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Abstract

We propose a multitask training method for attention-based

end-to-end speech recognition models. We regularize the de-

coder in a listen, attend, and spell model by multitask training it

on both audio-text and text-only data. Trained on the 100-hour

subset of LibriSpeech, the proposed method, without requiring

an additional language model, leads to an 11% relative perfor-

mance improvement over the baseline and approaches the per-

formance of language model shallow fusion on the test-clean

evaluation set. We observe a similar trend on the whole 960-

hour LibriSpeech training set. Analyses of different types of er-

rors and sample output sentences demonstrate that the proposed

method can incorporate language level information, suggesting

its effectiveness in real-world applications.

Index Terms: multitask, text-only, attention, end-to-end

1. Introduction

Attention-based end-to-end (E2E) speech recognition systems

map audio features directly to text-level representations [1, 2,

3, 4, 5]. Various model architectures [6, 7, 8, 9, 10] and train-

ing schemes [11, 12, 13] were proposed. The models are typ-

ically trained on transcribed speech datasets comprised of par-

allel audio-text pairs. Such audio-text pairs are more difficult

and expensive to obtain compared with audio or text data in iso-

lation. Recently, substantial performance improvements have

been made by leveraging audio-only data for speech recogni-

tion [14, 15, 16].

The most common method for leveraging text-only data is

to train a language model (LM) and integrate it into the recogni-

tion process using shallow [17], cold [18], or deep fusion [19].

These methods utilize a second neural network model and thus

require additional space and computational resources, making

them difficult to deploy in resource-constrained environments

such as on-device ASR systems.

Another way to use text-only samples is to convert them

to audio-text pairs using text-to-speech synthesis (TTS) tech-

niques. Inspired by the back-translation method in neural ma-

chine translation [20], Li et al. proposed to train the ASR model

using audio-text pairs generated from text-only data [21]. Mul-

tiple methods were proposed to jointly train the ASR and TTS

models in a cycle-consistent manner [22, 23, 24]. Wang et al.

used a loss term to encourage the ASR model to generate con-

sistent outputs on real and synthesized presentations of the same

utterance [25]. These methods face the problem that synthe-

sized audio may bias the ASR model towards unrealistic speech.

As an alternative to LM fusion and TTS, knowledge distil-

lation methods were proposed to transfer the knowledge in an

LM to the ASR model [26, 27]. An LM is first trained using

a large amount of text-only data. To train the ASR model, LM

*This work was performed during an internship at Google.

model outputs on the transcripts of the audio-text data are used

as soft labels. This approach uses a pre-trained LM during ASR

training and does not explicitly incorporate the large amount of

text-only data into the ASR model.

The joint acoustic and text decoder (JATD) model [28] in-

corporates the text transcribed by a conventional ASR model

in order to work in two modes, ASR and language modeling.

It is used in a hybrid network designed for two-pass recogni-

tion, a transducer for streaming recognition followed by a non-

causal rescoring pass using an attention-based decoder [29]. In

this study, we propose multitask training with text-only data

(MUTE), which differs from JATD in multiple aspects. First,

we incorporate reference text directly during training, without

using any corresponding audio data and external ASR model.

Second, MUTE is designed for one-pass recognition and uses

a single attention-based decoder pass during inference. Com-

pared with JATD, a more closely related area of MUTE is

the subtraction of internal LMs for end-to-end ASR models

[30, 31]. MUTE can be viewed as a method to regularize the in-

ternal LM so that it does not overfit smaller training datasets of

audio-text pairs. Experimental results on the 100-hour subset of

LibriSpeech show that MUTE can effectively incorporate text-

only data into E2E models, outperforming the baselines trained

using audio-text pairs alone and approaching the performance

of LM shallow fusion. We observe a similar trend using the

whole 960-hour LibriSpeech training set.

The remainder of this paper is organized as follows. We

describe MUTE in Section 2. In Section 3 and 4, we present the

experimental setup and evaluation results, respectively. Con-

cluding remarks are given in Section 5.

2. System Description

2.1. Attention-Based End-to-End Speech Recognition

Let us denote the input feature to an attention based end-to-end

ASR model as x ∈ R
T×F and the corresponding output token

sequence as y ∈ R
U , where F is the input feature dimension,

and T and U denote the lengths of the input and output, respec-

tively. For audio-text training samples, we denote the output as

y
a ∈ R

U
a

, where a refers to audio-text. A typical E2E system

models the following distribution at output token step u:

p(ya

u|x,y
a

1:u−1; θ) (1)

where θ denotes the model parameters.

