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Abstract

The presence of multiple talkers in the surrounding envi-
ronment poses a difficult challenge for real-time speech com-
munication systems considering the constraints on network size
and complexity. In this paper, we present Personalized Percep-
Net, a real-time speech enhancement model that separates a tar-
get speaker from a noisy multi-talker mixture without compro-
mising on complexity of the recently proposed PercepNet. To
enable speaker-dependent speech enhancement, we first show
how we can train a perceptually motivated speaker embedder
network to produce a representative embedding vector for the
given speaker. Personalized PercepNet uses the target speaker
embedding as additional information to pick out and enhance
only the target speaker while suppressing all other competing
sounds. Our experiments show that the proposed model signifi-
cantly outperforms PercepNet and other baselines, both in terms
of objective speech enhancement metrics and human opinion
scores.

Index Terms: speech enhancement, source separation, speaker
identification, PercepNet, target-speaker separation

1. Introduction

With the ubiquitous presence of real-time audio communication
systems, there has been a significant interest in speech enhance-
ment algorithms that operate in real-time with low complexity.
In the real world, a user (or target speaker) of these communi-
cation systems often finds themselves in the presence of com-
peting background sounds. The goal of speech enhancement
is to extract a high-quality version of a target speaker’s utter-
ance from the mixture that contains the target speaker in ad-
dition to multiple competing ambient sounds. Considering the
complexity of enhancing fullband (48 kHz) speech mixtures, a
perceptually motivated, low-complexity model called “Percep-
Net” has been recently shown to deliver high-quality speech en-
hancement in real-time even while operating on less than 5% of
a CPU core [1].

In more challenging situations, the interference can also in-
clude other speech sources, such as a television, children play-
ing and other people conversing in the background. Since inter-
fering speech sources are spectrally similar to the target talker,
they are usually not suppressed by speech enhancement algo-
rithms. This shortcoming can be addressed through single-
channel multi-talker source separation algorithms that extract
and separate all the speech-like sounds from the given mix-
ture [2, 3 14, 1S, 6]]. Yet, these source separation approaches
do not focus specifically on extracting the target speaker alone
and might make the target speaker’s signal available on any of
the output channels, bringing the need for additional speaker
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tracking [[7, 8] which comes with the cost of increasing network
complexity.

Resolving this issue involves a joint approach where the
speech enhancement algorithm is capable of two tasks: (i) iden-
tifying the target speaker amidst all the interfering sounds in
the given mixture, and (ii) isolating and enhancing only the
target speaker. To this end, Wang et al. proposed Voicefilter,
which performs targeted voice separation [9]. To identify the
target speaker, Voicefilter uses a pre-trained speaker embed-
ding network that learns a discriminative speaker representa-
tion from the Mel spectrogram of an audio signal [10]. These
embeddings are then used to condition the separation network
and isolate only the target speaker. Several other approaches
have also been proposed in recent times [11, [12} [13} 14} [15].
Despite the availability of several such algorithms, these ap-
proaches have primarily focused on target source separation for
non-real-time applications. The use of bidirectional recurrent
layers and large convolutional layers increases the complexity
of these models. Morover, the non-causal nature of the convo-
lutions and the bidirectional recurrent units makes these afore-
mentioned approaches unsuitable for real-time, low-complexity
applications. Recently, Voicefilter-lite, a real-time alternative
to the Voicefilter has been proposed [16] to improve the per-
formance of speech recognition systems in multi-talker situa-
tions. Although Voicefilter-lite showed impressive performance
for overlapped speech recognition, it was not designed to im-
prove human perception or intelligibility under such conditions,
which is the need of the hour for real-time audio communication
systems.

