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Abstract
We propose a streaming diarization method based on an end-
to-end neural diarization (EEND) model, which handles flexi-
ble numbers of speakers and overlapping speech. In our pre-
vious study, the speaker-tracing buffer (STB) mechanism was
proposed to achieve a chunk-wise streaming diarization us-
ing a pre-trained EEND model. STB traces the speaker in-
formation in previous chunks to map the speakers in a new
chunk. However, it only worked with two-speaker recordings.
In this paper, we propose an extended STB for flexible num-
bers of speakers, FLEX-STB. The proposed method uses a zero-
padding followed by speaker-tracing, which alleviates the dif-
ference in the number of speakers between a buffer and a current
chunk. We also examine buffer update strategies to select im-
portant frames for tracing multiple speakers. Experiments on
CALLHOME and DIHARD II datasets show that the proposed
method achieves comparable performance to the offline EEND
method with 1-second latency. The results also show that our
proposed method outperforms recently proposed chunk-wise
diarization methods based on EEND (BW-EDA-EEND).
Index Terms: online speaker diarization, EEND, overlapping
speech, flexible numbers of speakers

1. Introduction
Speaker diarization, a challenging technique that responds to
the question “who spoke when” [1–6], assigns speaker labels to
audio regions. Diarization produces outcomes that downstream
tasks can utilize. For example, it can provide the turn-taking
information and build a pre-processing pipeline for automatic
speech recognition in meetings [7–10], call-center telephone
conversations [11–13], and home environments [14–16].

The three challenging aspects that current speaker diariza-
tion systems should fulfill are overlapping speech, unknown
number of speakers, and online operation. However, it is still
an open problem to solve these conditions at once. Conven-
tional clustering-based systems primarily focus on clustering
algorithms and speaker embeddings such as Gaussian mixture
models (GMM) [17,18], i-vector [19–21], d-vector [22,23], and
x-vector [24, 25]. However, most clustering-based systems as-
sume that there is only one speaker per segment. As a result,
these systems cannot deal with the overlapping speech in gen-
eral except for a few studies, e.g., [26].

To solve the overlapping issue, an end-to-end neural di-
arization model (EEND) was proposed [27]. EEND directly
minimizes the diarization error by mapping the multi-speaker
mixture recording to joint speech activities using a single neural
network. The model estimates the speech activity using a dedi-

Table 1: Comparison of speaker diarization methods.

Method Online Overlapping Flexible #speakers

x-vector+clustering [24] – – 3
UIS-RNN [22, 23] 3 – 3
EEND/SA-EEND [27–29] – 3 –
EEND-EDA/SC-EEND [30, 31] – 3 3
RSAN [32, 33] 3 3 3
BW-EDA-EEND [34] 3 3 3
This work 3 3 3

cated stream for every speaker; hence, EEND inherently assigns
two or more labels to the overlapping regions. EEND has al-
ready shown significant performance improvement on overlap-
ping speech, especially after adopting the self-attention mech-
anism (SA-EEND) [28], and with a fixed number of speakers.
To deal with overlapping speech and flexible numbers of speak-
ers, Horiguchi et al. introduced the encoder-decoder based at-
tractor (EDA) module to SA-EEND [30], and Fujita et al. ex-
tended the SA-EEND to speaker-wise conditional EEND (SC-
EEND) [31, 35]. Both extensions have only been evaluated in
offline mode.

To cope with online applications, the speaker-tracing buffer
(STB) [36] was proposed to trace the speaker permutation infor-
mation across chunks which enables the offline pre-trained SA-
EEND model to work in an online manner. The original STB
achieved comparable diarization accuracy to the offline EEND
with 1 s chunk size but this method was limited to two-speaker
recordings. In [34], Han et al. proposed the block-wise-EDA-
EEND (BW-EDA-EEND) which makes the EDA-EEND work
in an online fashion. Motivated by Transformer-XL [37], this
approach utilizes the previous hidden states of the transformer
encoder as input to the EDA-EEND.

