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Abstract

State-of-art speaker verification (SV) systems use a back-
end model to score the similarity of speaker embeddings ex-
tracted from a neural network model. The commonly used
back-end models are the cosine scoring and the probabilistic
linear discriminant analysis (PLDA) scoring. With the recently
developed neural embeddings, the theoretically more appeal-
ing PLDA approach is found to have no advantage against or
even be inferior the simple cosine scoring in terms of SV sys-
tem performance. This paper presents an investigation on the
relation between the two scoring approaches, aiming to explain
the above counter-intuitive observation. It is shown that the
cosine scoring is essentially a special case of PLDA scoring.
In other words, by properly setting the parameters of PLDA,
the two back-ends become equivalent. As a consequence, the
cosine scoring not only inherits the basic assumptions for the
PLDA but also introduces additional assumptions on the prop-
erties of input embeddings. Experiments show that the dimen-
sional independence assumption required by the cosine scoring
contributes most to the performance gap between the two meth-
ods under the domain-matched condition. When there is severe
domain mismatch and the dimensional independence assump-
tion does not hold, the PLDA would perform better than the
cosine for domain adaptation.

Index Terms: speaker verification, cosine, PLDA, dimensional
independence

1. Introduction

Speaker verification (SV) is the task of verifying the identity
of a person from the characteristics of his or her voice. It has
been widely studied for decades with significant performance
advancement. State-of-the-art SV systems are predominantly
embedding based, comprising a front-end embedding extractor
and a back-end scoring model. The front-end module trans-
forms input speech into a compact embedding representation of
speaker-related acoustic characteristics. The back-end model
computes the similarity of two input speaker embeddings and
determines whether they are from the same person.

There are two commonly used back-end scoring methods.
One is the cosine scoring, which assumes the input embeddings
are angularly discriminative. The SV score is defined as the co-
sine similarity of two embeddings x1 and 2, which are mean-
subtracted and length-normalized [1]], i.e.,
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The other method of back-end scoring is based on probabilistic
linear discriminant analysis (PLDA) [2]. It takes the assump-

tion that the embeddings (also mean-subtracted and length-
normalized) are in general Gaussian distributed.

It has been noted that the standard PLDA back-end per-
forms significantly better than the cosine back-end on conven-
tional i-vector embeddings [3]. Unfortunately, with the pow-
erful neural speaker embeddings that are widely used nowa-
days [4], the superiority of PLDA vanishes and even turns into
inferiority. This phenomenon has been evident in our experi-
mental studies, especially when the front-end is trained with the
additive angular margin softmax loss [S}/6].

The observation of PLDA being not as good as the cosine
similarity is against the common sense of the back-end model
design. Compared to the cosine, PLDA has more learnable pa-
rameters and incorporates additional speaker labels for training.
Consequently, PLDA is generally considered to be more effec-
tive in discriminating speaker representations. This contradic-
tion between experimental observations and theoretical expec-
tation deserves thoughtful investigations on PLDA. In [7-9],
Cai et al argued that the problem should have arise from the
neural speaker embeddings. It is noted that embeddings ex-
tracted from neural networks tend to be non-Gaussian for in-
dividual speakers and the distributions across different speak-
ers are non-homogeneous. These irregular distributions cause
the performance degradation of verification systems with the
PLDA back-end. In relation to this perspective, a series of reg-
ularization approaches have been proposed to force the neural
embeddings to be homogeneously Gaussian distributed, e.g.,
Gaussian-constrained loss [7]], variational auto-encoder [8|] and
discriminative normalization flow [9,/10].

In this paper, we try to present and substantiate a very dif-
ferent point of view from that in previous research. We argue
that the suspected irregular distribution of speaker embeddings
does not necessarily contribute to the inferiority of PLDA ver-
sus the cosine. Our view is based on the evidence that the co-
sine can be regarded as a special case of PLDA. This is indeed
true but we have not yet found any work mentioning it. Exist-
ing studies have been treating the PLDA and the cosine scoring
methods separately. We provide a short proof to unify them.
It is noted that the cosine scoring, as a special case of PLDA,
also assumes speaker embeddings to be homogeneous Gaussian
distributed. Therefore, if the neural speaker embeddings are dis-
tributed irregularly as previously hypothesized, both back-ends
should exhibit performance degradation.

