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Abstract

Zero-shot speaker adaptation aims to clone an unseen speaker’s
voice without any adaptation time and parameters. Previous re-
searches usually use a speaker encoder to extract a global fixed
speaker embedding from reference speech, and several attempts
have tried variable-length speaker embedding. However, they
neglect to transfer the personal pronunciation characteristics re-
lated to phoneme content, leading to poor speaker similarity in
terms of detailed speaking styles and pronunciation habits. To
improve the ability of the speaker encoder to model personal
pronunciation characteristics, we propose content-dependent
fine-grained speaker embedding for zero-shot speaker adapta-
tion. The corresponding local content embeddings and speaker
embeddings are extracted from a reference speech, respectively.
Instead of modeling the temporal relations, a reference attention
module is introduced to model the content relevance between
the reference speech and the input text, and to generate the fine-
grained speaker embedding for each phoneme encoder output.
The experimental results show that our proposed method can
improve speaker similarity of synthesized speeches, especially
for unseen speakers.

Index Terms: text-to-speech, zero-shot, speaker adaptation,
speaker embedding, fine-grained

1. Introduction

Neural network-based text-to-speech (TTS), aiming to synthe-
size intelligible and natural speech from text, has made great
progress in recent years 1112} 3]. These TTS models can synthe-
size natural human speech with sufficient high-quality training
data, for not only single speaker but also multi-speaker scenar-
ios [4L15]. Butitis too expensive to collect a sufficient amount of
speech data for new speakers. As a result, adapting TTS models
to an arbitrary speaker with a few samples (speaker adaptation)
is a hot research topic in academia and industry recently [6].
One of the general approaches for speaker adaptation is
fine-tuning the whole or part of a well-trained multi-speaker
TTS model with a few adaptation data [7]. Some works explore
how to better adapt the pre-trained model to the target speaker,
such as AdaSpeech series [8}19,|10]. These methods are proven
to achieve considerable adaptation performance, but with some
drawbacks: (i) certain adaptation time and trainable parame-
ters are required for each new target speaker; (ii) voice quality
drops quickly when the adaptation data is less than 10 sentences
[I81; (iii) adaptation performance can be affected by low-quality
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speeches of the target speaker, resulting in poor intelligibility
and prosody of synthesized speech.

To avoid the problems of directly adapting pre-trained mod-
els, another line is to leverage a speaker encoder to extract the
speaker embedding from reference speech to model speaker
identity in TTS. This approach is also called zero-shot speaker
adaptation, since it can clone an unseen speaker’s voice by using
the speaker embedding only, without any adaptation time and
parameters. In this connection, it is necessary to explore con-
structing a better speaker identity representation space to im-
prove the generalization of speaker representation and its adapt-
ability to acoustic models. Some researches draw on trans-
fer learning, such as x-vectors from speaker verification tasks
(114 12 13]). Others focus on training an encoder network
jointly with acoustic models, like using global speaker embed-
dings (GSEs) [14]] or variational autoencoder (VAE) [15, [16].
These methods can clone the overall timbre or speaking style of
the reference speech well and make real-time inference for an
arbitrary speaker without fine-tuning.

Although representing a speaker’s voice with a fixed-length
vector is a common idea for zero-shot speaker adaptation, the
speaker characteristics of a person actually include not only
global timbre information but also some local pronunciation
variations. It is difficult to use a single speaker embedding to
describe these local characteristics, leading to poor similarity
in terms of detailed speaking styles and pronunciation habits of
the target speaker. Inspired by related works on prosody trans-
fer [17, (18} [19], some prior researches try to introduce fine-
grained speaker embedding via attention mechanism for cap-
turing more speaker information from speech. [20] considers
phoneme level speaker representations to generate phoneme-
dependent speaker embedding by attention. However, the ex-
traction procedure of phoneme level representations is too com-
plicated and not suitable for zero-shot scenarios. To make good
use of reference speech, Attentron [21] proposes an attention-
based variable-length embedding method to leverage features
near to raw reference speech for better generalization. How-
ever, it only extracts simple reference embeddings without clear
meaning and does not show the ability to transfer personal pro-
nunciation characteristics related to phoneme content.