To satisfy all the three requirements together, among the
existing diarization methods as shown in Table 1, the Recurrent
Selective Attention Network (RSAN) [32, 33] and the block-
wise-EDA-EEND (BW-EDA-EEND) stand out. However, due
to the speech separation-based training objective, RSAN is hard
to adapt to real recordings, and the evaluations under real sce-
narios are not reported. On the other hand, although BW-EDA-
EEND [34] conducted online experiments on 10 s chunk size
conditions, which cause large latency. In this paper, we consider
more realistic streaming applications with a smaller chunk size
such as 1 s.

In this work, we extend the inference algorithm of exist-
ing offline model (e.g., EEND-EDA) to operate in an online
mode using the speaker-tracing buffer for flexible numbers of
speakers (FLEX-STB) without re-training the offline model.
FLEX-STB is designed to deal with variable numbers of speak-
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ers using a zero-padding mechanism with reasonable latency.
Four frame selection strategies are also proposed to contain the
speaker permutation information in FLEX-STB. The proposed
diarization system can operate in an online mode handling over-
lapping speech and flexible number of speakers, and working in
real scenarios such as CALLHOME and DIHARD II with 1 s
chunk size.

2. Preliminary
In this section, we briefly explain two key elements: EEND for
flexible numbers of speakers and the original STB that enables
the offline SA-EEND systems to work online.

2.1. EEND for flexible numbers of speakers

Given a T -length sequence of D-dimensional log-scaled Mel-
filterbank-based acoustic features X ∈ RD×T , a neural
network-based function EEND : RD×T → (0, 1)S×T cal-
culates posterior probabilities of speech activities at each time
frame Ŷ = (ŷt)

T
t=1 ∈ (0, 1)S×T as follows:

Ŷ = EEND(X), (1)

Here, ŷt := [ŷ1,t, . . . , ŷS,t]
T is the posterior of speech activi-

ties calculated for each speaker s ∈ {1, . . . , S} independently,
where (·)T denotes the matrix transpose and S is the number of
speakers. Diarization results Ỹ = (ỹs,t)s,t ∈ {0, 1}S×T are
obtained by applying a threshold value θ (e.g., 0.5) to the poste-
riors Ŷ. If ỹs,t = ỹs′,t = 1 (s 6= s′), it means that both speak-
ers s and s′ are estimated to have spoken at time t, which is
regarded as the overlapping region. If ∀s ∈ {1, . . . , S}, ỹs,t =
0, it indicates that no speaker is estimated to have spoken at time
t. Note that EEND used permutation invariant training [27] so
that there is no condition to decide the order of output speakers.

While the original EEND [27, 29] fixes the number of
speakers S by its network structure, variants of EEND [30, 31,
35] have been proposed to estimate the number of speakers Ŝ.
However, these methods perform only in the offline setting.

2.2. Speaker-tracing buffer for fixed number of speakers

One of the straightforward online extensions of EEND is to per-
form diarization process for each chunk of acoustic features
and concatenated diarization results across the chunk. How-
ever, this cannot obtain a consistent speaker permutation of the
whole recording. This is because the EEND used permutation
invariant training [27] so that there is no condition to decide
the order of output speakers. We call this speaker permuta-
tion problem. To solve the speaker permutation problem, we
have proposed speaker-tracing buffer (STB) [36] for the orig-
inal EENDs, which assume that the number of speakers was
known as prior.

Let Xi ∈ RD×∆ represents the subsequence of X at
chunk i ∈ {1, . . . , I} with a fixed chunk length ∆, i.e., X =
[X1, . . . ,Xi, . . . ,XI ]. The EEND : RD×T → (0, 1)S×T

function accepts the input features of flexible length T and pro-
duces the posteriors of speech activities of the same length for
each speaker. Note that the number of speakers S is fixed in this
section.

2.2.1. Initialization

The STB possesses two matrices: acoustic features X
(buf)
i ∈

RD×Li and the corresponding posteriors Y(buf)
i ∈ RS×Li from

EEND (·), where Li is the buffer length after i-th update. The
matrices are initialized at the first chunk as follows:

X(buf)
1 = X1, (2)

Y(buf)
1 = Ŷ1 = EEND(X1). (3)

As we assume that the chunk size ∆ is smaller than the max-
imum number of frames Lmax in the buffer, all the inputs and
outputs of the first chunk can be fed into STB.

