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Abstract

Serum and saliva-based testing methods have been crucial
to slowing the COVID-19 pandemic, yet have been limited by
slow throughput and cost. A system able to determine COVID-
19 status from cough sounds alone would provide a low cost,
rapid, and remote alternative to current testing methods. We ex-
plore the applicability of recent techniques such as pre-training
and spectral augmentation in improving the performance of a
neural cough classification system. We use Autoregressive Pre-
dictive Coding (APC) to pre-train a unidirectional LSTM on the
COUGHYVID dataset. We then generate our final model by fine-
tuning added BLSTM layers on the DICOVA challenge dataset.
We perform various ablation studies to see how each component
impacts performance and improves generalization with a small
dataset. Our final system achieves an AUC of 85.35 and places
third out of 29 entries in the DICOVA challenge.

Index Terms: COVID-19 classification, cough, pretraining,
data augmentation, DiCOVA

1. Introduction

Coronavirus Disease of 2019 (COVID-19) caused by the Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2)
virus has led to a sudden and dramatic loss of human life
since its identification in December 2019. The virus has spread
swiftly around the globe and as of March 2021, officials have
confirmed over 2.6 million deaths and 116 million cases [1].

A strategy that has effectively slowed the spread of COVID-
19 has been physically distancing and isolating infected indi-
viduals. The self isolation strategy’s success has heavily de-
pended on the rapid and accurate diagnosis of COVID-19. Un-
fortunately, the current gold standards for early diagnosis, viral
and serology tests, can be expensive and hard to scale due to a
scarcity of personnel to administer the tests and slow through-
put [2, 3]. Artificial intelligence and machine learning methods
have jumped to conquer the many challenges presented by the
virus, especially the rapid and accurate diagnosis of COVID-
19. A variety of data has been used by the machine learning
community for this purpose, such as CT scans, X-rays, and lab-
oratory features [4, 5, 6]. However, many of the types of data
collected can only be obtained using large and expensive equip-
ment, and would not be effective at diagnosing patients before a
visit to the hospital. In contrast, an Al-based diagnostic test of
cough sounds could be used to efficiently and remotely screen
individuals almost instantly at virtually no cost.

In addition to efficiency and accessibility, pursuit of a
cough-based diagnostic system might be worthwhile for two
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key reasons. The first is that past studies have shown coughs
from patients with different respiratory syndromes to exhibit
acoustic differences based on a variety of factors including na-
ture of disease, location, and type of irritant [7, 8]. Further-
more, a study by Smith et al. showed that health professionals
performed poorly at identifying a clinical diagnosis from cough
sounds, obtaining a correct diagnosis only 34% of the time [9].
Therefore, a machine learning model capable of differentiating
between disease-specific latent acoustic features would be able
to accurately diagnose COVID-19 from cough sounds alone and
support clinicians’ assessments of patients. The second rea-
son is that behind the presence of a fever, a cough is the most
prevalent symptom of COVID-19, occurring in 57% of patients
[10]. Additionally, the COVID-19 virus predominantly spreads
through airborne means such as the forceful expulsion of mu-
cosalivary droplets in coughs [11]. Thus, identifying coughing
individuals infected by COVID-19 for isolation would serve to
directly slow the spread of the virus.

In this paper we describe our approach for the DiCOVA
COVID-19 classification challenge [12]. We demonstrate the
effectiveness of using autoregressive predictive coding [13] as
a pretraining technique for classification of COVID-19 from
coughing. Due to the limited number of data samples in the
DiCOVA challenge dataset, we find data augmentation and pre-
training to be critical to improved generalization performance
on both validation data and blind test data. We demonstrate
the effectiveness of the popular spectrogram augmentation tech-
nique proposed by Park et al. [14] and show that always aug-
menting the data leads to the best performance on test data.

2. Related Work

Alongside the dramatic rise in translational research focused on
diagnosing COVID-19 from saliva, blood, and other contact-
based sources, researchers have recently been looking to non-
contact methods for COVID-19 classification. A healthy body
of research in audio-based cough classification has paved the
way for COVID-19 diagnostics based on cough sounds alone.
Within this growing field, several acoustic features from cough
sounds have been proposed for the classification of respiratory
illnesses. For example, Abeyratne et al. [15] train logistic
regression models on time series statistics, formant-frequency
tracking, and general time-frequency representations to differ-
entiate between bronchitis coughs, asthma coughs, and pneu-
monia coughs. The productivity of coughs, a higher level as-
sessment that aids clinicians in a differential diagnosis, had also
been explored by Swarnkar et al. in [16] using a variety of sig-
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nal processing features including bispectrum score, formant fre-
quencies, log energy, kurtosis, and mel-frequency cepstral coef-
ficients (MFCC). The features were passed to a logistic regres-
sion model to classify wet vs dry coughs.

