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Abstract 

The discrepancy between the cost function used for training a 

speech enhancement model and human auditory perception 

usually makes the quality of enhanced speech unsatisfactory. 

Objective evaluation metrics which consider human 

perception can hence serve as a bridge to reduce the gap. Our 

previously proposed MetricGAN was designed to optimize 

objective metrics by connecting the metric with a 

discriminator. Because only the scores of the target evaluation 

functions are needed during training, the metrics can even be 

non-differentiable. In this study, we propose a MetricGAN+ in 

which three training techniques incorporating domain-

knowledge of speech processing are proposed. With these 

techniques, experimental results on the VoiceBank-DEMAND 

dataset show that MetricGAN+ can increase PESQ score by 

0.3 compared to the previous MetricGAN and achieve state-

of-the-art results (PESQ score = 3.15). 

 

Index Terms: speech enhancement, speech quality 

optimization, black-box score optimization, MetricGAN. 

1. Introduction 

There are many different applications and goals for a speech 

enhancement (SE) model. For example, in human-to-human 

communication, we care about speech quality or intelligibility 

(e.g., during a phone call with severe background noise, the 

intelligibility may be more important than quality). On the 

other hand, in human-to-machine communication, the goal of 

SE is to improve the speech recognition performance (e.g., 

reducing the word error rate (WER) under noisy conditions for 

an automated speech recognition (ASR) system). Therefore, 

training a task-specific SE model may obtain better 

performance for its targeted applications. 

To deploy a task-specific SE model, the most intuitive 

way is to adopt a loss function that is relevant to the final goal. 

Although directly applying a measure based on the difference 

in signal level (e.g., 𝐿1 or 𝐿2 loss) is straightforward, several 

studies have shown that it is not highly correlated to speech 

quality [1-3], intelligibility [4], and WER [5, 6].   

An alternative would be to directly optimize speech 

quality or intelligibility. This is often very challenging and 

normally objective evaluation metrics are used as surrogates. 

Among the human perception-related objective metrics, the 

perceptual evaluation of speech quality (PESQ) [7] and short-

time objective intelligibility (STOI) [8] are two popular 

functions used to evaluate speech quality and intelligibility, 

respectively. The design of these two metrics considers human 

auditory perception and has shown higher correlation  to 

subjective listening tests than simple 𝐿1  or 𝐿2  distance 

between clean and degraded speech signals [1, 4]. 

The current techniques to optimize these objective scores 

can be categorized into two types depending on whether the 

details of evaluation metrics have to be known: 1) white-box: 

these methods [4, 9-12] approximate the complex evaluation 

metrics with a hand-crafted, differentiable one. However, the 

details of the metrics have to be known and it can only be used 

for the targeted metric. (2) black-box: these methods [3, 13, 14] 

mainly treat the metric as a reward and apply reinforcement 

learning based techniques to increase the scores. However, the 

training is usually inefficient with limited performance 

improvement. 

MetricGAN [15] falls into the black-box category, and it 

can achieve better training efficiency and moderate 

performance improvement (the average PESQ score increases 

more than 0.1) compared to conventional 𝐿1  loss. Although 

MetricGAN can be easily applied to optimize different 

evaluation metrics (e.g., PESQ, STOI, or WER), we mainly 

considered PESQ score optimization as an example. Other 

extensions can be found at [16-18].   

In this study, to further boost the performance of the 

MetricGAN framework and reveal the important factors that 

affect the performance, we propose MetricGAN+. The basic 

idea behind MetricGAN+ does not change and the 

improvement comes from including three training techniques 

that incorporate domain-knowledge of speech processing. Two 

improvements are proposed for the discriminator (D) and one 

for the generator (G): 

For the discriminator:  

1) Include noisy speech for discriminator training: In 

addition to enhanced and clean speech, noisy speech is 

used to minimize the distance between the discriminator 

and target objective metrics. 

2) Increase sample size from replay buffer: Speech 

generated from the previous epochs is reused for training 

D. This can prevent D from catastrophic forgetting [19]. 

For the generator:  

1) Learnable sigmoid function for mask estimation: A 

conventional sigmoid is not optimal for mask estimation 

because it is the same for all frequency bands and has a 

maximum value of 1. A per-frequency learnable sigmoid 

function is more flexible and improves the performance of 

SE. 

To foster reproducibility, the MetricGAN+ is available within 

the SpeechBrain toolkit1. 