By unifying the cosine and the PLDA back-ends, it can
be shown that the cosine scoring puts stricter assumptions on
the embeddings than PLDA. Details of these assumptions are
explained in Section El Among them, the dimensional inde-
pendence assumption is found to play a key role in explain-
ing the performance gap between the two back-ends. It is
evidenced by incorporating the dimensional independence as-
sumption into the training of PLDA, leading to the diagonal



PLDA (DPLDA). This variation of PLDA shows a significant
performance improvement under the domain-matched condi-
tion. However, when severe domain mismatch exists and back-
end adaptation is needed, PLDA performs better than both the
cosine and DPLDA. This is because the dimension indepen-
dence assumption does not hold. Analysis on the between-
/within-class covariance of speaker embeddings supports these
statements.

2. Review of PLDA

Theoretically PLDA is a probabilistic extension to the classical
linear discriminant analysis (LDA) [11]]. It incorporates a Gaus-
sian prior on the class centroids in LDA. Among the variants
of PLDA, the two-covariance PLDA [12] has been commonly
used in speaker verification systems. A straightforward way to
explain two-covariance PLDA is by using probabilistic graphi-
cal model [13]].

2.1. Modeling
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Figure 1: The probabilistic graphical model of two-covariance
PLDA
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Consider N speech utterances coming from M speakers,
where the m-th speaker is associated with n., utterances. With
a front-end embedding extractor, each utterance can be repre-
sented by an embedding of D dimensions. The embedding of
the n-th utterance from the m-th speaker is denoted as x, n.
Let X = {xmm}%"m represent these per-utterance embed-
dings. Additionally, PLDA supposes the existence of per-
speaker embeddings Y = {ym }M_,. They are referred to as
latent speaker identity variables in [14].

With the graphical model shown in Fig[T] these embeddings
are generated as follows,

¢ Randomly draw the per-speaker embedding y,, ~
N(Ym;p, B7Y), form=1,--- , M;
* Randomly draw the per-utterance embedding x,,,n ~
N(Zmon; Y, W, forn =1,--+ 0.
where 0 = {u, B, W} denotes the model parameters of PLDA.
Note that B and W are precision matrices. The joint distribu-
tion pg (X', ) can be derived as,
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2.2. Training

Estimation of PLDA model parameters can be done with the
iterative E-M algorithm, as described in Algorithm[T} The algo-

rithm requires initialization of model parameters. In kaldi [[15],
the initialization strategy isto set B =W = I and 4 = 0.

Algorithm 1 E-M training of two-covariance PLDA

Input: per-utterance embeddings X = {zm, n}M rm

Initialization: B=W =1, =0
repeat
(E-step): Infer the latent variable y,, | X
Ly =B +n,W
Ym| X ~ N (L (Bp+ W 0™ Zmn), Lint)
(M-step): Update 6 by maxg Ey log ps(X,Y)
1= 37 2 Elym|X]
B~ = % Em E[?/WLZ/E;L‘X] - MNT
= % Zm Zn E[(ym _xm,n)(ym —xm,n)TPd
until Convergence
Return B, W, i

2.3. Scoring

Assuming the embeddings are mean-subtracted and length-
normalized, we let u ~ 0 to simplify the scoring function.
Given two per-utterance embeddings z;, x;, the PLDA gener-
ates a log-likelihood ratio (LLR) that measures the relative like-
lihood of the two embeddings coming from the same speaker.
The LLR is defined as,
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where H; and Ho represent the same-speaker and different-
speaker hypotheses. To derive the score function, without loss
of generality, consider a set of n; embeddings X1 = {1, n}
that come from the same speaker. It can be proved that
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where (1 = ﬁ > 1, x1,n. By applying Eqinto Eq the
LLR can be expressed as

1
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where = means equivalence up to a negligible additive constant,
and
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Note that @ < 0and P + @ > 0.

3. Cosine as a typical PLDA

Relating Eq[6] to Eq2] for the cosine similarity measure, it is
noted that when —@) = P = I, the LLR of PLDA degrades
into the cosine similarity, as :E,sz = 1. It is also noted that the



condition of —Q) = P = I is not required. PLDA is equivalent
to the cosine if and only if Q = ol and P = 81, where a <
0,a+ 8 >0.