2.2.2. Chunk-wise processing handling speaker permutation

From the second chunk, posteriors Ŷi are computed using the
STB. Firstly, an input concatenated with the the buffer is fed
into EEND (·):[
Ŷ(buf)
i−1, Ŷi

]
= EEND

([
X(buf)
i−1,Xi

])
∈ (0, 1)S×(Li−1+∆).

(4)
Next, the optimal speaker permutation for the current chunk is
calculated as follows:

ψ = arg max
φ∈Perm(Si)

Corr
(
Y(buf)
i−1,PφŶ

(buf)
i−1

)
, (5)

where Pφ ∈ [0, 1]S×S is a permutation matrix for the φ-th per-
mutation in Perm(Si), which is all the possible permutations
of the sequence (1, . . . , S). Corr (A,B) calculates the corre-
lation between two matrices A = (aij)jk and B = (bjk)ij
defined as

Corr (A,B) :=
∑
i,j

(ajk − ā)
(
bjk − b̄

)
, (6)

where ā and b̄ are the mean values of A’s and B’s elements, re-
spectively. Finally, the posterior probabilities of the i-th chunk
are calculated with the permutation matrix that gives the highest
correlation as follows:

Yi = PψŶi. (7)

If the length of
[
Y(buf)
i−1,Yi

]
is larger than the predetermined

maximum buffer length Lmax, we select frames to be kept in the
STB, which are used to solve the speaker permutation problem
occurred by the future inputs. In the paper [36], four selection
strategies have been proposed.

The STB is a solution to the online diarization problem;
however, it cannot be directly applied to EEND for unknown
and flexible numbers of speakers. One reason is because the
number of speakers may be different across chunks so that we
cannot calculate correlation using Eq. (6). The other reason is
that the most promising selection strategy used the absolute dif-
ference of probabilities of two speakers’ speech activities; thus,
the method is limited to two-speaker EENDs.

3. Proposed method
In this paper, we proposed the FLEX-STB which extends the
STB coping with the two obstacles to use it with EEND for un-
known numbers of speakers [30,31]. The FLEX-STB deals with
the varying number of speakers across chunks by increasing
the number of speaker slots in the speaker-tracing buffer with
the zero-padding in Section 3.1. When the system detects new
speakers, it adds new zero-speaker-activity slots to the speaker
buffer. We also propose four selection strategies to update the
buffer, each of which are not limited by the number of speakers,
in Section 3.2.



Figure 1: Proposed speaker-tracing buffer for unknown num-
bers of speakers. Zero-padding is applied to mitigate the differ-
ent number of speakers between Y(buf)

i−1 and Ŷ(buf)
i−1.

3.1. Speaker-tracing buffer for flexible numbers of speak-
ers (FLEX-STB)

In this section, we assume that EEND estimates not only speech
activities but also the number of speakers S, i.e., EEND :
RD×T → (0, 1)S×T . Firstly, to alleviate the different number
of speakers between the buffer Y(buf)

i−1 and the current chunk’s
output Ŷi, the posterior of the no-speech-activity speaker is
considered as zero so that the zero-padding function is applied
as follows:

Z(buf)
i−1 = ZeroPadding

(
Y(buf)
i−1, Si

)
, (8)[

Ẑ(buf)
i−1, Ẑi

]
= ZeroPadding

([
Ŷ(buf)
i−1, Ŷi

]
, Si
)
, (9)

where Si = max(Si−1, Si) and ZeroPadding(A, S) appends
row zero vectors to A so that the first dimension becomes S.
Next, the speaker permutation Pψ for the current chunk is cal-
culated between Z(buf)

i−1 and Ẑ(buf)
i−1 using Eq. (5). Then, the output

for the current chunk is permuted as follows:

Yi = PψẐi, (10)

where Yi is the final diarization result of the chunk i. Af-
ter that, at most Lmax time indexes T ⊆ {1, . . . , Li−1 + ∆}
are selected based on the concatenated outputs

[
Z(buf)
i−1,Yi

]
∈

(0, 1)Si×(Li−1+T ), and the FLEX-STB is updated as follows:

X(buf)
i = [xτ | τ ∈ T ] , Y(buf)

i = [yτ | τ ∈ T ] , (11)

where xτ is the τ -th column vector of [X(buf)
i−1,Xi], yτ is the τ -

th column vector of [Z(buf)
i−1,Yi]. The frame selection strategies

are described in Section 3.2.