1https://speechbrain.github.io/ 



2. Introduction to MetricGAN 

The main idea of MetricGAN is to mimic the behavior of a 

target evaluation function (e.g., PESQ function) with a neural 

network (e.g., Quality-Net [20]). The surrogate evaluation 

function is learned from raw scores, treating the target 

evaluation function as a black box. Once the surrogate 

evaluation is trained, it can be used as a loss function for the 

speech enhancement model. Unfortunately, a static surrogate 

is easily fooled by adversarial examples [22] (estimated 

quality scores increase but true scores decrease [21]). To 

mitigate this issue, we recently proposed a learning framework 

where the surrogate loss and enhancement model are 

alternately updated [15]. This method is called MetricGAN 

because its goal is to optimize black-box metric scores, with a 

training flow that is similar to the one of generative 

adversarial networks (GANs). Below, we briefly introduce the 

training of MetricGAN. 

Let 𝑄′(I) be a function that represents the target evaluation 

metric normalized between 0 and 1, where I denotes the input 

of the metric. For example, for PESQ and STOI, I denotes a 

pair of enhanced speech, 𝐺(𝑥) (or noisy speech,  𝑥) that we 

want to evaluate, and its corresponding clean speech, y. To 

ensure that the discriminator network (D) behaves similar to 

𝑄′, the objective function of D is 

𝐿D(MetricGAN) = 𝔼𝑥,𝑦[(𝐷(𝑦, 𝑦)  −  𝑄′(𝑦, 𝑦))2 + 

(𝐷(𝐺(𝑥), 𝑦)  − 𝑄′(𝐺(𝑥), 𝑦))2]   (1) 

The two terms are used to minimize the difference between 

𝐷(.) and 𝑄′ (.) for clean and enhanced speech, respectively. 

Note that,  𝑄′(𝑦, 𝑦) = 1 and 0 ≤ 𝑄′(𝐺(𝑥), 𝑦) ≤ 1. 

The training of the generator network (G) can completely 

rely on the adversarial loss 

𝐿G(MetricGAN) = 𝔼𝑥[(𝐷(𝐺(𝑥), 𝑦)  −  𝑠)2]           (2) 

where s denotes the desired assigned score. For example, to 

generate clean speech, we can simply assign s to be 1. The 

overall training flow is shown in Figure 1. 

 

3. From MetricGAN to MetricGAN+ 

To improve the performance of the MetricGAN framework, 

some advanced learning techniques are proposed. During the 

investigation, we also study the factors that significantly 

influence the performance or training efficiency. The 

improvement of MetricGAN+ mainly comes from the 

following three modifications.  

3.1. Learning the Metrics Scores for Noisy Speech 

Kawanaka et al. [16] proposed to include noisy speech when 

training the discriminator. This turned out to stabilize the 

learning process. We adopt the same strategy for MetricGAN+ 

as well. The loss function of the discriminator network is thus 

modified as follows: 

𝐿D(MetricGAN+) = 𝔼𝑥,𝑦[(𝐷(𝑦, 𝑦)  − 𝑄′(𝑦, 𝑦))2 + 

                    (𝐷(𝐺(𝑥), 𝑦) −  𝑄′(𝐺(𝑥), 𝑦))
2

+ 

(𝐷(𝑥, 𝑦)  −  𝑄′(𝑥, 𝑦))2]         (3) 

where the third term is used to minimize the difference 

between 𝐷(.) and 𝑄′(.) for noisy speech. 
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 Figure 1: Training flow of MetricGAN. 

 

Figure 2: Sigmoid function with different 𝛼. 

 

3.2. Samples from Experience Replay Buffer 

As in the deep Q-network [23], we found that reusing the data 

generated from the previous epochs to train the discriminator 

brings a huge improvement in performance. Intuitively, 

without experience replay, the discriminator may forget the 

behavior of target 𝑄′ function at the previous generated speech, 

thus making 𝐷(.) less similar to 𝑄′(.). To illustrate how the 

replay buffer works, we present the training process in 

Algorithm 1. In MetricGAN+, we increase history_portion 

from 0.1 (used in MetricGAN) to 0.2. 

3.3. Learnable Sigmoid Function for Mask Estimation 

Most mask-based speech enhancement methods [24] apply a 

sigmoid activation to the output layer to constrain the mask to 

be between 0 and 1. However, due to the phase difference, the 

sum of clean ( |𝑌(𝑡, 𝑓)| ) and noise ( |𝑁(𝑡, 𝑓)| ) magnitude 

spectrograms do not exactly match the noisy ( |𝑋(𝑡, 𝑓)| ) 

magnitude spectrogram [25]:  

|𝑋(𝑡, 𝑓)| ≠ |𝑌(𝑡, 𝑓)| + |𝑁(𝑡, 𝑓)|             (4) 

The ideal magnitude mask |𝑌(𝑡, 𝑓)| |𝑋(𝑡, 𝑓)|⁄  is hence not 

guaranteed to be smaller than 1. Therefore, we set the scale 

variable β equal to 1.2 in (5). 
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Algorithm 1 Training with replay buffer 

end for 

 

In addition, the standard sigmoid function to compress 

the input value may not be optimal for speech processing. 

