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Abstract
We propose self-training with noisy student-teacher approach
for streaming keyword spotting, that can utilize large-scale un-
labeled data and aggressive data augmentation. The proposed
method applies aggressive data augmentation (spectral augmen-
tation) on the input of both student and teacher and utilize un-
labeled data at scale, which significantly boosts the accuracy
of student against challenging conditions. Such aggressive aug-
mentation usually degrades model performance when used with
supervised training with hard-labeled data. Experiments show
that aggressive spec augmentation on baseline supervised train-
ing method degrades accuracy, while the proposed self-training
with noisy student-teacher training improves accuracy of some
difficult-conditioned test sets by as much as 60%.
Index Terms: keyword spotting, self-training, noisy student
teacher, spec augmentation, semi-supervised

1. Introduction
Supervised learning has been the major approach in keyword
spotting area [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Although it
has been successful, Supervised learning requires high qual-
ity labeled data at scale, which often requires expensive hu-
man efforts or costs to obtain. Motivated from such difficulty,
Semi-supervised learning [12, 13, 14, 15, 16] and Self-training
[17, 18, 19, 20, 21] approaches were introduced recently. Those
approaches utilize large unlabeled data in addition to smaller
amounts of labeled data and achieve performance comparable
to supervised models trained with large amounts of labeled data.

Semi-supervised learning approaches utilize unlabeled data
to learn hidden layer activations that best predict neighbor-
ing data (temporally or spatially close sensory features), which
is then used as the input feature to a classification network
trained with small amount of labeled data (supervised training)
[14, 13, 15, 16]. It is shown that semi-supervised learning with
small amount of labeled data can achieve performance compa-
rable to supervised learning with larger amount of data. On the
other hand, Self-training approaches utilize unlabeled data by
using a teacher network to generate soft-labels (pseudo-labels)
which is then used to train student network [17, 18, 19, 20, 21].
Such student-teacher training step can be repeated as long as
the performance improves, with the student being a teacher in
the next step. Data augmentation is often used together during
student-training step for further improvements [17, 18].

Data augmentation is another effective technique to boost
model accuracy without requiring more training data. Aug-
menting data by adding reverberation or mixing with noise have
been used in ASR (automatic speech recognition) and KWS
(keyword spotting) [22] with some success. Recently intro-
duced spectral augmentation [23, 24] is a new data augmen-
tation technique shown to boost ASR accuracy significantly. In
a recent work, [25] showed that applying spectral augmentation
on student’s input can improve ASR accuracy in self-training

setup.
In this paper, we explore an application of self-training with

labeled and unlabeled data where aggressive data augmentation
(spec augmentation) is applied to the input of both student and
teacher. The proposed student-teacher training approach en-
ables utilization of unlabeled (unsupervised) training data for
KWS problem, and also helps in applying aggressive spectral
augmentation to boost diversity of training data further.

Aggressive data augmentation can degrade accuracy in key-
word spotting when used with supervised training with hard-
labels (∈ {0, 1}). If one applies very aggressive augmentation
on a positive example, one can end up with an example that
may actually be seen as negative but still has positive label. Al-
though it may be not frequent, it can degrades the accuracy sig-
nificantly by increasing false accept rate. With the proposed
noisy student-student approach, teacher model generates soft-
labels(∈ [0, 1]) which dynamically reflects the degree of degra-
dation in the input pattern. Supervised-training with predeter-
mined hard-labels cannot reflect such changes of input pattern.
With experiments, we show that the proposed noisy student-
teacher training with spec augmentation boosts accuracy of the
model in more challenging conditions (accented, noisy and far-
field). Such benefits can be explained from the use of large scale
unlabeled data and aggressive data augmentation.

We describe the proposed approach in Section 2. Then we
show experimental setup in Section 3, and the results in Section
4. We conclude with discussions in Section 5.