To further improve speaker similarity for zero-shot speaker
adaptation, we extract the corresponding local content embed-
dings and local speaker embeddings from a reference speech
to model personal pronunciation characteristics. A content-
dependent reference attention module is introduced to model
the content relevance between the reference speech and the in-
put text, and is used to guide the generation of fine-grained
speaker embedding for each phoneme encoder output. The
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Figure 1: The structure of the proposed model.

experiment results show that our proposed method outper-
forms both two fixed-length speaker embedding methods and a
variable-length speaker embedding method based on Attentron
in terms of speaker similarity, especially for unseen speakers.
The synthesized speeches and experimental analysis demon-
strate that our method has the ability to transfer personal pro-
nunciation characteristics related to phoneme content. Besides,
we investigate the impact of local speaker embeddings with dif-
ferent granularity on the synthesized speech and present the in-
terpretability of our method through visualization.

2. Methodology

The model structure of our proposed method is illustrated in
Figm We adopt FastSpeech 2 [3]] as the model backbone, and
design several encoders with a reference attention module to ob-
tain content-dependent fine-grained speaker embeddings. The
encoders are used to extract local content and speaker embed-
dings from the reference mel-spectrograms. The extracted con-
tent and speaker embeddings are then passed to the reference at-
tention module as the keys and values, while phoneme encoder
outputs from FastSpeech 2 are used as queries. The outputs of
the reference attention are then added to the phoneme encoder
outputs and passed to the variance adaptor of FastSpeech 2, to
generate speech with the same voice as the reference utterance.

2.1. Extracting local content and speaker embeddings

To model and transfer personal pronunciation characteristics,
we first extract the corresponding local content embeddings and
speaker embeddings from the reference mel-spectrograms.

As shown in Fig[l] the reference mel-spectrograms are first
passed to a pre-net which consists of two 1-D convolutional lay-
ers containing 512 filters with shape 5 x 1. The frame-level
features from the pre-net are encoded by a mel content encoder
composed of 4 feed-forward Transformer blocks to get frame-
level content embeddings. For constraining the mel content en-
coder to encode content information, a phoneme classifier is
introduced to predict the frame-level phoneme labels from the
outputs of the mel content encoder. Then the frame-level con-
tent embeddings are passed to the downsample content encoder,
meanwhile, the frame-level features are passed to the downsam-
ple speaker encoder. Both two downsample encoders are made
up of 4 1-D convolutional layers and a 256-dim fully-connected
output layer. The 4 convolutions contain 128, 256, 512, 512
filters with shape 3 x 1 respectively, each followed by an av-
erage pooling layer with kernel size 2. That is, the temporal
resolution is reduced 16 times, which can be regarded as quasi-
phoneme level inspired by [19]. All the convolutional layers

are followed by ReLU activation and batch normalization [22],
while the output layer is followed by Tanh activation. To in-
troduce speaker information, an average pooling layer is used
to summarize the local speaker embeddings across time fol-
lowed by a speaker classifier. Local content embeddings and
local speaker embeddings are obtained from two downsample
encoders respectively. Due to the same local segment input and
the same downsampling scale encoding structure, they are ex-
actly one-to-one correspondence in the speech. Therefore, each
local speaker embedding can be considered as carrying fine-
grained speaker characteristics related to phoneme content.

2.2. Content-dependent reference attention module

The speaker characteristics of a person include not only global
timbre information but also some local pronunciation varia-
tions. These local variations contain different pronunciation
patterns affected by one’s pronunciation habit, which work on
a small scale like phoneme level. For example, there is a dif-
ference between a person’s pronunciation of “//” and his pro-
nunciation of “/i:/”. Thus, more accurate fine-grained speaker
embedding shall be applied to a certain phoneme in text.

The content of the reference speech and input text is differ-
ent in phoneme permutation and combination during synthesis.
To make better use of local speaker embeddings extracted from
reference speech, a content-dependent reference attention mod-
ule is introduced to obtain the appropriate fine-grained speaker
embeddings inspired by [19]21].

We adopt scaled dot-product attention [23]] as the reference
attention module. The current phoneme encoder output is used
as the query, while all the local content embeddings from ref-
erence speech are used as keys. The relevance between them
is used to guide the selection of fine-grained speaker embed-
dings, which means the local speaker embeddings are values.
In this manner, the fine-grained speaker embedding sequence
generated by the reference attention has the same length as the
phoneme embedding sequence.