For example, because the patterns of both noise and speech 

in high and low frequency bands are distinct, different 

frequency bands could have their own compression function 

for mask estimation. To give this flexibility to our model, we 

design a learnable sigmoid function as follows: 

𝑦 = β (1 + 𝑒−𝛼𝑥)⁄                            (5) 

where 𝛼  is learned from training data. Different frequency 

bands have their own 𝛼. 

𝛼  controls the shape of the compression function. As 

shown in Figure 2, large 𝛼 (red) behaves like a hard threshold 

and most output values are either 0 or 1 (more non-smooth and 

more saturated [26], like a binary mask). On the other hand, 

small 𝛼 (green) behaves more like a linear function, which can 

be observed that it has larger overlap with the green dotted 

line (the overlap between the dotted lines and sigmoid 

functions can roughly show the range of linearity). 

 

4. Experiments 

4.1. Dataset 

To compare the proposed MetricGAN+ with other existing 

methods, we use the publicly available VoiceBank-DEMAND 

dataset [27]. The train sets (11572 utterances) consists of 28 

speakers with 4 signal-to-noise ratio (SNR) (15, 10, 5, and 0 

dB). The test sets (824 utterances) consists of 2 speakers with 

4 SNR (17.5, 12.5, 7.5, and 2.5 dB). Details about the data can 

be found in the original paper. In addition to the PESQ score, 

we evaluate the performance with other three metrics: CSIG 

predicts the mean opinion score (MOS) of the signal distortion, 

CBAK predicts the MOS of the background noise 

interferences, and COVL predicts the MOS of the overall 

speech quality. All these three metrics range from 1 to 5. For 

all metrics used, higher values indicate better performance. 

4.2. Model Structure 

The generator used in this experiment is a BLSTM [28] with 

two bidirectional LSTM layers, with 200 neurons each. The 

LSTM is followed by two fully connected layers, each with 

300 LeakyReLU nodes and 257 (learnable) sigmoid nodes for 

mask estimation, respectively. When this mask is multiplied 

with the input noisy magnitude spectrogram, the noise 

components should be removed. In addition, as reported in [3], 

to prevent musical noise, flooring was applied to the estimated  

Table 1: Ablation study of MetricGAN+. 

 PESQ CSIG CBAK COVL 

MetricGAN [15] 2.86 3.99 3.18 3.42 

- Input normalization 2.95 4.03 3.11 3.49 

+ Include noisy (Sec. 3.1) 3.02 4.13 3.23 3.57 

+ Increase history_portion from  

replay buffer (Sec. 3.2) 

3.05 4.11 3.15 3.57 

+ Learnable sigmoid (Sec. 3.3) 

= MetricGAN+ 
3.15 4.14 3.16 3.64 

 

Table 2: Results of different history_portions. 

history_portion PESQ CSIG CBAK COVL 

0 2.82 3.99 3.38 3.41 

0.1 3.02 4.13 3.23 3.57 

0.2 3.05 4.11 3.15 3.57 

 

 

Figure 3: Learned values of 𝛼 in learnable sigmoid function. 

 

mask before T-F mask processing. Here, we set the lower 

threshold of the T-F mask to 0.05. The discriminator herein is 

a CNN with four two dimensional (2-D) convolutional layers 

with 15 filters and a kernel size of (5, 5). To handle the 

variable length input (different speech utterances have 

different length), a 2-D global average pooling layer was 

added such that the features can be fixed at 15 dimensions (15 

is the number of feature maps in the previous layer). Three 

fully connected layers were added subsequently, each with 50 

and 10 LeakyReLU neurons, and 1 linear node. In addition, to 

make D a smooth function (ie., no small modification in the 

input spectrogram can make a significant change to the 

estimated score), the discriminator is constrained to be 1-

Lipschitz continuous by using spectral normalization [29]. 

number_of_samples is set to100 in the experiment. 

4.3. Experimental Results 

We first show the effects of the different training techniques 

introduced in Section 3. In Table 1, the results in each row are 

achieved with the setting from the previous row plus the 

current technique. From the table, it emerges that removing 

the input spectrogram normalization and including noisy 

speech for D training leads to a larger improvement than 

further increasing the sample size from the buffer. However, 

Table 2 shows that if we do not keep the replay buffer, the 

PESQ score only reaches 2.82. When we randomly sample  
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Figure 4: Learning curves of different settings (structure of G 

is fixed). 

 

10% and 20% of historical enhanced data from the buffer, the 

score increases by 0.2 and 0.23, respectively. We do not 

observe further improvement with history_portion=0.3. This 

implies that without the buffer, the discriminator may just 

focus on the evaluation results on the current samples and 

ignore its correctness on the previously generated speech 

(catastrophic forgetting [19]). Due to the discrepancy between 

𝐷  and 𝑄′ , the gradient of  𝐷  may thus not a good 

approximation for that of 𝑄′.   