2. Noisy student-teacher self-training with
spec augmentation

2.1. Noisy student-teacher Self-training

We propose noisy student-teacher self-training approach which
consists of two major stages. In the first stage, we train a teacher
model (which is also a baseline model) using conventional su-
pervised training method on labeled data (shown in Fig. 1 (a)).
We use the same architecture and training method developed
in previous work [1] for the first stage model. Also the same
conventional data augmentation method (add reverberation and
background noises)[22] is used in the first stage. The learned
teacher model is passed to the second stage.

In the second stage, we train a student model using soft-
labels generated from the teacher model trained in previous
stage. Since the teacher provides soft-label, we can use ad-
ditional unlabeled data for training student model. Also we
can add more aggressive data augmentation on top of existing
classical one to boost accuracy. Specifically we apply spectral
augmentation which masks specific frequencies or time frames
completely. Such strong modification might even change a
positive pattern to a negative one, which will make an incor-
rect training example under supervised training method. But
in student-teacher approach, the teacher can compensate for
such drastic changes by generating correspondingly lower con-
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Figure 1: Self-training with Noisy student-teacher (a) Teacher
model is trained by labeled data. (b) Student model is trained
by labeled+unlabeled data with teacher logit and data augmen-
tation.

fidence. To get such benefits, both the teacher and the student
model is getting the same augmented data (Fig. 1(b)).

In the original self-training with noisy-student approaches
[18, 25], a teacher model is provided with clean data and only
the student is given noisy (augmented) data. This seems to
be working well for multi-class classifications such as Ima-
geNet (objects) or ASR (graphemes) problems. But we found
that providing the same noisy input to the teacher and the stu-
dent achieves better performance in Keyword Spotting prob-
lem. This seems to be due to the difference of the problem,
where KWS is a binary classification task with highly unbal-
anced pattern space. In KWS, the space of positive pattern is
much smaller than that of negative patterns. Thus augmenting
a positive pattern can easily result in moving the pattern into
the space of negative patterns. Also our approach is different
from [18, 25] that both labeled and unlabeled data go through
the teacher model to produce soft-labels used to train the stu-
dent model. In previous works, labeled data is used for comput-
ing supervised loss on the student model while unlabeled data
is used to generate soft-label. Also unlike [25], we don’t have
separate data selection for the second stage.

Algorithm 1 Self-training with noisy student-teacher

1. Train Teacher T0 with labeled data L and classic augmen-
tation.

2. Train Student Sk by

(a) Apply aggressive augmentation on L ∪D
D = Augment(L ∪ U)

(b) Use teacher Tk to generate soft-label yT by
yTk (i) = fTk (x(i)) for x(i) ∈ D

(c) Student model trained using CE loss by
ySk (i) = fSk (x(i)) for x(i) ∈ D

Loss = CE(yTk , ySk )

3. Set Tk+1 = Sk and Repeat step 2

Student teacher loss = α ∗ LossE + LossD (1)

LossD = cross entropy(yTd , y
S
d ) (2)

LossE = cross entropy(yTe , y
S
e ) (3)

yT = [yTd , y
T
e ] = fT (augment(x)) (4)

yS = [ySd , y
S
e ] = fS(augment(x)) (5)

The proposed method can be summarized by Algorithm 1.
As shown, we can also have multiple iterations (indexed by k)
of the second stage by using the student from previous itera-
tion Sk as the teacher model Tk+1 for next iteration. Losses
for student-teacher training is computed by cross entropy (Eq.
1-5). Note that we compute two cross entropy’s (for encoder
and decoder labels), since our baseline model has both encoder
and decoder as outputs [1, 2]. We combine two CE losses by
weighted summation (Eq. 1).

2.2. Spec Augmentation

Data augmentation works by generating multiple variations of
an original data example using various transforms [22, 23, 24],
effectively multiplying number of training examples seen by the
model. Classic approaches include adding reverberation or mix-
ing with noise [22]. Recently proposed spectral augmentation
method showed that one can boost ASR accuracy significantly
by randomly masking blocks of frequency bins mostly [23, 24].
In this paper we explore the use of time and frequency masking,
which is known to be most effective.