Given W > 0, we have

W= LB;;QI ©)
«

Without loss of generality, we let W = B = I. In other words,
the cosine is a typical PLDA with both within-class covariance
W~ and between-class covariance B~ fixed as an identity
matrix.

So far we consider only the simplest pairwise scoring. In
the general case of many-vs-many scoring, the PLDA and co-
sine are also closely related. For example, let us consider two
sets of embeddings X and X> of size Ky and K>, respectively.
Their centroids are denoted by p1 and 2. It can be shown,

KK 1
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(11)
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under the condition of W = B = I. The term C(K1, K>)
depends only on K and K.

This has shown that the cosine puts more stringent assump-
tions than PLDA on the input embeddings. These assumptions
are:

1. (dim-indep) Dimensions of speaker embeddings are
mutually uncorrelated or independent;

2. Based on 1), all dimensions share the same variance
value.

As the embeddings are assumed to be Gaussian, dimensional
uncorrelatedness is equivalent to dimensional independence.

3.1. Diagonal PLDA

With Gaussian distributed embeddings, the dim-indep assump-
tion implies that speaker embeddings have diagonal covariance.
To analyse the significance of this assumption to the perfor-
mance of SV backend, a diagonal constraint is applied to up-
dating B and W in Algorithm[] i.e.,
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where o2 denotes the Hadamard square. The PLDA trained in
this way is named as the diagonal PLDA (DPLDA). The rela-
tionship between DPLDA and PLDA is similar to that between
the diagonal GMM and the full-covariance GMM.

4. Experimental setup

Experiments are carried out with the Voxcelebl+2 [16] and
the CNCelebl databases [[17]. A vanilla ResNet34 [[18]] model
is trained with 1029K utterances from 5994 speakers in the

training set of Voxceleb2. Following the state-of-the-art train-
ing conﬁguratiorﬂ data augmentation with speed perturba-
tion, reverberation and spectrum augmentation [[19] is applied.
The AAM-softmax loss [5] is adopted to produce angular-
discriminative speaker embeddings.

The input features to ResNet34 are 80-dimension filterbank
coefficients with mean normalization over a sliding window of
up to 3 seconds long. Voice activity detection is carried out
with the default configuration in kaldi’| The front-end module is
trained to generate 256-dimension speaker embeddings, which
are subsequently mean-subtracted and length-normalized. The
PLDA backend is implemented in kaldi and modified to the
DPLDA according to Eq.

Performance evaluation is carried out on the test set in Vox-
Celebl and CNCelebl. The evaluation metrics are equal error
rate (EER) and decision cost function (DCF) with py = 0.01
or 0.001.

4.1. Performance comparison between backends

As shown in Table[I] the performance gap between cosine and
PLDA backends can be observed from the experiment on Vox-
Celeb. Cosine outperforms PLDA by relatively improvements
of 51.61% in terms of equal error rate (EER) and 50.73%
in terms of minimum Decision Cost Function with P, =
0.01 (DCFO0.01). The performance difference becomes much
more significant with DCF0.001, e.g., 0.3062 by PLDA versus
0.1137 by the cosine. Similar results are noted on other test sets
of VoxCelebl ((not listed here for page limit)).

The conventional setting of using LDA to preprocess raw
speaker embeddings before PLDA is evaluated. It is labelled as
LDA+PLDA in Table[T] Using LDA appears to have a negative
effect on PLDA. This may be due to the absence of the dim-
indep constraint on LDA. We argue that it is unnecessary to
apply LDA to regularize the embeddings. The commonly used
LDA preprocessing is removed in the following experiments.

Table 1: Comparison of backends on VoxCeleb.

|| EER% | DCF0.01 | DCF0.001

cos 1.06 | 0.1083 | 0.1137
PLDA 1.86 | 02198 | 0.3062
LDA+PLDA || 2.17 | 02476 | 03715
DPLDA || LI1 | 0.1200 | 0.1426

The DPLDA incorporates the dim-indep constraint into
PLDA training. As shown in Table[l] it improves the EER of
PLDA from 1.86% to 1.11%, which is comparable to cosine.
This clearly confirms the importance of dim-indep.