2.2. Multitask Training with Text Data

Fig. 1 shows the two stages of MUTE training. In the first

stage, the whole model is trained using the available audio-text

pairs. In the second stage, we retrain the decoder by alternating

training steps on audio-text pairs and text-only examples. With
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Figure 1: Illustration of the two stages of MUTE training. Components that are updated during training are in gray, and those which

are fixed are white. Black arrows and boxes are used to denote audio-text pairs, while red denotes text-only data.
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Figure 2: Illustration for the four variations of MUTE decoders at training stage 2 using text-only data. See Fig. 1 caption for the

meaning of different colors.

audio-text pairs as training data, expression (1) can be simpli-

fied to:

p(ya

u|c
a

u,y
a

1:u−1; θd) (2)

where cau ∈ R
U

a
×E refers to the context vector extracted from

the encoder embedding for step u. E denotes the dimension of

the context vector and θd denotes the parameters in the decoder.

For text-only examples, we denote the output token sequence as

yt ∈ R
U

t

:

p(yt

u|c
t
,y

t

1:u−1; θd) (3)

where ct corresponds to a specialized context vector, used for

all output steps, indicating to the decoder layers that there is no

audio context for this example and it should instead rely only

on its internal state and the auto-regressive input to predict the

next token.

Steps taken on text-only data help expose the model to a

larger corpus of text data during training. Since the decoder

parameters are mostly shared with the ASR task, this next-

token prediction LM task prevents the decoder from over-fitting

the small amount of audio-text pairs. Meanwhile, steps using

audio-text data ensures that the decoder can perform ASR tasks

when conditioned on audio features. By sweeping over the mix-

ing ratios of audio-text and text-only data, MUTE takes the best

from both ASR and LM tasks.

2.3. Model Variants

We design the model architecture of MUTE from two perspec-

tives, the choice of context vector ct in equation (3) and the

feedback loop for text-only data.

The context vector ct in equation (3) can be of two types,

constant or learnable. We set the values of the constant context

vector to zeros. The learnable context vector is shared for differ-

ent frames and its weights are learned using the ASR objective

function. The zero and learnable context vectors are denoted

as cz and cl, respectively. The corresponding models are re-

ferred to as MUTE-Z and MUTE-L, and are shown as Fig. 2-(a)

and Fig. 2-(b). In MUTE-Z and MUTE-L, the feedback loop is

shared for audio-text pairs and text-only data. For MUTE-ZT

and MUTE-LT, we use an additional feedback loop specifically

for text-only data. For audio-text training samples, MUTE-ZT

and MUTE-LT update the entire decoder, whereas for text-only

data, the two models only update the text-only loop. The two

architectures are depicted in Fig. 2-(c) and Fig. 2-(d), respec-

tively. Note that the text-only loop is inside the audio-text loop

so that the whole decoder can take audio-text pairs during infer-

ence.

3. Experimental Setup

3.1. Data and Model

We conduct experiments on the LibriSpeech corpus. The train-

ing data for MUTE is a mixture of audio-text pairs and text-

only data. For most experiments, the audio-text pairs are from

the train-clean-100 subset and the text-only data is from the

LibriSpeech-LM corpus, which contains about 40 million sen-

tences. We also conduct experiment on the whole 960-hour Lib-



Figure 3: WERs of MUTE variations on LibriSpeech test-clean. Each bar corresponds to a different text-only data mixing ratio.

riSpeech training set. The experiments on LibriSpeech 100h

may better simulate a realistic low resource condition, where

the amount of text-only data is much larger than that of tran-

scribed audio-text pairs. We vary the mixing ratio of text-only

data in the whole training set from 0% (i.e. the baseline) to

80%, with a stride of 20%. We use the standard evaluation sets

in the LibriSpeech corpus.