Spec augmentation is an aggressive data augmentation, in
the aspect that it masks significant portion of input frequency
bins or time frames in chunks. In ASR domain, such aggressive
masking seems to help preventing over-fitting and facilitating
the use of high level context. Also in ASR the target classes
(phonemes or graphemes) are relatively well balanced in terms
of prior. Meanwhile, KWS typically is a binary classification
problem where positive pattern occupies only a small pattern
space, while negative patterns span all the other spaces. One
can easily transform a positive pattern to be a negative one by
masking chunks of frequency bins. In supervised learning with
predetermined hard-label, those labels can simply be incorrect
after some augmentation. To overcome such over-augmentation
issue, we proposes to use spec augmentation with noisy student-
teacher setup.

2.3. Model Architecture

For both the teacher (baseline) and the student model, we use
the same two stage model architecture as in [2, 1]. The model
consists of 7 simplified convolution layers and 3 projection
layers, being organized into encoder and decoder sub-modules
connected sequentially. Encoder module takes the input feature
which is a 40-d vector of spectral frequency energies and gen-
erates encoder output of dimension N which learns to encode
phoneme-like sound units. The decoder model takes the en-
coder output as input and generates binary output that predicts
existence of a keyword in the input stream. For more details,
please refer to [2, 1].



3. Experimental setup
3.1. Model setup

We implemented and compared the proposed model with base-
line and some other variations as summarized in Table 1. In the
table, Baseline MP denotes the baseline model from our previ-
ous work [1] which uses supervised learning with labeled data
(L) and max pooling loss. This model also becomes the first
teacher model(T0) in Algorithm 1. Model MP+sAug is a a vari-
ant of the baseline model by simply adding spec augmentation
on top of existing classic data augmentation. Model ST denotes
a student-teacher trained model (using T0) with classic augmen-
tation and additional unlabeled data (U). Model ST+sAug is the
same as model ST except that spectral augmentation is applied
on top of classical augmentation. Model ST+sAug g2 denotes
a second generation student-teacher trained model where the
previous ST+sAug model was used as its teacher. ST+sAug
NS(noisy student) is the same as ST+sAug model except that
spec augmentation is applied only on student’s input similarly
to [17, 25]. As shown in Table 1, all student-teacher trained
models are trained using both labeled and unlabeled data, while
supervised training models were trained using labeled data only.

Table 1: Summary of various models tested

Models Loss Training data
Baseline MP MaxPool CE Loss [1] L

MP+sAug MaxPool + sAug L
ST ST (Student-Teacher) L + U

ST+sAug ST + sAug L + U
ST+sAug g2 ST + sAug 2nd gen. L + U
ST+sAug NS ST with noisy student + sAug L + U

3.2. Training data set

We used both supervised (labeled) training data, and unsuper-
vised (unlabeled) training data for experiments. Our supervised
training data consists of 2.5 million anonymized utterances with
the keywords (“Ok Google” or “Hey Google”). Supervised data
is labeled by large ASR model similarly to [2, 1]. The unsuper-
vised training data consists of 10 million anonymized utterances
with the keywords and noises. The unsupervised data has rel-
atively high noise level making it difficult for ASR model to
generate reliable labels.

3.3. Evaluation data set

Evaluation is done with 6 positive data sets separate from train-
ing data, where each set represents a diverse environmental con-
dition as summarized in Table 2. In the table, QLog, QLog diff,
QLog easy are anonymous query logs from different time period
and conditions. Especially QLog-low has utterances that score
relatively low confidences (difficult to detect), while Qlog-high
has utterances that score relatively high confidences (easy to de-
tect).