3.2. Selection strategy

When the number of accumulated features becomes larger than
the buffer size Lmax, a selection strategy is needed to keep rel-
evant features that contain the speaker permutation information
from

[
X(buf)
i−1,Xi

]
and

[
Z(buf)
i−1,Yi

]
. In this section, four selec-

tion functions are proposed for flexible numbers of speakers.

• Uniform sampling: Uniform distribution sampling is
applied to extract Lmax frames.

• First-in-first-out (FIFO): The most recentLmax features
and the corresponding diarization results are stored in the
buffer, which follows the first-in-first-out manner.

• Kullback-Leibler divergence based selection: We uti-
lize the Kullback-Leibler divergence (KLD) to measure
the difference between two probability distributions: the
speaker activities distribution and the uniform distribu-
tion at time t, which can be represented as follows:

KLDt =

Si∑
s=1

ps,t log
ps,t
qs,t

, (12)

ps,t =
rs,t∑Si

s′=1 rs′,t
, (13)

qs,t =
1

Si
, (14)

where
[
Z(buf)
i−1,Yi

]
= (rs,t)1≤t≤(Li−1+∆)

1≤s≤Si

is the posteri-

ors from EEND with FLEX-STB and qs,t is the uniform
distribution. Top Lmax samples with the highest KLD
values are selected from

[
Z(buf)
i−1,Yi

]
and the correspond-

ing
[
X(buf)
i−1,Xi

]
.

• Weighted sampling using KLD: The combination of
uniform sampling and KLD based selection. Lmax fea-
tures are randomly selected with the probabilities which
are proportional to KLDt.

4. Experiment
4.1. Data

We generated 100k simulated mixtures of one to four speakers
following the procedure in [30] using Switchboard-2 (Phase I,
II, III), Switchboard Cellular (Part 1, 1), and the NIST Speaker
Recognition Evaluation datasets (SRE). Additionally, we added
noises from the MUSAN corpus [38] and room impulse re-
sponses (RIRs) from the Simulated Room Impulse Response
Database [39]. These simulated mixtures were used for training
the EEND-based model. Two real conversation datasets: the
CALLHOME [11] and the DIHARD II [3] were prepared for
evaluation.

4.2. Experiment setting

In this paper, we evaluated the proposed method on the offline
EEND-EDA model. The EEND-EDA model was trained with
four Transformer encoder blocks and 256 attention units con-
taining four heads [30]. We firstly trained the model using a
two-speaker dataset for 100 epochs and then finetuned with the
concatenation of one- to four-speaker simulated datasets for 25
epochs. Finally, EEND-EDA model was finetuned using a de-
velopment set of CALLHOME, or DIHARD II, respectively.



Table 2: DERs (%) of online EEND-EDA with chunk size ∆ = 1 s using FLEX-STB and offline EEND-EDA with chunk size ∆ = ∞.
Note that all results are based on the estimated number of speakers, including the overlapping regions without oracle SAD.

Online (∆ = 1 s)

CALLHOME DIHARD II Offline (∆ =∞)

Lmax = 10 s Lmax = 50 s Lmax = 100 s Lmax = 10 s Lmax = 50 s Lmax = 100 s CALLHOME DIHARD II

FLEX-STB with selection strategy
Uniform sampling 27.6 20.2 19.3 52.4 39.3 36.8 - -
FIFO 29.5 19.4 19.1 57.2 41.1 37.0 - -
KLD selection 30.0 22.3 20.9 52.6 40.8 37.7 - -
Weighted sampling using KLD 26.6 20.0 19.5 50.3 37.9 36.0 - -

Without FLEX-STB - - - - - - 15.3 32.9

We evaluated all systems with the diarization error rate
(DER) metric in both overlapping and non-speech regions. A
collar tolerance of 250 ms was applied at the start and end of
each segment for the CALLHOME dataset. Following the reg-
ulation of the second DIHARD challenge [3], we did not use
collar tolerance for the DIHARD II dataset.