In this paper, we introduce Personalized PercepNet (Sec-
tion [2), a perceptually motivated approach to real-time, low-
complexity target speaker enhancement. We improve upon the
speech enhancement capabilities of PercepNet by conditioning
on the target speaker’s voice (Section E[) This enables Percep-
Net to distinctly identify and enhance the target speaker’s utter-
ance while suppressing all the other interferences, even in the
presence of multiple talkers or other speech-like sounds. Given
an audio example of the target speaker’s voice, we first com-
pute (offline) a discriminative embedding representation that
captures the identity of the speaker and distinguishes the target
speaker from other speakers. We then use the computed embed-
ding as additional information to the separation neural network
and extract only the target speaker’s voice from any given mix-
ture. Like in PercepNet, our neural networks operate on a per-
ceptually motivated feature representation. The features include
perceptually relevant parameters like the spectral envelope and
the signal periodicity, and allow us to operate on a compact 68-
dimensional feature space. We demonstrate through our exper-
iments (Section [)) that our approach leads to superior speech
enhancement in noisy multi-talker situations both in terms of
subjective listening tests and in terms of objective evaluation
metrics (Section[5).



2. PercepNet: An Overview

The PercepNet algorithm operates on 10-ms frames with 30 ms
of look-ahead and enhances 48 kHz speech in real-time. De-
spite its complexity being much lower than the maximum al-
lowed by the recently concluded first DNS challenge [17], Per-
cepNet ranked second in the real-time track.

The key elements of the algorithm are (i) a perceptual band
representation as the feature space, (ii) a perceptually motivated
pitch-filter and (iii) an RNN model to estimate band ratio masks.
Feature Space: Instead of operating on Fourier transform bins
(like many other speech enhancement methods), PercepNet op-
erates on only 32 triangular spectral bands, spaced according to
the equivalent rectangular bandwidth (ERB) scale. The input
features used by PercepNet are tied to these 32 ERB bands. For
each band, we use two features: the magnitude of the band and
the pitch coherence (frequency-dependent voicing). We also in-
clude 4 general features (including the pitch period), resulting
in a 68 dimensional feature space.

Pitch Filter: To reconstruct the harmonic properties of the
clean speech from the spectral envelopes, PercepNet also em-
ploys a comb filter controlled by the pitch frequency. Such a
time-domain comb filter allows a much finer frequency resolu-
tion than would otherwise be possible with the STFT (50 Hz
using 20-ms windows). The comb filter’s effect is indepen-
dently controlled in each band using pitch-filter strength param-
eters [1]].

Model: PercepNet uses a recurrent neural network (RNN) to
estimate a ratio mask in each band. This ratio mask can also be
interpreted as the corresponding gain that needs to be applied
to the noisy signal to match the clean target’s spectral envelope.
Along with gains, our model also outputs the estimated pitch-
filter strength for each band and a frame-level Voice Activity
Detector (VAD) output.

3. Personalized PercepNet

Fig.[T gives the block diagram of the neural network model used
for Personalized PercepNet. To identify the target speaker in a
given mixture, we assume that we have access to an audio ex-
ample of the target speaker’s voice during inference. We pre-
train a speaker verification network that can capture a speaker’s
identity from a given utterance in the form of a representative
speaker embedding. That network is trained once, and then used
for any utterance from any target speaker. The target speaker’s
embedding is then used by Personalized PercepNet to distin-
guish the target speaker from other talkers.

3.1. Learning Speaker Embeddings

To learn the embedding representation for a target speaker, we
extend the work in [10] to train a speaker verification net-
work. The underlying goal of speaker verification is to iden-
tify whether a given speech example belongs to a particular
speaker. In doing so, speaker verification networks have been
shown to learn suitable speaker-discriminative embedding rep-
resentations that have been used for several tasks like target
speaker diarization [18], text-to-speech systems that generate
outputs in different target voices [[19], voice style transfer [20]
and targeted source separation [9]. We train our Speaker Em-
bedder (SE) network to operate on the same set of features as
PercepNet. The audio example is converted into a feature rep-
resentation and sent to the SE network. As shown in Fig.[T} the
last frame of the final GRU’s output is normalized and chosen
to be the corresponding speaker embedding. To train our SE