Additionally, a variety of deep learning architectures have
been used on different configurations of cough sounds, includ-
ing original time series audio data, processed time series data,
and time-frequency representations. For example, MFCC and
spectrogram images were used to train convolutional neural net-
works (CNN) to classify cough audio into COVID and non-
COVID categories by Bansal et al. [17], achieving a 71%
and 81% test accuracy and sensitivity, respectively. Imran et
al. [18] train a tri-pronged classifier using a dataset of 48
COVID-19, 102 bronchitis, 131 pertussis, and 76 normal cough
sounds. The classification algorithm proposed requires three
independent support vector machine (SVM) or CNN classifiers
using mel spectrograms or MFCCs as input features to agree
before making a final classification. Pahar et al. [19] found
that a Resnet50 CNN architecture best discriminated between
COVID-19 positive and healthy coughs while an LSTM clas-
sifier was better able to discriminate between COVID-19 posi-
tive and COVID-19 negative coughs in ill patients. Laguarta et
al. [20] make use of several pre-trained feature extraction sys-
tems, which they refer to as biomarkers, to classify the presence
or absence of COVID-19 from cough samples. Biomarkers in-
clude muscular degradation, vocal cords, sentiment, and lungs
and respiratory tract.

3. Data

We pretrained our system on the COUGHVID dataset, a col-
lection of over 20,000 crowd-sourced cough recordings [21].
Cough audio data and relevant metadata were collected from
participants using a web interface. Metadata collected included
age, gender, presence of respiratory condition, presence of fever
or muscle pain, and COVID status. The collected data was fil-
tered using a cough detection algorithm, and the surviving sam-
ples were subsequently annotated by experts. Expert annota-
tions included assessments of the quality of cough recording,
cough type (wet or dry), dyspnea, wheezing, stridor, choking,
congestion, diagnosis, and severity. Cough audio recordings
were sampled at 48 kHz and all continents were represented in
the subject data. Our system used these data for unsupervised
pre-training only; none of the available metadata or expert an-
notations were used. 23% of the collected samples were either
COVID-19 symptomatic or COVID-19 positive.

Our system was fine-tuned on the DIiCOVA cough dataset,
provided through the DiCOVA Challenge [12]. Data was
recorded through a web interface where more than 90% of
the audio clips were recorded at a sampling rate of 48 kHz.
The collected audio was converted to 44.1kHz and distributed
in the FLAC format. All audio samples were manually an-
notated for type of cough (shallow or heavy). The provided
dataset consisted of 1040 cough audio files recorded from
unique subjects, with 75 COVID-19 positive samples and 965
non COVID-19 samples. Metadata included COVID status,
gender, and nationality (Indian or Other). The dataset was
split into five folds such that all samples are held out for val-
idation at least once. The blind test data consisted of 233
raw cough audio files with no attached metadata. The blind
test data was used for leaderboard rankings for the challenge
and can be found athttps://competitions.codalab.
org/competitions/29640.
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Figure 1: Unsupervised pre-training: A four-layer LSTM was
trained to minimize |y[n] — z[n + N]||* (adaptive predictive
coding), then the upper layers (purple) were discarded, and the
lower layers (blue) were copied into the fine-tuning network
shown in Fig. 2.

3.1. Preprocessing

We first downsampled all audio recordings to 16kHz. We then
computed 80-dimensional Mel log spectrograms using a win-
dow of 1024 samples and a hop length of 160 samples (10ms).
The spectrograms were normalized by setting any components
less than or equal to -120dB to -120dB. Then we normalized the
spectrogram such that the minimum value is O (corresponding
to -120dB) and the maximum value is 1 (corresponding to 0dB).

4. Baselines

Muguli et al. [12] provide three baseline system implementa-
tions for the DiCOVA challenge. Feature vectors are composed
of 39-dimensional mel-frequency cepstral coefficients (MFCC)
plus delta and delta-delta coefficients using window size 1024
and hop length 441. Models are trained at the frame level, and
the probability of an audio sample being COVID-19 positive is
the mean of the probabilities of all frames in the audio. The
three baseline methods are described briefly below.

Linear Regression: Classifier is trained for a maximum
of 25 iterations with 1iblinear optimizer, regularization
strength of 0.01 and /> penalty. Multi-layer Perceptron: Clas-
sifier is composed of one layer of 25 hidden units with the tanh
nonlinearity applied to the output. /> regularization is used with
weight 0.001. Examples are sampled during training such that
the model is equally exposed to positive and negative samples.
Random Forest: Classifier uses 50 trees and Gini impurity.

