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Abstract
Recently, our proposed recurrent neural network (RNN) based
all deep learning minimum variance distortionless response
(ADL-MVDR) beamformer method yielded superior perfor-
mance over the conventional MVDR by replacing the matrix
inversion and eigenvalue decomposition with two RNNs. In
this work, we present a self-attentive RNN beamformer to fur-
ther improve our previous RNN-based beamformer by lever-
aging on the powerful modeling capability of self-attention.
Temporal-spatial self-attention module is proposed to better
learn the beamforming weights from the speech and noise spa-
tial covariance matrices. The temporal self-attention module
could help RNN to learn global statistics of covariance matri-
ces. The spatial self-attention module is designed to attend on
the cross-channel correlation in the covariance matrices. Fur-
thermore, a multi-channel input with multi-speaker directional
features and multi-speaker speech separation outputs (MIMO)
model is developed to improve the inference efficiency. The
evaluations demonstrate that our proposed MIMO self-attentive
RNN beamformer improves both the automatic speech recog-
nition (ASR) accuracy and the perceptual estimation of speech
quality (PESQ) against prior arts.
Index Terms: Speech separation, MIMO, MVDR, Self-
attentive RNN beamformer, spatial self-attention

1. Introduction
Minimum variance distortionless response (MVDR) is a widely
used beamformer for the automatic speech recognition (ASR)
[1]. Recently, the mask-based MVDR [1, 2, 3, 4, 5, 6] achieved
better ASR accuracy than purely “black box” neural network-
based approaches [7, 8, 9, 10, 11] due to less non-linear distor-
tion. However, the residual noise level of the MVDR separated
speech is still high [12]. Furthermore, the matrix inversion in-
volved in the traditional MVDR solution always has the numer-
ical instability problem [13, 14, 15, 16]. Although some tech-
niques, e.g., diagonal loading [13], could be used to alleviate
this issue, it has not been fully solved.

The RNN was once demonstrated to be able to imple-
ment the matrix inversion and eigenvalue decomposition [17,
18, 19, 20]. Based on this, we recently proposed the ADL-
MVDR [21, 22] beamforming method, where two RNNs are
used to replace the matrix inversion and principal component
analysis (PCA) operations of the original MVDR algorithm.
Compared to the conventional MVDR, better residual noise
reduction and ASR accuracy are obtained. Unlike the ADL-
MVDR, a more generalized RNN-based beamformer (GRNN-
BF) [23] was later proposed to learn the frame-level beamform-
ing weights from the estimated speech and noise covariance ma-

*This work was done when Xiyun Li was an intern in Tencent.

trices directly. The GRNN-BF can converge to a better beam-
forming solution without following any format of traditional
beamformers (e.g, MVDR).

On the other hand, the self-attention [24, 25] is a popular
method to learn the global dependencies for the speech sep-
aration task [26, 27, 28, 29, 30, 31, 32]. However, in those
works, the self-attention is used for predicting the separation
mask while we aim to learn the beamforming filter from the
covariance matrices in this paper. Two types of self-attention
modules with different purposes are proposed to better learn
the cross-channel spatial correlations and improve the temporal
modeling capability of the RNN-based beamformer [23, 21].

In this work, a MIMO self-attentive RNN beamformer is
proposed to learn the frame-level beamforming weights for all
speakers from all the speech and noise covariance matrices di-
rectly. There are three main contributions. First, we propose a
temporal-spatial self-attention module to learn the beamform-
ing weights. The spatial self-attention can learn the cross-
channel correlations from the covariance matrices. The tempo-
ral self-attention is designed to consolidate the RNNs to cap-
ture the long-term statistics of covariance matrices. Second,
the temporal self-attention, the spatial self-attention, and the
RNN are demonstrated to be complementary to each other. Bet-
ter performance is achieved by comparing with the RNN-based
beamformer baseline [23, 21]. Finally, unlike our previous tar-
get speech separation [21, 23, 6], our proposed model here is a
MIMO model to enable the inference computation efficiency.
It means that multi-speaker speech separation outputs could
be obtained simultaneously by feeding with multiple speaker-
dependent directional features.

The rest of the paper is organized as follows. In Sec. 2, we
describe our proposed MIMO self-attentive RNN beamformer
with complex-valued ratio filter (cRF). The cRF estimator and
the experimental setup are given in Sec. 3. The results are pre-
sented in Sec. 4. We conclude the paper in Sec. 5.

