F0

is 320 Hz (all speakers are adult) and the sampling rate is 16
kHz, we set L0 to 50 (16000/320 samples). This ensures the
filter component is devoid of any source information, but the
excitation part is likely to include some VT residues.

It may be argued that by overlooking the actual T0 per
frame, the source-filter separation through CLPL accompanies
with some notable error, namely the Exc part contains VT
residues, and the larger the actual T0, the higher the correspond-

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-53276



Figure 1: Source-filter separation using cepstral low-pass lif-
tering. (a) spectrogram, (b) Magnitude spectrum along with the
VT and Exc components, (c) VT component, (d) Exc component.

Figure 2: (a) Error caused by using TMin
0 instead of the actual

T0 for a typical male/female speaker, (b) CCs’ average tends to
zero, decay rate is as fast as a Homographic function (1/x).

ing error (Fig. 2 (a)). However, considering one particular prop-
erty of the cepstral coefficients (CC) proves that such error is
practically negligible. In [3], it is shown that the CCs of the all-
pole models (which well characterise the VT component) are
inversely proportional with the quefrency index and the enve-
lope decays quickly, as fast as a Homographic function (1/x).

Fig. 2 (b) illustrates the average CCs calculated over 300
speech signals (> 217k frames) of WSJ Eval-92 data. The CCs
are computed using the the original and vocal tract magnitude
spectra. As seen, the empirical results are consistent with the
theory and the CCs for the quefrencies larger than 50 are almost
zero. Therefore, the error due to using the TMin

0 instead of the
actual T0 per frame is insignificant. As such we can safely skip
computing and tracking T0 per frame which highly simplifies
and facilitates applying the proposed approach.

3. Source-filter Recombination through
Multi-head CNNs

Having separated the VT and Exc components, we wish to build
an acoustic model using these two information streams without
discarding any information. Our baseline system is a single-
head CNN fed with the raw magnitude spectrum. Using the raw
magnitude spectrum as input implies direct combination (mul-
tiplication or addition (log)) of the source and filter elements in
the input (very low) level. We argue that deferring the combi-
nation to a higher level of abstraction, and pre-processing the
information streams via multi-head CNNs before fusion, could
lead to a more effective task-tailored information processing.

Now, we investigate the intuition and advantages of such
framework as well as some implementation aspects.

3.1. Intuition and Advantages

What are the benefits of such factorisation and recombination?
Information-wise, using the raw source and filter components
simultaneously as inputs is as informative as using the raw mag-
nitude spectrum. So, comparatively, such a multi-stream ap-
proach does not take advantage of any extra bits of information
in the input level. As such the only remaining room to obtain
a better performance is to process the supplied information in a
more effective way. We believe this is the case and put forward
three arguments lending support to this claim.

First, the relevance of each individual information stream to
the given task is different. As shown in Tables 2 and 3, although
the Exc component is obviously not as instrumental as the VT
element in the ASR task, its performance is remarkably better
than random guessing. This indicates that for a given task, the
optimal weight for these two components before mixing them
is not digital (0/1) but more subtle. We may also think about
adequate weighting as a gating mechanism where ideally each
stream should pass through a soft rather than a hard (0/1) gate.
Using the magnitude spectrum along with a single-head CNN
means giving these two components identical weights before
fusion while we know a priori that their importance is different.

Second, regardless of the importance of each information
stream to the task, the underlying information generation pro-
cess encodes the information within different forms and/or set
of patterns. As such optimal chain of transforms for processing
and distilling the carried information by each stream would be
dissimilar. For example, for tonal languages, the source com-
ponent includes some information correlated with the lingual
content of speech. However, the optimal pipeline for process-
ing this information stream is entirely different from the optimal
pipeline for processing the vocal tract stream. The proposed
framework can handle this issue by learning a set of bespoke
transforms which process each stream individually and then fus-
ing them in an optimal level of abstraction.

Third, an optimal information processing system ideally
should only pass through the task-relevant information to the
decision making level whilst filters out the irrelevant compo-
nents. If the model is fed with multiple streams, it can not only
learn what is more important to the task and pass it through, but
also learn which data variability is irrelevant and hence should
be neglected during inference. In ASR, such information fil-
tering, among others, means removing the speaker-related at-
tributes. The raw source component is a simple yet rich repre-
sentation encoding such attributes and feeding the system with
it helps the model to learn to normalise/ignore such irrelevant
data variability. This potentially contributes towards building a
system with a better generalisation and robustness.