The E2E models in our experiments are 8-layer listen, at-

tend, and spell (LAS) models based on the large model from

[32]. The encoder consists of 2 batch-normalized convolu-

tional layers, followed by 4 bidirectional long short-term mem-

ory (LSTM) layers. The decoder has 4 unidirectional LSTM

layers. All LSTM layers contain 1024 nodes. For MUTE-ZT

and MUTE-LT, we use the top two layers in the decoder as

Decodertext and the remaining two layers as Decoderaudio. We

also use a language model trained on the LibriSpeech-LM cor-

pus for the comparison between MUTE and shallow fusion. The

LM is comprised of 2 LSTM layers, each consisting of 2048

nodes. Note that we use LAS models for their simplicity in

incorporating text-only data. We do not perform data augmen-

tation to exclude the influence of distorted audio features to our

analysis. Note that JATD cannot work in our experimental setup

since it requires unlabelled audio features and an external ASR

model. We thus do not report the results of JATD.

3.2. Implementation Details

In the first training stage, we train the entire LAS model using

audio-text pairs. In the second stage, we fix MUTE encoder

parameters to those found during the first stage and randomly

re-initialize the decoder. In initial experiments we found simi-

lar performance when initializing the decoder parameters using

the first stage parameters. It is important to note that the en-

coder batch normalization layer statistics need to be fixed to en-

sure convergence. The decoders are trained using a mixture of

two types of data, audio-text and text-only. We randomly pick

one type of sample at each training step with the mixing ratio

described in Section 3.1. Within each batch all samples are of

the same type. To minimize the influence of hyperparameter

selection, we use exponential moving average with a constant

learning rate of 10−3 to train all the baseline and MUTE mod-

els. All models are trained for extensive number of epochs. The

best models on the validation set are used for evaluation.

Table 1: WER comparisons among MUTEs.

Model dev-clean dev-other test-clean test-other

MUTE-Z 9.8 29.6 10.2 31.1

MUTE-L 9.7 29.4 10.1 30.4

MUTE-ZT 9.6 29.4 10.1 31.4

MUTE-LT 9.6 29.5 10.0 30.9

4. Evaluation Results

4.1. Model Variant Selection

We first compare and select one variant of MUTE for further ex-

periments. For each of the model variants, we need to compare

the results on different mixing ratios of the text-only and audio-

text data. Fig. 3 shows the test-clean WERs of the four types

of MUTEs with various mixing ratios. MUTE-Z performs the

best with 40% text-only data, and all other MUTEs with 60%.

Table 1 shows the WER comparisons among the MUTEs

with their optimal training data mixing ratios. Although

MUTE-LT performs the best on test-clean, MUTE-L is compa-

rable to MUTE-LT on test-clean, performs better on test-other,

and requires less modification to the decoder architecture. We

thus experiment with MUTE-L for the remainder of this paper.

Note that the models with the text-only feedback loop perform

worse on test-other than those without it. The reason may be

that Decodertext is not directly exposed to the audio features

during training.

4.2. WER and Oracle WER Comparisons

The top of Table 2 compares baseline and MUTE models

trained on LibriSpeech 100h in terms of WER and oracle WER

(the minimum WER in the n-best decoding list). For WER,

MUTE outperforms the baseline by 11% relatively on test-

clean. When both models are shallow fused with the external

LM, the relative improvement is 4%. Note that our compar-

ison is mainly on test-clean since we use the clean data (i.e.

LibriSpeech 100h) during training. For oracle WER, MUTE

without shallow fusion performs better than the baseline with

shallow fusion, indicating that the best hypothesis in the beam

is improved with the text-only data.

The bottom of Table 2 compares models trained on the

whole LibriSpeech 960h training set. For WER, MUTE

achieves the same relative improvement 11% over the baseline



Table 2: WER and oracle WER comparisons between the baseline and MUTE trained using LibriSpeech 100h and 960h. The models

decoded using LM shallow fusion are denoted as those with + LM.

Model Train Set
WER Oracle WER

dev-clean dev-other test-clean test-other dev-clean dev-other test-clean test-other

Baseline 100h 10.8 30.8 11.4 32.2 7.7 26.6 8.1 28.0

MUTE 100h 9.7 29.4 10.1 30.4 6.8 25.0 7.3 26.2

Baseline + LM 100h 8.8 27.6 9.7 28.8 7.0 24.7 7.7 25.8

MUTE + LM 100h 8.6 27.4 9.3 28.4 6.5 23.7 7.1 25.1

Baseline 960h 4.5 13.6 4.7 13.7 2.4 9.7 2.6 9.5

MUTE 960h 4.1 11.9 4.2 12.1 2.1 8.2 2.2 8.0

Baseline + LM 960h 3.3 10.3 3.6 10.3 2.0 8.1 2.4 7.8

MUTE + LM 960h 3.4 10.3 3.6 10.3 1.9 7.7 1.9 7.1

on test-clean and a relative improvement of 12% on test-other.