2. MIMO self-attentive RNN beamformer
2.1. Problem definition

Given the M -channel mixture signal y = [y1, ...,yM ], the
corresponding signal model in the short-time Fourier transform
(STFT) domain is defined as,

Y(t, f) =

C∑
i=1

Si(t, f) + U(t, f) (1)

Ni(t, f) =

C∑
j 6=i

Sj(t, f) + U(t, f) (2)

where Si and U represent the i-th speaker’s reverberated speech
and background noise, respectively. Ni is the corresponding
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Figure 1: The system framework consists of a complex-valued ratio filter (cRF) estimator and the proposed self-attentive RNN beam-
former. Different from the original Conv-TasNet [10], the encoder of our cRF estimator is a fixed STFT layer [33]. The estimated
speech and noise cRFs could be used to calculate the covariance matrices. The input of the self-attentive RNN beamformer is con-
catenation of all speakers’ speech and noise covariance matrices. The temporal self-attention module calculates the attention matrix
among frames, while the spatial self-attention calculates the attention matrix among microphone channels.
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Figure 2: The structure of self-attention module. Note that the temporal self-attention and the spatial self-attention attend on the time
dimension and the spatial channel dimension, respectively.

interfering noise (the sum of other speakers’ interfering speech
and the background noise) of the i-th speaker. C is the total
number of overlapped speakers in the utterance. t and f are the
time frame index and the frequency bin index, respectively.

Our task aims at separating all of the speakers’ speech Si
simultaneously. Different from our previous works [23, 21]
which focus only on separating the target speaker’s speech,
here we need to separate all speakers’ speech simultaneously.
The input includes the log-power spectra (LPS), the interaural
phase difference (IPD), and multiple speakers’ direction of ar-
rival (DOA) θ. Then the speaker-dependent directional feature
(DF(θ)) [34], could be calculated based on the DOAs. With
the speaker-dependent DOA information, the model could eas-
ily figure out the order of the separation outputs and avoid the
speaker permutation problem [8, 35]. As shown in Fig. 1,
the whole system consists of two parts, a complex-valued ratio
filter (cRF) [36, 21] estimator and the proposed self-attentive
RNN beamformer. The details of the cRF estimator, which
can estimate the speech and noise, will be described in Sec. 3.
The proposed self-attentive RNN beamformer, which can learn
the beamforming weights from the covariance matrices directly,
will be introduced first here.

2.2. Generalized RNN-beamformer baseline

Our recent work [23] proposed a generalized RNN-based beam-
former (GRNN-BF) method. The GRNN-BF used the complex-
valued ratio filter (cRF) [36] to calculate the target speech and
noise covariance matrices. The cRF is just an extended version
of complex-valued ratio mask (cRM) [37] by using the neigh-
boring context information. Then a RNN model was applied
to learn the frame-level beamforming weights directly from the
covariance matrices. As shown in Fig. 1, the cRF estimator first
predicts the target speech and noise cRFs. Then the estimated
i-th speaker’s speech Ŝi(t, f) is,

Ŝi(t, f) =

τ1=L∑
τ1=−L

τ2=L∑
τ2=−L

cRFSi
(t+ τ1, f + τ2)∗Y (t+ τ1, f + τ2)

(3)
where L defines the neighboring context size across the fre-
quency bins and the time frames. The corresponding i-
th speaker’s noise N̂i(t, f) with the corresponding noise
cRFNi(t, f) could be estimated in the same way. The frame-

wise i-th speaker’s speech covariance is calculated as,

ΦSi
(t, f) =

Ŝi(t, f)Ŝ
H
i (t, f)∑T

t=1 cRMH
Si

(t, f) cRMSi
(t, f)

(4)

where cRMSi(t, f) stands for the center mask of the
cRFSi(t, f). Then RNNs are used to directly learn the frame-
level beamforming weights from the frame-wise covariance ma-
trices [23], which can be formulated as

Ii(t, f) = [ΦSi(t, f),ΦNi
(t, f)] (5)

w1(t, f), ...,wC(t, f) = RNN([I1(t, f), ..., IC(t, f)]) (6)

where Ii(t, f) stands for the concatenation of i-th speaker’s
speech and noise covariance matrices, wi(t, f) ∈ CM denotes
the i-th speaker’s beamforming weights.