3.2. Implementation

Having processed each individual information stream, we shall
fuse them at some point along the pipeline. Fig. 3 illus-
trates three multi-stream architectures along with the single-
head baseline system. As seen, the systems composed of a
cascade of the convolutional and fully-connected (FC) sub-
networks, fusing the information streams at three levels: low
level after the convolutional sub-network (Concat-1), medium
level in the middle of the FC sub-network (Concat-2), and high
level, just before the output (softmax) layer (Concat-3).

The processed information streams should be mixed when
they reach an optimal level of abstraction, which is determined
empirically, depending on the architecture, streams’ informa-
tion content, data and task. However, the following could
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Figure 3: Multi-head acoustic modelling using convolutional
and fully-connected (FC) sub-networks (n in nL is number of
layers). Fusion (concatenation) of the raw magnitude spectra of
the source and filter components at different levels: (a) Baseline
(single-head), (b) Concat-1, (c) Concat-2, (d) Concat-3.

Table 1: #params (in millions) for systems in Fig. 3.
Baseline Concat-1 Concat-2 Concat-3

#params 9.6 12.9 15.1 19.3

elucidate some of the advantages and drawbacks of different
schemes: i) assuming there is a fixed budget in terms of number
of layers, placing the fusion point at the higher levels leads to al-
locating more layers to pre-process individual streams, leaving
fewer layers and consequently capacity for post-processing and
abstraction extraction after the fusion point; ii) the higher the
fusion level, the higher the number of architecture parameters
(#params), as shown in Table 1.

4. Interpretation of the Learned Filters
In this section, we depict the learned filters in the first convo-
lutional layer (ConvL1) for the respective models and provide
some interpretation for the captured patterns. Filters referred to
as Mag in Figs. 4-6 belong to the single-head baseline system
(Fig. 3 (a)) fed with the original magnitude spectrum. Those re-
ferred to as VT and Exc are related to the Concat-1 architecture
(Fig. 3 (b)) fed with the raw magnitude spectra of the VT and
Exc components, respectively. Each ConvL1 has 128 filters and
the kernel size is 129. In all of the experiments, 10th root of the
magnitude spectrum is used as input. The task is WSJ.

Fig. 4 illustrates the learned filters (left column) along with
the corresponding Fourier transform (FT) (right column). Al-
though the filters are learned in the frequency domain, (in the
left column of Fig. 4) we did not label the domain as frequency.
However, we refer to the domain after taking FT of the filters as
quefrency. One interesting observation is that the learned filters
in the model fed with the the original raw magnitude spectrum
emphasise mostly the low cepstral components (Fig. 4 (b)), i.e.
the model identifies and focuses on the most important aspect
of the input to the task, namely the part associated with the VT.

Another noteworthy observation is that the FT of the
learned filters fed with VT (Fig. 4 (d)) is almost zero for que-
frencies larger than 50. This illustrates that the model, among
others, learns about an important property of its input, namely
the magnitude spectrum of the vocal tract component, and does
not pay attention to higher quefrencies which are already set to

Figure 4: Learned filters in the first convolutional layer fed with
Mag, VT and Exc components; left column is filters directly op-
erate on the magnitude spectra while right column depicts their
FT (quefrency). (a) and (b) Mag, (c) and (d) VT, (e) and (f) Exc.

Figure 5: Covariance matrices computed using 300 signals of
WSJ Eval-92. (a) Magnitude spectrum, (b) VT, (C) Exc.

zero during VT extraction via CLPL. This property is compa-
rable with raw waveform models which can detect noisy sub-
bands and filter them out, as demonstrated in Fig. 1 (h) in [22].

Another dimension to explore is the support of the learned
filters, which might be understood by comparing with the co-
variance matrices of the raw Mag, VT and Exc components.
The filters should capture some task-useful local correlations in
the input. Based on the empirically computed covariance matri-
ces using WSJ Eval-92 data (Fig. 5), short, mid and long-range
dependencies/correlations are all plausible, especially for Mag
and VT. This justifies having filters with short to long supports.

The last insight regarding the learned filters is about their
shape. As seen in Fig. 6, the filters could be unimodal, resem-
bling a wavelet such as a sinc function with a short (Fig. 6 (a))
or medium support (Fig. 6 (b)), or bimodal with medium to long
support (Fig. 6 (c)), or could have a very long support (Fig. 6
(d)). Similarity with the sinc parametric filters also implies
that as well as conventional non-parametric filters, one may use
parametric CNNs [23] as the first layer, e.g., SincNet [24]. We
take advantage of this observation in the next section.

5. Experimental Results
5.1. Setup

DNNs were trained using PyTorch-Kaldi [25, 26] with default
recipes; raw waveform model configuration has been used for
processing the raw spectra. The baseline architectures (Fig. 3
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Figure 6: Shapes of the learned filters in ConvL1 fed with the
raw magnitude spectrum (Fig. 4 (a)). (a) Sinc (short), (b) Sinc
(medium support), (c) bimodal, (d) long-range correlation.