     Table 1 also reveals that applying learnable sigmoid can 

further increase the scores. We tried to make β learnable as 

well, but the performance did not further improve. The learned 

values of 𝛼 are shown in Figure 3. Most of 𝛼 are smaller than 

1 (original value in the conventional sigmoid function) and 

close to 0.5. As pointed out in Section 3.3, this implies that for 

most frequency bins, the learnable sigmoid is behaving more 

like a linear function. This naturally leads to a gradient back-

propagation that is more efficient than the one happening in 

saturated regions. On the other hand, for high frequency bins, 

the learned  𝛼 are much larger than 1, and hence the mask is 

behaving more like a binary mask. We conjecture this is 

because the noise types in the training data do not occupy the 

high frequency regions, or this is due to the characteristics of 

PESQ function. However, more experiments are needed to 

verify the possible reasons. 

      In Figure 4, we show the training curves of MetricGAN 

with different training techniques and the same BLSTM model 

structure as the generator in MetricGAN, but trained with 

MSE loss. From this figure, we can first observe that all 

MetricGAN-based methods outperform the MSE loss by a 

large margin. In addition, both including noisy speech for 

discriminator training and applying a learnable sigmoid not 

only improve the final performance but also lead to a higher 

training efficiency. 

      Table 3 compares the proposed MetricGAN+ with other 

popular methods. Although our generator is just a 

conventional BLSTM with magnitude spectrogram as inputs, 

with appropriate loss function, it outperforms recent models 

(e.g., attention mechanism [30, 31]) or phase-aware inputs 

(e.g., waveform [32] [33] or phase [34]). We also noticed that 

the scores reported in [35] are higher than ours, however, 

additional datasets are needed for the perceptual loss training. 

Compared to BLSTM (MSE), our MetricGAN+ increases the 

Table 3: Compared MetricGAN+ with other methods 

on the VoiceBank-DEMAND dataset. 

  PESQ CSIG CBAK COVL 

Noisy 1.97 3.35 2.44 2.63 

SEGAN [36] 2.16 3.48 2.94 2.80 

MMSE-GAN [37] 2.53 3.80 3.12 3.14 

SERGAN [38] 2.62 - - - 

BLSTM (MSE) 2.71 3.94 3.28 3.32 

MetricGAN [15] 2.86 3.99 3.18 3.42 

HiFi-GAN [32] 2.94 4.07 3.07 3.49 

DeepMMSE [39] 2.95 4.28 3.46 3.64 

MHSA+SPK [30] 2.99 4.15 3.42 3.57 

PHASEN [34] 

SDR-PESQ [11] 

2.99 

3.01 

4.21 

4.09 

3.55 

3.54 

3.62 

3.55 

T-GSA [31] 3.06 4.18  3.59  3.62 

DEMUCS [33] 3.07 4.31 3.40 3.63 

MetricGAN+ 3.15 4.14 3.16 3.64 

 

PESQ score from 2.71 to 3.15. We also find that our model’s 

CBAK score is lower than other state-of-the-arts; this may be 

because the lower threshold of the T-F mask is set to 0.05 as 

pointed out in Section 4.2 and hence some noise remains. 

 

5. Future work 

The code of MetricGAN+ is available within the SpeechBrain 

toolkit and we encourage the community to continuously 

improve its performance and training efficiency. In the 

following, we list some directions that are worth exploring: 

1) Since MetricGAN is a black-box framework, it can be 

used to optimize different metrics. In [17], it was applied 

to optimize speech intelligibility. To the best of our 

knowledge, it has not been used for WER minimization 

under noisy conditions for a black-box ASR model (e.g., 

Google ASR). 

2) The structure of the discriminator can be further 

investigated. Right now it is just a simple CNN with 

global average pooling. More advanced mechanisms such 

as attention [30, 31] may be able to replace the global 

pooling. In addition, if the target 𝑄′ function is much more 

complicated (e.g., WER of an ASR model), the 

complexity of discriminator may also need to be increased. 

3) It is time consuming to train with a replay buffer, 

especially when there are already lots of historical data in 

the buffer. Incremental learning [40] may be a good 

solution for this problem. 

 

6. Conclusion 

In this study, we proposed several techniques to improve the 

performance of the MetricGAN framework. We find that 

including noisy speech for discriminator training and applying 

learnable sigmoid are the most useful techniques. Our 

MetricGAN+ achieves state-of-the-arts results on the 

VoiceBank-DEMAND dataset, and the PESQ scores can 

increase 0.3 and 0.45 compared to MetricGAN and BLSTM 

(MSE), respectively. From the experimental results, we 

believe that the proposed framework can be further improved 

and applied on different tasks; therefore we made the code 

publicly available. 
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