4.2. Performance degradation in Iterative PLDA training

According to the derivation in Section [3| PLDA implemented
in Algorithmﬂ]is initialized as the cosine, e.g., B = W = I.
However, the PLDA has been shown to be inferior to the cosine
by the results in Table[T} Logically it would be expected that
the performance of PLDA degrades in the iterative EM training.
Fig 2] shows the plot of EERs versus number of training itera-
tions. Initially PLDA achieves exactly the same performance as
cosine. In the first iteration, the EER seriously increases from

Uhttps://github.com/TaoRuijie/ECAPA-TDNN
Zhttps://github.com/kaldi-asr/kaldi/blob/master/egs/voxceleb/v2/conf



1.06% to 1.707%. For DPLDA, the dim-indep constraint shows
an effect of counteracting the degradation.
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Figure 2: PLDA gets worse in its iterative EM training

4.3. When domain mismatch exists

The superiority of cosine over PLDA has been evidenced on
the VoxCeleb dataset, of which both training and test data come
from the same domain, e.g., interviews collected from YouTube.
In many real-world scenarios, domain mismatch between train-
ing and test data commonly exists. A practical solution is to ac-
quire certain amount of in-domain data and update the backend
accordingly. The following experiment is to analyse the effect
of domain mismatch on the performance of backend models.

The CNCelebl dataset is adopted as the domain-
mismatched data. It is a multi-genre dataset of Chinese speech
with very different acoustic conditions from VoxCeleb. The
ResNet34 trained on VoxCeleb is deployed to exact embeddings
from the utterances in CNCeleb1. The backends are trained and
evaluated on the training and test embeddings of CNCelebl.

As shown in Tabld?] the performance of both cosine and
DPLDA are inferior to PLDA. Due to that the dim-indep as-
sumption no longer holds, the diagonal constraint on covari-
ance does not bring any performance improvement to cosine
and DPLDA.

Table 2: Comparison of backends on CNCelebl

|| EER% | DCF0.01 | DCF0.001

cos 10.1T [ 05308 0.7175
PLDA || 890 | 0.4773 0.6331
DPLDA || 10.24 | 0.5491 0.8277

4.4. Analysis of between-/within-class covariances

To analyze the correlation of individual dimensions of the em-
beddings, the between-class and within-class covariances, B !
and W, !, are computed as follows,

L1
By =17 anymyfl — poko (1s)
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where o = N Z T Ty and  ym =

1 ”:”1 Tm,n. These are the training equations of
LBA and closely related to the M step of PLDA Note that for
visualization, the elements in B Land Wy ! are converted into

their absolute value.

In Fig[3] both between-class and within-class covariances
show clearly diagonal patterns, in the domain-matched case
(plot on the top). This provides additional evidence to sup-
port the dim-indep assumption aforementioned. However, this
assumption would be broken with strong domain-mismatched
data in CNCeleb. As shown by the two sub-plots in the bot-
tom of Fig[3] even though the within-class covariance plot on
the right shows a nice diagonal pattern, it tends to vanish for
the between-class covariance (plot on the left). Off-diagonal
elements have large absolute value and the dimension correla-
tion pattern appears, suggesting the broken of dim-indep. The
numerical measure of diagonal index also confirms this obser-
vation.

iag index: 0.0326 iag index: 0.0701

Figure 3: between-class (left) and within-class (right) covari-
ance of embeddings on the training data of VoxCeleb (top)
and CN-Celeb (bottom). The diagonal index is computed as
trace(QG) /sum(Q) for a non-negative covariance matrix G.

5. Conclusion

The reason why PLDA appears to be inferior to the cosine
scoring with neural speaker embeddings has been exposed with
both theoretical and experimental evidence. It has been shown
that the cosine scoring is essentially a special case of PLDA.
Hence, the non-Gaussian distribution of speaker embeddings
should not be held responsible for explaining the performance
difference between the PLDA and cosine back-ends. Instead, it
should be attributed to the dimensional independence assump-
tion made by the cosine, as evidenced in our experimental re-
sults and analysis. Nevertheless, this assumption fits well only
in the domain-matched condition. When severe domain mis-
match exists, the assumption no longer holds and PLDA can
work better than the cosine. Further improvements on PLDA
need to take this assumption into consideration. It is worth not-
ing that the AAM-softmax loss should have the benefit of regu-
larizing embeddings to be homogeneous Gaussian, considering
good performance of the cosine scoring.
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