(a)) consists of a cascade of four 1D convolutional layers fol-
lowed by five FC hidden layers with ReLU [27] activation. Ex-
periments where carried out on Aurora-4 (multi-style) [21] and
WSJ [20] tasks. Alignments were taken from the respective
Kaldi standard recipes [28]. For both tasks the WER and CE
loss are reported. Aurora-4 test set includes four subsets: A
(clean), B (additive noise), C (channel noise) and D (additive
and channel noise). Length of the MFCC, FBank and raw fea-
tures (per frame) are 39, 40 and 257, respectively. Mag0.1 in-
dicates 10th root. VT and Exc in Tables 2 and 3 are 10th root
of the corresponding magnitude spectra. Feature vectors were
augmented with the features of the ±5 contextual frames.

5.2. Results and Discussion

Tables 2 and 3 show the WER for WSJ and Aurora-4, respec-
tively. As seen, presenting the network with the source and fil-
ter components instead of the magnitude spectrum, whilst not
providing any new information, leads to a notable performance
gain owing to a more effective information processing.

Information fusion level plays a noticeable role. While
Concat-3 leads to the poorest performance, Concat-1 appears
to be the optimal fusion scheme resulting in up to 14% and 5%
relative (to the raw magnitude spectrum with single-head) WER
reduction for WSJ and Aurora-4 tasks, respectively.

Fig. 7 illustrates the temporal evolution (dynamics) of the
CE and WER vs epoch for different systems and datasets. As
seen, for WSJ the performance measures reach a plateau after
15 epochs while for Aurora-4 the performance keeps improving
for up to 30 epochs. Such differences in dynamics and perfor-
mance gain are explainable considering the amount of training
data (81h vs 14h) and presence of noise in Aurora-4.

Motivated by the captured patterns depicted in Fig. 6 (a)
and (b) where some filters resemble parametric models, we also
studied the usefulness of employing CNNs with parametric ker-
nels and particularly, SincNet. Such models were primarily pro-
posed for acoustic modelling from the raw waveform. Here, we
successfully extended their use-case to the raw spectrum-based
acoustic modelling. As seen in Tables 2 and 3, this modification
further improves the results, leading to WER of 4.5% and 8.1%
for WSJ (Eval-92) and Aurora-4 (average), respectively.

6. Conclusions
In this paper, we investigated the usefulness of acoustic mod-
elling for ASR using raw magnitude spectra of the source and

Figure 7: Temporal evolution (dynamics) of the CE and WER vs
epoch. (a) CE for WSJ (Dev-93), (b) WER for WSJ (Eval-92),
(c) CE for Aurora-4 (Dev), (d) Average WER for Aurora-4.

Table 2: WSJ WER for different front-ends.
Dev Eval-92 Eval-93

MFCC 10.4 6.8 10.4
FBank 9.1 5.9 8.8
Raw-wave 8.7 5.2 8.5

Mag0.1 (baseline) 8.8 5.5 9.0

Exc 15.1 11.8 16.5
VT 9.6 6.3 9.1
Concat-1 7.9 4.5 7.5
Concat-2 7.9 4.6 7.6
Concat-3 8.1 4.8 7.6

Sinc-Concat-1 8.0 4.5 7.4

Table 3: Aurora-4 (multi-style) WER for different front-ends.

Feature A B C D Avg

MFCC 3.5 6.8 7.1 16.5 10.7
FBank 2.9 5.9 4.5 14.5 9.2
Raw-wave 3.1 5.7 7.5 16.5 10.3

Mag0.1 (baseline) 2.6 5.3 4.3 14.1 8.8

VT 3.0 6.0 5.1 15.0 9.6
Exc 6.4 15.8 16.2 32.6 22.4
Concat-1 2.4 5.1 4.1 13.0 8.2
Concat-2 2.5 5.2 4.3 13.3 8.4
Concat-3 2.5 5.5 4.5 13.9 8.8

Sinc-Concat-1 2.3 5.0 4.0 12.7 8.1

filter components. Having separated the vocal tract and ex-
citation elements of the speech signal, these two streams of
information were recombined via multi-head CNNs. Advan-
tages of such factorisation and recombination were discussed.
It was argued that it paves the way for a more effective task-
oriented multi-stream information processing. Performance-
wise, up to 7% and 14% relative WER reduction for Aurora-
4 and WSJ tasks have been achieved. Training dynamics and
optimal fusion schemes were explored, the learned filters were
analysed and some interpretation for the captured patterns were
presented. The proposed multi-stream source-filter-based ap-
proach provides a generic framework, potentially employable
in a wide range of speech recognition and classification tasks.
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