— Gains

Ng =512/1024

VAD
output

Mixture @—' GRU FG | Pitch-filter
strengths
features  /oa\ B2\  (512)
T . . NI
onv onv
68 PR s [ 1xa
i Concatenate embedding
NI N to all frames
= = = — = =1 |
Do (8 (512) (512) (512) (512 256 }
| I
| L] |_,|Conv| [Conv| | ] |
i 68 FC 1x3 x5 GRU GRU FC St | }
i \
\ I
} Target ~ Retain only Speaker |
| audio-
j audio-example last frame embedding |
| features |

Speaker Embedder (SE) Network

Figure 1: Block diagram of the speaker-conditioned Deep Neu-
ral Network (DNN) model used for Personalized PercepNet.
The target audio example is used to compute the normalized
speaker embedding which is appended as additional informa-
tion to the DNN model. The DNN model processes the feature
representation of the mixture signal and estimates the target
speaker filter gains and pitch filter strengths at its output. We
also train the DNN model to estimate the target voice activity
(VAD output). The gains and the pitch-filter strengths are 32 di-
mensional, and the VAD output is a 1 dimensional output signal.
The number of units is given above each layer. All the convolu-
tional layers perform 1 dimensional convolutions along the time
dimension. The circles with “C” inside denote the concatena-
tion of the two inputs arriving at that point. We experiment with
GRUs with either Ng = 512 or 1024 units. We refer to these
models as PPN-512 and PPN-1024, respectively.

network, we use the generalized end-to-end loss-function de-
scribed in [10].

SE networks are generally trained on full spectrograms
or high-resolution Mel spectrograms to learn discriminative
speaker embeddings. Instead, we choose to learn speaker em-
beddings from the more compact 68-dimensional feature repre-
sentation described earlier. One reason why a high resolution
representation is unnecessary is the fact that the pitch period for
each frame is explicitly included as a feature, rather than having
to be implicitly extracted from the spectrum by the embedding
network. In addition, the LPCNet [21]] vocoder has previously
demonstrated that clean speech can be reconstructed with suffi-
ciently high quality based only on an 18-band wideband repre-
sentation, plus pitch and voicing information.

3.2. Speaker-conditioned DNN

As seen from Fig.[T] the input to the DNN model is the featur-
ized representation of a speech mixture that contains the target
speaker in the presence of concurrent interfering talkers and am-
bient noise. We use the SE network and the given clean audio
example to obtain an embedding representation for the target
speaker we wish to isolate. The speaker embedding is then ap-
pended to every frame before the GRU layers.



3.3. Loss function

To train the DNN model, we reuse the gain and pitch strength
loss functions from the original PercepNet [1]]. We also provide
additional supervision in terms of the voice activity of the tar-
get speaker, as shown in Fig[I] The VAD output is expected
to produce a value of 1 for frames where the target speaker is
active and produce a value of 0 otherwise. We treat the VAD as
a binary classification problem and minimize the binary cross-
entropy between the VAD output and the target VAD label. In
Fig.|3] we demonstrate that the VAD also operates in a person-
alized manner and can identify frames where the target speaker
is active.

4. Experimental Setup

To evaluate the performance of the proposed approach, we com-
pare the performance of Personalized PercepNet to that of a
PercepNet baseline model [[1] and to the NSNET-2 model [22].
The NSNET-2 model has been used as the baseline for the
Microsoft-organized ICASSP 2021 Personalized deep noise
suppression challenge (track 2) [23]. We perform this com-
parison on a speech enhancement task where the goal is to ex-
tract the target speaker from a mixture that contains background
noise and an interfering talker. We evaluate and compare the
speech quality and performance of these models using mean-
opinion-score (MOS) [24] numbers obtained from subjective
listening tests and objective evaluation metrics.

4.1. Training data

Speaker Embedder: We train the SE network using the origi-
nal VoxCeleb2 [25] training set and validate the trained model
using VoxCeleb1 [20] test set. We use 6-sec long inputs that are
cropped from concatenated utterances for each speaker. We do
not use any other augmentation to train the SE.

To evaluate the effectiveness of the speaker embeddings,
we compute the Equal Error Rate (EER) on a text-independent
speaker verification task as described in [10]. Our SE model —
trained on the same 68-dimensional band feature space as the
enhancer — achieves 4.8% EER on the VoxCelebl test set [26].