2.3. Proposed MIMO self-attentive RNN beamformer

Fig. 1 shows the detailed architecture of our MIMO self-
attentive RNN beamforming system. The model consists of
a cRF estimator and the proposed self-attentive RNN beam-
former. Similar to GRNN-BF [23], the cRFs first help to es-
timate the speech and noise covariance matrices (as shown
in Eq. (4)). Then the self-attentive RNN beamformer could
predict the frame-level beamforming weights from the covari-
ance matrices. Several types of self-attention modules, namely
temporal self-attentive module, and spatial self-attentive mod-
ule, temporal-spatial self-attentive module are proposed to fur-
ther improve the RNN-based beamformer [23] to learn a better
beamforming filter in this work.

2.3.1. Temporal self-attentive module

Self-attention [24], with the powerful modeling capability, is
widely used in the speech enhancement and speech separation
tasks [26, 27, 38, 28, 31]. We first propose a temporal self-
attention module to improve the temporal modeling capability
of RNNs. As shown in Fig. 2, the input Z1 to the self-attention
module is processed by three linear transform layers on the fea-
ture dim followed by the PReLU activation, which is denoted
as the feed-forward network (FFN). The outputs of the FFN are
represented as Q, K, V. Then a self-attention function is ap-
plied to exploit cross-frame correlation, followed by a residual
path and a layer normalization. The temporal self-attention cal-



culates the attention matrix among frames,

Attention(Q,K,V) = softmax

(
QK>
√
dk

)
V (7)

where dk stands for the hidden layer dimension of K. Finally,
the output of the self-attention function is fed into another FFN
to get the transformed output Z2. Different from other works
[26, 27, 38, 28, 30] which apply self-attention layers to predict
the separation mask, we use a self-attention module to estimate
the beamforming weights.

2.3.2. Spatial self-attentive module

To better learn cross-channel correlations from the covariance
matrices, we also propose a spatial self-attention module. In-
stead of acting on the time dimension as the temporal self-
attention did, the spatial self-attention module attends on the
spatial channel dimension to learn the cross-channel informa-
tion. As shown in Fig. 1, a dimension permute operation is
applied before the spatial self-attention module is conducted.

Different from [38] where a similar spatial self-attention
module is applied on the amplitude spectrogram to learn the
separation mask, our proposed self-attention module learns on
the complex-valued frequency domain for predicting the beam-
forming filter. In the amplitude of the frequency domain, the
phase information of different microphone channels is lost and
the self-attention can not effectively utilize the spatial corre-
lations. However, our proposed spatial self-attention mod-
ule could fully learn the spatial correlation from the complex-
valued speech and noise covariance matrices.

2.3.3. MIMO temporal-spatial self-attentive RNN beamformer

With the temporal self-attention module and the spatial self-
attention module, we can combine them into the proposed
temporal-spatial self-attentive RNN beamformer to model both
cross-frame information and cross-channel correlations (as
shown in Fig. 1). Similar to the GRNN-BF baseline (see Sec.
(2.2)), the input to the self-attentive RNN beamformer (SA-
RNN) is also the concatenated speech and noise covariance ma-
trices of all speakers. Then the multiple speakers’ beamforming
weights wi(t, f) ∈ CM and the separated i-th speaker’s speech
Si could be predicted as,

w1(t, f), ...,wC(t, f) = SA-RNN ([I1(t, f), ..., IC(t, f)])
(8)

Si(t, f) = wi(t, f)
HY(t, f), i = 1, . . . , C

(9)

Note that this work focuses on speech separation and de-noising
without de-reverberation. The scale-invariant signal-to-noise
ratio (Si-SNR) [10] loss between the estimated speech and the
reverberated clean speech is calculated and used to train the
model in an end-to-end mode. Each speaker’s Si-SNR loss is
averaged if that speaker exists in the utterance.

3. Experimental Setup and Dataset
3.1. System overview

As shown in Fig. 1, the system consists of a cRF estimator and
the proposed self-attentive RNN beamformer. The cRF [36] es-
timator is developed based on the Conv-TasNet [10] with the
fixed STFT encoder [33, 39]. The inputs to the cRF estima-
tor include the 15-channel microphone mixture and all speak-
ers’ DOA information. Specifically, the LPS of the 1st chan-

nel Y(0), IPD pairs [39] and multiple speakers’ directional fea-
tures DF(θ) are concatenated into the cRF estimator. The lo-
cation guided DF(θ) [34] calculates the cosine similarity be-
tween the i-th speaker’s steering vector v(θi) and IPDs [34].
With DF(θ) features, our model can extract the target speaker’s
speech from the specific DOA and it can avoid the speaker per-
mutation problem [8]. As for the simulated data, the ground-
truth DOA is known. For the real-world scenario, our ac-
tual hardware including a 15-microphone non-uniform linear
array aligned with a 180◦ wide-angle camera (see our demo
at https://lixiyun98.github.io/SA-RNN/). Then the DOA could
be roughly estimated through the location of the speaker’s face
[39]. The predicted speech and noise cRFs are used to cal-
culate the covariance matrices. Finally, the proposed MIMO
self-attentive RNN beamformer could learn the beamforming
weights for multiple speakers from covariance matrices.