4.3. Results

4.3.1. Effect of selection strategies and buffer size

Table 2 shows the effect of the selection strategies and the buffer
size of the FLEX-STB on the EEND-EDA model in the left part.
Experiment conditions varied from four selection methods with
buffer sizes equal to 10 s, 50 s and 100 s but fixed the chunk size
∆ to 1 s. All results were calculated with the estimated num-
ber of speakers including the overlapping regions without ora-
cle sound activity detection (SAD). It is shown that incremen-
tal buffer size which provides more input information improved
the accuracy regardless of the selection strategies. Regarding
the selection strategies, on most cases weighted sampling using
KLD outperformed other strategies on both datasets. The best
results from online system are 19.1 % and 36.0 % for CALL-
HOME and DIHARD II, respectively.

4.3.2. Comparison with the offline EEND-EDA system

We also compared the performance of our proposed online and
baseline offline systems in Table 2. The input of the offline
EEND-EDA system is the whole recording during inference
while that for the online system is the 1 s chunk. Compared
with the offline system, DERs of the online system increases
by 3.8 % and 3.1 % on these two datasets, which would be ac-
ceptable degradation by considering the benefit of streaming di-
arization. The performance degradation is supposed to come
from the mismatch between the offline model which was trained
with fixed large chunk size and the online mechanism whose in-
put sizes are incrementally increased.

4.3.3. Comparison with other online diarization systems

First, we compared our method with the recently proposed BW-
EDA-EEND [34] on the CALLHOME dataset. In order to com-
pare with BW-EDA-EEND in the same condition, we evalu-
ated our method with a 10 s chunk size. As shown in Table 3,
in a 10 s chunk size and estimated SAD condition, our pro-
posed method outperforms the BW-EDA-EEND on all speaker-
number cases on the CALLHOME dataset.

Next, we compared our proposed method with other sys-
tems in more realistic scenario, i.e., DIHARD II. For a fair com-
parison with other online methods, we follow the DIHARD II
track 1, where the oracle SAD information is provided. We used
the oracle SAD information to filter out non-speech frames of

Table 3: DERs (%) of each number of speakers on the CALL-
HOME dataset with 10 s chunk size. Both estimated the number
of speakers and included the overlapping regions without using
oracle SAD.

Number of speakers

Method 2 3 4

BW-EDA-EEND [34] 11.8 18.3 26.0
EEND-EDA w/ FLEX-STB 10.0 14.0 21.1

Table 4: DERs (%) on DIHARD II dataset computed by using
oracle SAD including overlapping regions. Online systems with
STB were evaluated in a 1 s chunk size ∆ and 100 s buffer size
Lmax.

Method DER

DIHARD-2 baseline (offline) [3] 26.0
UIS-RNN-SML [23] 27.3
EEND-EDA w/ FLEX-STB 25.8

the estimated diarization result. Table 4 shows the compari-
son with other systems. The proposed online EEND-EDA with
FLEX-STB achieved a DER of 25.8 %, which outperformed the
UIS-RNN-SML, and is comparable to the offline DIHARD II
baseline.

4.3.4. Real-time factor and latency

Our experiment was conducted on one NVIDIA Tesla P100
GPU. To calculate the average computing time of one buffer,
we filled the buffer with dummy values for the first iteration to
keep the buffer size always the same among chunks. The real-
time factor was equal to 0.13 when we applied FLEX-STB to
EEND-EDA with chunk size equal to 1 s, and a buffer size of
100 s. This means that the average computation duration of a 1 s
chunk was 0.13 s which is acceptable for the online processing.

5. Conclusion

In this paper, we proposed an online streaming speaker diariza-
tion method that handles overlapping speech and flexible num-
bers of speakers. A speaker tracing buffer for flexible numbers
of speakers was proposed to mitigate the different number of
speakers among chunks. Experimental results showed that the
proposed online system achieves comparable results with the
offline method and better results than the BW-EDA-EEND on-
line method. One of our future studies is to incorporate various
extensions developed at the recent DIHARD III challenge, in-
cluding semi-supervised training and model fusion [6].
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