DNN model: We use LibriSpeech [27], VoxCelebl [26] and
VoxCeleb2 [25] to train the DNN model. For LibriSpeech, we
use the training and development sets as defined in the dataset
protocol: the training set contains 2338 speakers, and the de-
velopment set includes 73 speakers. A portion of LibriSpeech,
specifically “train-other-500”, has some stationary background
noise in it, which makes it unusable to train our enhancer as
it is. We use a VAD and lightweight denoiser (SpeexDSlﬂ) to
eliminate the stationary noise before using this data for train-
ing. Likewise, the two VoxCeleb datasets are collected from
television broadcasts and contain background music and other
effects. Some of the collected data is also highly reverberant.
Following the data filtering technique described in [28]], we iso-
late the clean speech in VoxCeleb2 and VoxCelebl and elim-
inate reverberant clips. Thereafter, we include the processed
clean-speech clips to the DNN training data only if the cor-
responding speaker has more than 100 utterances. With these
steps, we end up with 4500 distinct speakers. We use the same
noise data used in [1]] that includes 80 hours of various noise
types, sampled at 48 kHz.

We train the DNN model on synthetic mixtures containing
the target talker (signal), an interfering talker (interference) and
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noise. These mixtures are generated with signal to noise ratios
(SNR) ranging from —5 dB to 35 dB and signal to interference
ratios (SIR) ranging from —5 dB to 10 dB. To ensure robust-
ness in reverberated conditions, the noisy signal is convolved
with simulated and measured room impulse responses. To im-
prove the quality of the perceived speech the target is set to
include the early reflections and only attenuate the late rever-
berations [1, 28]]. We improve the generalization of the model
by using an extensive augmentation stack that includes a low
pass filter with a random cut off frequency between 3 kHz and
20 kHz, and a spectral tilt to simulate different microphone fre-
quency responses.

4.2. Evaluation data

For our experiments, we construct a synthetic evaluation set
using LibriSpeech dev set following [9]]. The only difference
from [9] is that we also add background noise to the mixture
of two speakers (primary and secondary). We use noise clips
from the DEMAND database [29]]. This ensures that the speech
and noise examples used for evaluation are completely separate
from the training data. The interfering talker and noise are set
to have SIR and SNR values uniformly distributed in the range
15 dB to 3 dB. This is done because in our applications of inter-
est, the target speaker typically close to the microphone and is
the loudest component of the mixture. We use 20-sec long utter-
ances for the mixtures and the target example files and generate
500 noisy recordings for the evaluation set.

4.3. Performance Metrics

For subjective testing, we use the ITU-T P.808 crowdsourcing
approach [30]. The models’ output is rated by 10 listeners
for each of the 500 noisy recordings and averaged to produce
the MOS scores. For objective evaluation, we use wideband
PESQ [31]] and the composite CSIG, CBAK, and COVL scores
proposed in [32].

5. Evaluation Results

We consider two versions of the Personalized PercepNet net-
work shown in Fig. [T} Ny = 512 and N, = 1024. We refer
to these models as PPN-512 and PPN-1024 respectively. Ta-
ble[T]and Table 2] show the objective metrics and the subjective
listening test scores on the test set for all four models. Our
results indicate that the Personalized PercepNet models signif-
icantly outperform the baseline PercepNet and NSNET-2 mod-
els in objective and subjective metrics. The PPN-1024 model
further improves upon the performance of the PPN-512 model.
These improvements are consistently observed in both the mean
opinion scores obtained in the listening tests and the objective
evaluation metrics.

The complexity of Personalized PercepNet is mostly dic-
tated by the the number of parameters in the DNN model. The
PPN-512 model has 8.5M parameters, whereas PPN-1024 has
26.5M parameters. With a 10-ms frame size, PPN-512 requires
4.7% and PPN-1024 requires 17.2% of one mobile x86 core
(1.8 GHz Intel i7-8565U CPU) for real-time operation.