3.2. Dataset and experimental setup

The methods are evaluated on the mandarin audio-visual corpus
[39, 33], which is collected from YouTube [22] with about 200
hours over 1500 speakers. The multi-channel multi-talker sim-
ulated dataset contains 153800, 500, and 1053 multi-channel
mixtures for training, validation, and testing. There are up to
three overlapped speakers in one utterance. The multi-channel
signals are generated by convolving speech with room impulse
responses (RIRs) simulated by image-source method [40]. The
virtual acoustic room size is ranging from 4m-4m-2.5m to 10m-
8m-6m. The reverberation time T60 is sampled in a range of
0.05s to 0.7s. The signal-to-interference ratio (SIR) is ranging
from -6 to 6 dB. Also, noise with 18-30 dB SNR is added to all
the multi-channel mixtures [39].

In our experiment, the sampling rate for audio is 16 kHz.
512-point of STFT is used to extract audio features along with
32ms Hann window with 50% overlap. Similar to the ADL-
MVDR [21] and GRNN-BF [23], the size of cRF [21, 36] is
empirically set to 3×3. The network is trained in a chunk-wise
mode with chunk size of 4 seconds and batch size of 8, us-
ing Adam optimizer with early stopping. Pytorch 1.1.0 is used.
The initial learning rate is set to 1e-4. Gradient norm is clipped
with max norm 10. In terms of the self-attentive RNN beam-
former module, the network consists of a 2800-size fully con-
nected layer (FC) followed by a uni-directional gated recurrent
unit (GRU) layer with PRelu activation function. The hidden
size is set to 500 for the GRU layer. The hidden size for the
output linear FC layer is 90.

A commercial general-purpose mandarin speech recogni-
tion API [41] is used to test the ASR performance. The PESQ,
Si-SNR [10] and ASR word error rate (WER) results are shown
in Table 1. Some real-world recording demos can be found at
https://lixiyun98.github.io/SA-RNN/.

4. Results and Discussions
In Table 1, we present the averaged speech separation perfor-
mance of multiple target speakers. There might be one to three
overlapped speakers in one utterance. The detailed Si-SNRs
of i-th speaker are also presented. The order of the speaker
is defined by the order of the speakers’ DOAs. The SPK3 case
means that there must be three overlapped speakers in one utter-
ance and the result of SPK3 represents the performance of the
third speaker in three overlapped speakers, which is the most
difficult scenario for overlapped speech separation.

SA-RNN beamformer vs. MVDR: The MIMO MVDR
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Table 1: PESQ, Si-SNR and WER results of several MIMO baselines and the proposed MIMO self-attentive RNN Beamformer system.

Systems/Metrics Si-SNR (dB) Si-SNR WER (%) PESQ
SPK1 SPK2 SPK3 Ave Ave Ave

Reverberant Clean (reference) ∞ ∞ ∞ ∞ 7.28% 4.50
Mixture (interfering speech + noise) 21.85 0.91 -0.52 2.47 80.46% 1.76
MIMO Conv-TasNet with STFT [33] (i) 25.24 11.14 7.93 11.25 24.21% 3.00
MIMO MVDR [6] (ii) 20.19 9.85 6.38 9.47 17.17% 3.03
MIMO Generalized RNN (GRNN) beamformer [23] (iii) 27.32 14.36 11.12 14.34 12.18% 3.46
Prop. MIMO RNN + temporal SA beamformer (iv) 27.96 15.51 12.15 15.39 11.26% 3.7
Prop. MIMO RNN + spatial SA beamformer (v) 28.21 15.78 12.6 15.74 10.66% 3.73
Prop. MIMO temporal-spatial SA beamformer (vi) 27.61 15.34 12.03 15.22 11.08% 3.66
Prop. MIMO RNN + temporal-spatial SA beamformer (vii) 28.53 16.65 13.25 16.46 10.13% 3.78

Reverberant clean(reference)

MIMO MVDR(ii)

MIMO Proposed SA-RNN BF(vii)

Mixture(2-speaker overlapped)

MIMO Conv-TasNet(i)

MIMO GRNN BF baseline(iii)

Figure 3: Sample spectrograms of different systems. The
non-linear distortion and residual noise are highlighted in the
dashed white box.