5. Method

Considering the small sample size of the DICOVA dataset, we
found it critical to avoid overfitting in order to improve test per-
formance. We focused on two main methods to avoid this is-
sue: pre-training and data augmentation. We pre-trained on
all samples in COUGHVID, a dataset of cough sounds, be-
cause we wanted our system to have a general understanding



of cough structures without overfitting the DiCOVA training
data. We then proceeded to fine-tune on the augmented Di-
COVA data. Code can be found at https://github.com/
jharvill23/DiCOVA.

5.1. Autoregressive Predictive Coding

Pretraining has shown incredible success in natural language
processing with the advent of BERT [22]. Inspired by this suc-
cess, Chung et al. [13] adapted pre-training to audio in a way
similar to BERT. The key similarity is that the pre-training is
predictive. No external labels are required, but rather structure
is learned by trying to fill in missing parts of the original sig-
nal. Chung et al. explore two types of pre-training: (1) autore-
gressive predictive coding (APC) and (2) contrastive predictive
coding (CPC). The authors found superior performance of APC
over CPC for both phone classification and speaker verification
tasks, so we chose to implement APC.

APC is a simple yet effective form of pre-training for audio.
The objective is for the model to predict a future spectral frame
given previous frames. If the goal is to predict the /N’th future
frame, the error for any audio clip becomes:

T—N

E=" |lyln] - zn+ N]|3

n=1

ey

where y refers to the network output and x refers to acoustic
input. By forcing the model to predict the future spectral frame,
the underlying structure of the audio signal is learned. We used
a uni-directional long short-term memory (LSTM) model for
pre-training (bi-directional would break causality). We used 4
LSTM layers with a hidden size of 400 and a dropout of 0.1.
Then we used two linear layers with 500 nodes. We applied the
hyperbolic tangent nonlinearity after the first linear layer. The
output dimension of the model is the same as that of the input
since we compute MSE loss. See Figure 1 for a visual descrip-
tion. We split the 4 LSTM layers into “upper” and “lower” lay-
ers because we used the output of the lower layers as extracted
features during fine-tuning, discussed next.

5.2. Fine-tuning

We passed the output from the lower layers of the APC model
as input features to our classification network. We used a net-
work composed of 2 bi-directional long short-term memory
(BLSTM) layers followed by three fully-connected layers. The
forward and backward summaries were taken from the BLSTM
layers and concatenated before being fed through the feedfor-
ward layers. We applied dropout with p = 0.1 in both the
BLSTM and fully-connected layers. To predict the probability
of the cough sample coming from a COVID-19 positive patient,
we took the softmax at the output and used the cross-entropy
loss for training. Note that due to data imbalance, we weighted
the loss of positive samples 15 times more than the loss of neg-
ative samples. During training, we applied SpecAugment from
Park et al. [14] to the cough samples. We found that spectral
augmentation was critical to generalization to the test data. See
Figure 2 for a visualization of the fine-tuning model.

5.3. Ensembling

During training we validated with area-under-curve (AUC),
which measures the performance of a classification system with
imbalanced data better than accuracy. AUC is the area under-
neath the true positive rate (TPR) vs. false positive rate (FPR)
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Figure 2: Fine-tuning: The lower two LSTM layers from the
APC network (Fig. 1) were frozen, while the upper BLSTM and
fully-connected layers were trained to minimize cross-entropy.

curve for different classification thresholds ranging from zero to
one. Since we directly optimized the cross-entropy loss and not
AUC, we found AUC to vary throughout training. We hypoth-
esized that different sets of model parameters may classify par-
ticular samples better or worse than one another, and that an en-
semble of several high-performing validation checkpoints may
improve test performance. We found this to be true and chose
the best three validation checkpoints, taking the mean of their
output probabilities for final validation scores for each fold. For
the blind test data, we took the mean of the scores from each
of the five folds. Thus our test predictions were an average of
5 x 3 = 15 model probability scores.

6. Experiments

Given our pre-training and fine-tuning system, there are several
variables that contribute to the overall performance: (1) num-
ber of future frames N to predict during pre-training (2) layer
from which to extract pre-trained features during fine-tuning (3)
percentage of augmented examples seen by the fine-tuning clas-
sification network during training. We now discuss the con-
figuration that led to our best score on the DICOVA challenge
leaderboard. We pre-trained with N = 10 future frames, used
the output from the first 2 of 4 LSTM layers (lower layers) as
output, and used spectral augmentation 100% of the time. This
means that we never exposed the fine-tuning classifier to an un-
altered example of the input spectrogram during training. All
experiments were run once for each of the five provided folds.