The similar improvement to LibriSpeech 100h dataset demon-

strates that MUTE is still helpful in a large training corpus set-

ting. For oracle WER, MUTE alone outperforms the baseline

using LM shallow fusion on test-clean, which is also consistent

with the results on LibriSpeech 100h.

4.3. Error Analysis

We analyze MUTE by comparing different types of errors

and sample output sentences using the models trained on Lib-

riSpeech 100h.

Table 3: Comparisons of different types of errors for models

trained on LibriSpeech 100h. The results are shown in the or-

der of deletion/insertion/substitution. See Table 2 caption for

acronyms.

Model dev-clean dev-other test-clean test-other

Baseline 1.0/1.4/8.4 3.2/3.5/24.1 1.2/1.7/8.6 3.3/3.7/25.2

MUTE 1.3/1.1/7.2 3.9/2.9/22.6 1.4/1.3/7.4 3.9/3.0/23.5

Baseline + LM 1.6/1.0/6.2 4.9/3.1/19.6 2.1/1.1/6.5 5.3/3.3/20.2

MUTE + LM 1.5/1.0/6.2 4.5/2.7/20.2 1.9/1.0/6.4 4.5/2.8/21.2

Table 3 shows the deletion, insertion, and substitution er-

rors of different methods. The results of MUTE and LM shal-

low fusion have the same trend: deletion errors increase, in-

sertion errors decrease, and substitution errors decrease. This

indicates that MUTE has a similar impact to LM shallow fusion

on the error distribution. In Table 4, we analyze the ability of

MUTE to incorporate language level information by comparing

four pairs of sample output sentences on test-clean. Since the

goal of this analysis is to understand the sorts of errors that are

not made when using MUTE training, the samples are selected

such that MUTE contains less errors than the baseline. In the

first pair of sentences, the baseline generates “get” and MUTE

outputs “yet”. These two words are similar in pronunciation but

“a chance yet to” is better grammatically. In the second pair,

“is lashed to” generated by MUTE uses the correct tense. In

the following two output sentence pairs, we show the results of

a single utterance using different methods. The “ounce” gener-

ated by MUTE fits better into the context “milligram” and “an”.

In addition to the comparison between MUTE and the baseline,

we can observe from the table that baseline + LM may contain

more errors than the baseline alone. This indicates that with the

language information limited to audio-text pairs, the baseline

Table 4: Sample output sentences on test-clean. In the first row

of each pairs of samples, wrong words are highlighted in red,

whereas in the second row, the corresponding correct words are

highlighted in green.

Model Sentence

Baseline i haven’t had a chance get to tell you what a

jolly little place i think this is

MUTE i haven’t had a chance yet to tell you what a

jolly little place i think this is

Baseline + LM each of us is lash to some part of the raft

MUTE + LM each of us is lashed to some part of the raft

Baseline milligram roughly one twenty eight thousand

of an house

MUTE milligram roughly one twenty eight thousand

of an ounce

Baseline + LM madame roughly one twenty eight thousand

of an house

MUTE + LM milligram roughly one twenty eight thousand

of an ounce

ASR model could generate incorrect outputs that mislead LM

shallow fusion.

5. Concluding Remarks

We have proposed MUTE, a two-stage multitask training ap-

proach for attention-based end-to-end speech recognition mod-

els to incorporate language level information. Text-only data

is used to regularize the training of the decoder in a multitask

manner. Trained using LibriSpeech 100h as audio-text data,

MUTE outperforms the baseline by 11% relatively on the test-

clean evaluation set. It approaches the performance of shallow

fusion and does not need the additional LM. We observe a sim-

ilar trend on the LibriSpeech 960h training set. Analyses of

different types of errors and sample output sentences show that

MUTE can incorporate language level information effectively.

Future work includes designing test-time training/adaptation

methods for MUTE, combining MUTE with audio-only tech-

niques, expanding MUTE to transducer based models, and ap-

plying MUTE to deliberation tasks.
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