With Personalized PercepNet, we expect that the model
output now only contains the enhanced target speaker’s utter-
ance contained in the original mixture signal. To check if this
is indeed the case and the output does not enhance the wrong
speaker or contain a combination of both speakers, we probe
our Personalized PercepNet models further. We use the pre-
trained SE network to compute the speaker embedding of the
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Figure 2: Cosine similarity between model output embedding
and target/interference embedding. We add random jitter along
the horizontal axis to the scatter points to improve the read-
ability of the scatter plot. We see that the personalized mod-
els PPN-1024 and PPN-512 generally produce cleaner outputs
containing only the target-speaker’s voice.

Table 1: Objective evaluation of different algorithms over the
synthetic test set created from LibriSpeech

Methods PESQ CBAK COVL CSIG
Noisy 1.455 1.877 1.886  2.482
NSNET-2 [22] | 1.629 2.143 1.981 2.476
PercepNet []] 1.748 1.989 2.052 2491
PPN-512 2.357 2.491 2.871 3.462
PPN-1024 2.412 2.528 2920 3.501

Table 2: Subjective evaluation (MOS) of different Algorithms
over the synthetic test set created from LibriSpeech

Methods MOS
Noisy 2.384
NSNET-2 [22] | 2.541
PercepNet [1] | 2.624
PPN-512 3.128
PPN-1024 3.208

model output. We compare this computed output embedding
to the target speaker’s embedding and the interfering speaker’s
embedding in terms of cosine similarity values. For the target
and interference embeddings, we use the ground-truth target
and ground-truth interference utterances used to generate the
noisy mixture itself. Fig.[2] demonstrates how well our model
has learned to address this challenge. We plot the results as
a scatter plot of cosine similarity values for all the four mod-
els (PPN-1024, PPN-512, PercepNet and NSNET-2) over all
the 500 mixtures. It is evident from Fig. [J] that our model has
learned to extract only the target speaker’s voice. This is seen
by the fact that the target similarity values are clustered closer
to 1 and the interference similarity values are clustered closer to
0 for both PPN-1024 and PPN-512 models. The target cluster
(red circles) is also well-separated from the interference cluster
(green triangles) for these models. On the other hand, the base-
line models have significant overlaps between these clusters.
Finally, Fig. B] shows how the VAD output head (from
Fig. [T) has learned the target speaker activity on a toy mixture
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Figure 3: Personalized VAD Output. Although we operate
on full-band mixtures and produce full-band outputs, we show
spectrograms downsampled to 16 kHz for readability. The VAD
output indicates speaker activity on a frame by frame basis
where there is a frame transition every 10 ms. We transform
the frame indices into their equivalent time values.

constructed from the LibriSpeech dev-set. The use of speaker
conditioning has enabled the model to learn only the target
speaker’s voice activity while ignoring the interfering voice ac-
tivity. Hence our proposed model can also be used as a personal
VAD [33]. Further experiments on the quality of the VAD out-
put are beyond the scope of this work.

Casual listening confirms that Personalized PercepNet is
able to better isolate the target speaker’s voice than the base-
line PercepNet. In doing so, one artifact we sometimes notice
is a form of pitch modulation, especially when the target and
interfering talkers overlap. We believe this is due to pitch esti-
mation errors in the overlap case. While the artifact is usually
not annoying, we believe a better pitch estimator would help
further improve quality.

6. Conclusion

In this paper, we present Personalized PercepNet, a real-time
speech enhancement algorithm that enhances the target speaker
from a mixture that contains ambient noise and other interfering
talkers. The neural network of the proposed model consists of
two components: the speaker embedder network and the DNN
model. To train the speaker embedder network, we rely on a
relatively compact set of 68 perceptually motivated features like
spectral envelopes and speech periodicity and learn discrimina-
tive speaker embeddings. Using the embeddings for the target
speaker, the DNN model then operates on the feature represen-
tation of the mixture and extracts the target speaker. Our exper-
iments confirm that the proposed approach improves upon the
baseline PercepNet model significantly without compromises in
real-time operation or memory constraints.
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