Table 2: Summary of evaluation dataset

Eval set name Description (# of utt’s)
Near Cl Nearfield Clean (170K)

Near Cl Acc Nearfield Clean Accented(16k)
Far Cl Farfield Clean (1k)

Far Mus Farfield w/ music noise (1k)
Far TV Farfield w/ TV noise (1k)
QLog Anonymous query logs (87k)

QLog low Qlog’s with lower confidence (265k)
QLog high Qlog’s with higher confidence (255k)

4. Results
Table 3: FR rate of models with various loss types at 0.1 FA/h

Models Near Cl Far Cl Far Mus Far TV
Baseline MP 0.56% 1.83% 15.18% 27.94%
MP+sAug 1.17% 6.28% 32.24% 47.96%
ST 0.53% 1.57% 15.06% 27.58%
ST+sAug NS 0.74% 1.05% 17.65% 30.22%
ST+sAug 0.59% 0.96% 12.00% 24.58%
ST+sAug g2 0.53% 0.78% 13.65% 25.06%
Models NearClAcc QLog QLog low QLog high
Baseline MP 1.64% 8.21% 11.07% 1.73%
MP+sAug 3.38% 18.74% 27.16% 8.48%
ST 1.58% 6.00% 8.63% 1.24%
ST+sAug NS 2.38% 7.38% 11.57% 2.14%
ST+sAug 1.71% 3.83% 7.28% 0.99%
ST+sAug g2 1.42% 3.12% 7.15% 0.91%

We evaluated 6 types of trained models on 8 evaluation sets
and results are summarized by Tables and figures. Table 3 sum-
marizes FR rates of the models at selected FA/h rate (0.1 FA
per hour measured on 64K re-recorded TV noise set). Fig.2
and 3 shows the ROC (receiver operator characteristic) curves
of tested models across different evaluation sets.

Results show that simply applying spec augmentation on
top of classic augmentation with supervised training (MP+sAug
model) doesn’t work well with our setup. This seems to be
due to the risks of over augmentation (that transforms a positive
labeled example into negative example with positive label).

The proposed model (ST+sAug and ST+sAug g2) showed
significant improvements over baseline for difficult conditions
such as Far-field and Query Logs. For example, Far-field
Clean condition improved from 1.83% (baseline) to 0.78%
(ST+sAug g2). Query Logs condition improved from 8.21%
(baseline) to 3.12% (ST+sAug g2) (60% relative improvement).
Clean Accented condition also improved from 1.64% to 1.42%
(ST+sAug g2). ROC plots (Fig 2, 3) shows similar trends. Sim-
ple student-teacher training (ST model) shows small improve-
ments over baseline (teacher model), assisted by extra unlabeled
data. But the improvements are relatively minor compared to
ST+sAug or ST+sAug g2.

Direct adaptation of noisy student self-training method
(Model ST+sAug NS) didn’t work well on our KWS prob-
lem setting. In this model, we apply spec augmentation on
only the student model’s input, and not on the teacher model.
Similarly to the MP+sAug model, the aggressive augmentation
can transform positive example to a negative one, while the
teacher model doesn’t see such changes resulting in incorrect
soft-labels.

5. Conclusion
We presented self-training with noisy student-teacher for key-
word spotting problem. The proposed approach enables the use
of abundant unlabeled data and aggressive augmentation. Ex-
perimental results show that models with proposed approach
significantly improves on evaluation set with difficult condi-
tions. Experiments also show that applying aggressive aug-
mentation directly in supervised learning approach doesn’t
work well for keyword spotting problem, while semi-supervised
training with noisy student-teacher can benefit from aggressive
augmentation and unlabeled data.



(a) Near-field Clean

(b) Far-field Clean

(c) Far-field with TV noise

(d) Far-field with Music noise

Figure 2: ROC curves of models with various recipes and con-
ditions

(e) Near-field Clean Accented

(f) Anonymous query Logs

(g) Anonymous query Logs with low confidence

(h) Anonymous query logs with high confidence

Figure 3: ROC curves of models with various recipes and con-
ditions
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