[6] baseline (ii) also uses the cRF estimator to calculate the
covariance matrices but replaces the beamforming module in
Fig. 1 with the conventional MVDR solution [6]. The pro-
posed temporal-spatial self-attentive RNN (SA-RNN) beam-
former (vii) outperforms the MVDR [6] (ii) by a large margin
in terms of WER, PESQ, and Si-SNR score. Significant im-
provements across objective metrics are observed (i.e., WER:
10.13% vs. 17.17%, PESQ: 3.78 vs. 3.03, Si-SNR: 16.46 dB vs.
9.47dB). Especially, under the extreme condition where three
speakers are overlapped, our proposed system (vii) improves
the Si-SNR of SPK3 from 6.38 dB to 13.25 dB. This can also
be observed in Fig. 3, where lots of residual noise could be seen
from the separated spectrogram of MVDR. This is because the
MVDR has limited noise reduction capability [12].

SA-RNN beamformer vs. GRNN beamformer: The
MIMO generalized RNN beamformer (GRNN-BF) (iii) is de-
scribed in Sec. 2.2. The proposed SA-RNN beamformer
(vii) achieves better performance in all metrics (e.g., Si-SNR:
16.46 dB vs. 14.34 dB, PESQ: 3.78 vs. 3.46, WER: 10.13%
vs. 12.18%) than the GRNN-BF baseline [23] (iii). A rela-
tive 16.8% WER reduction is achieved. It indicates that the

temporal-spatial self-attention could improve the RNN to learn
a better beamforming solution from the covariance matrices
by fully using the cross-frame and cross-channel correlations.
Compared to the separated sample spectrogram of the GRNN-
BF in Fig. 3, the proposed SA-RNN beamformer (vii) could
reduce more residual noise.

SA-RNN beamformer vs. Conv-TasNet: The MIMO
Conv-TasNet (i) with a fixed STFT encoder [33] is a variant of
the original Conv-TasNet [10]. It is the cRF estimator without
the beamforming module as shown in Fig. 1. The input to the
Conv-TasNet is the same multi-channel information with other
systems. The proposed SA-RNN beamformer (vii) achieves
higher PESQ (3.78 vs 3.00), higher Si-SNR (16.46 dB vs. 11.25
dB) and lower WER (10.13% vs 24.21%) compared to MIMO
Conv-TasNet with STFT [33] (i) baseline. For the MIMO Conv-
TasNet with STFT (i), we can find that it performs the worst in
the WER metric (i.e., 24.21%) among all systems due to a large
amount of non-linear distortion. The non-linear distortion in
the separated speech is not ASR friendly. This non-linear dis-
tortion problem always exists in purely “black box” neural net-
work based methods [42, 6]. The difference between the Conv-
TasNet (i) and the SA-RNN beamformer (vii) is also shown on
the sample spectrograms in Fig. 3.

Several types of SA-RNN beamformers: Different types
of proposed SA-RNN beamformers are investigated for the
ablation study. Both of the RNN with temporal only self-
attention (iv) and spatial only self-attention (v) work better
than the GRNN-BF baseline (iii) without self-attention. The
RNN with spatial only self-attention (v) is better than the RNN
with temporal only self-attention (iv), e.g., WER: 10.66% vs.
11.26%. However, the temporal-spatial self-attention (vi) with-
out a RNN works worse than the best SA-RNN system (vii),
e.g., WER: 10.13% vs. 11.08%. These comparison results
suggest that the RNN, temporal self-attention, and spatial self-
attention are complementary to each other. Best performance
could be achieved by combining them to jointly learn the beam-
forming weights.

5. Conclusions
In this work, we proposed a MIMO self-attentive RNN beam-
former, including a temporal self-attention module and a spatial
self-attention module. Better beamforming weights are learned
and higher inference efficiency could be achieved with the in-
troduced self-attention and MIMO schemes. Compared to the
prior art method, GRNN-BF [23], a relative 16.8% WER re-
duction and a relative 14.8% Si-SNR improvement could be
achieved. In future work, we will further introduce multi-head
attention based Transformer [24] into our model.
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