7. Results

Average validation performance across the five folds for our
best configuration compared to that of the three provided base-
lines is given in Figure 3. While we do not have access to
test labels for the DiICOVA challenge, we note that we placed
third out of 29 teams on the test data with an AUC of 85.35.
This score was less than two points below the top AUC score
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Figure 3: Best config: We plot ROC curves for our best-
performing test configuration against the three baselines pro-
vided for the DiCOVA challenge.

of 87.07, demonstrating superior test performance over most
proposed techniques. Our method also demonstrates significant
improvement over the baselines on the validation data, show-
ing that the combination of autoregressive predictive coding and
spectral augmentation is useful for determining COVID-19 sta-
tus from cough sounds.

8. Ablations

To explore how each part of our proposed system influences
the overall validation performance, we ran five ablation exper-
iments. In each of the experiments, all hyperparameters stayed
fixed compared to the best configuration except for the hyper-
parameter explicitly under investigation.

Spectral augmentation (two experiments): Perform spec-
tral augmentation 50% or 0% of the time instead of 100% of the
time. This means that for each experiment with either 50% or
0% chance, respectively, the fine-tuning model will be exposed
to a random spectrally-augmented version of the spectrogram.
Otherwise the model will see the unaltered input spectrogram.
Future frames: Use N = 1 future frame for pre-training in-
stead of 10. This ablation is inspired by [13], which found that
APC with N = 1 was best for speaker verification. Higher lay-
ers: Use the output from the 4th layer (upper layers) of the pre-
trained model. This means we take the output from the purple
layers in Figure 1 instead of the blue layers and then pass that
representation to the BLSTM layers in Figure 2 for fine-tuning.
Pre-training data: Use Librispeech [23] for pre-training in-
stead of COUGHVID. Librispeech is a collection of read En-
glish speech from audiobooks recorded at 16kHz. We use the
train-clean-100 subset of the data for pre-training.

Average validation performance across the five folds for
each ablation experiment plus the best test configuration is pro-
vided in Figure 4. Notice that both pre-training hyperparam-
eters and the amount of spectral augmentation are critical for
improved validation performance. When applying APC to the
cough classification task, there are two big takeaways. First,
higher layer representations are not as useful as features for pre-
diction of COVID-19 from cough as the lower layer represen-
tations. This makes sense because the higher layer representa-
tions correspond more directly to the predictive pretraining task,
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Figure 4: Ablations: We plot ROC curves for our best-
performing test configuration against five ablation methods
where we change one setting compared to the best-performing
test configuration.

which inevitably produce a blurred and shifted version of the
spectrogram. Second, contrary to the findings for speaker veri-
fication [13], predicting the N = 10th future frame is more ef-
fective than predicting the N = 1st future frame as pre-training
for COVID-19 cough diagnosis. Also notice that pretraining
with speech audio from the Librispeech dataset [23] results in
slightly reduced performance compared to the best test config-
uration. AUC for this ablation method is still above that of all
provided baselines in Figure 3. This demonstrates that while
generic audio pretraining can be useful for cough classification,
pretraining specifically on cough sounds is important for im-
proved performance. This is a hopeful finding, because while
it may be difficult to collect large amounts of labeled cough
data for classification of the presence of COVID-19, collecting
large amounts of unlabeled cough data is much more feasible.
Next, notice that the use of spectral augmentation is also impor-
tant for improved performance. We find very little difference
in validation performance between the best test config (100%
SpecAugment) and the 50% SpecAugment scenarios, but then
see a large decrease when not using spectral augmentation at all
(0% SpecAugment). These results demonstrate the importance
of both APC pretraining and SpecAugment during finetuning
for improving detection of COVID-19 from cough sounds.

9. Conclusions

We propose a novel approach for the classification of COVID-
19 from coughing sounds based on APC pre-training and
SpecAugment. We find that our approach is one of the top
performers on the test data for the DiCOVA challenge, ranking
third out of 29 entries. When studying the effect each train-
ing hyperparameter has on overall performance, we find that
APC pretraining hyperparameters and SpecAugment are crit-
ical for improved performance. We also find that while hav-
ing a large amount of cough data for pre-training gives the best
performance, using related audio like speech can also lead to a
substantial improvement over provided baselines. Overall, our
approach provides more evidence that a cough-based classifica-
tion system can assist in the diagnosis of COVID-19 practically
instantaneously and at virtually no cost.
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