2.3. Preprocessing operations in the training stage

The fine-grained characteristics of a speaker are very diverse,
for example, the style and pronunciation details are not exactly
the same even if one speaker says a sentence twice. Regarding
this, the reference and target utterance had better be consistent
in the training stage so that the model can learn correct content
relevance and transfer meaningful fine-grained speaker embed-
dings. However, the reference attention module easily learns the
temporal alignment between reference speech and input text in
the previous trial [19]]. Such fine-grained embedding sequence



is more about modeling prosodic trends in time, which is how-
ever unsuitable for the input text whose content is different from
the reference speech, and will result in strange prosody or poor
intelligibility of the synthesized speech in this situation.

To make the model focus more on content relevance rather
than simple temporal alignment between reference speech and
input text, we introduce some preprocessing operations in the
training stage. The mel-spectrogram of a reference utterance is
first labeled with frame-level phoneme tags by forced alignment
[24]] and divided into fragments by phoneme boundaries. These
fragments corresponding to phonemes are randomly shuffled
and concatenated to form a new reference mel-spectrogram. In
this way, the temporal consistency between the paired text and
the reference speech is eliminated, and the basic content infor-
mation of the speech also can be preserved. The shuffled frame-
level phoneme tag sequence is sent to the phoneme classifier as
the ground truth for calculating the cross-entropy phoneme clas-
sification loss that is added to the total loss.

3. Experiments
3.1. Training setup

All the models are trained on AISHELL-3 [25]], which is an
open-source multi-speaker Mandarin speech corpus containing
85 hours of recordings spoken by 218 native Chinese speakers.
To evaluate the performance on unseen speakers, 8 speakers (4
male and 4 female) are selected as the test set. For the remaining
210 speakers, 95% of the utterances are used for training and
5% are used for validation. Waveforms are transformed to 80-
dim mel-sepctrograms with 22.05kHz sampling rate. The frame
size is 1024 and the hop size is 256. Raw text is converted
to phoneme sequence composed of Pinyin initials and tonal-
finals by a Chinese grapheme-to-phoneme conversion toolkiﬂ
We train all the models for 250K iterations with a batch size of
16 on an NVIDIA P40 GPU. The Adam optimizer is adopted
with 81 = 0.9, B2 = 0.98, ¢ = 107°. Warm-up strategy
is employed before 4000 iterations. A well-trained HiFi-GAN
[26] is used as the neural vocoder to generate waveforms.

3.2. Compared methods

We compare the proposed content-dependent fine-grained
speaker embedding (CDFSE) approach with two typical fixed-
length speaker embedding methods and a variable-length em-
bedding method based on Attentron. These three methods are
also implemented based on FastSpeech ZEI

GSE Global speaker embedding (GSE) uses a bank of base
vectors and multi-head attention to represent the global speaker
embedding from reference speech unsupervisedly. The imple-
mentation is consistent with the original method [14]. We also
try more base vectors but observe no difference in performance.

CLS The speaker classifier (CLS) is a kind of supervised
speaker encoder based on multi-task learning or transfer learn-
ing [7L[11L[12]. To compare with the proposed, we use the same
speaker encoder as shown in Fig[T] The utterance-level speaker
embedding generated by the average pooling layer is replicated
to phoneme level and added to the phoneme encoder outputs.

Attentron* Attentron proposes an attention-based variable-
length embedding method to leverage features near to raw ref-
erence speech for better generalization. It is originally imple-
mented based on Tacotron 2 [1], consisted of a coarse-grained

Pypinyin: https://pypi.org/project/pypinyin
2Implemented based on: | https://github.com/ming024/FastSpeech2

encoder and a fine-grained encoder with attention mechanism,
which extracts both utterance-level and frame-level embeddings
from reference speech. To compare with the proposed, we use
Attentron (1-1) mode (details in [21]]) and adapt its major im-
plementation to FastSpeech 2 framework, named as Attentron®.
The several adjustments are to keep the main structure of the
acoustic model unchanged, including: 1) The utterance-level
embedding from the coarse-grained encoder is added to encoder
output rather than concatenated; ii) The outputs of FastSpeech
2 decoder (before the mel linear layer) are directly used as the
queries for attention mechanism to generate frame-level embed-
dings instead of the autoregressive way in Attentron.

3.3. Subjective evaluation

By following [21]], we employ two mean opinion score (MOS)
tests to evaluate the naturalness and speaker similarity of the
synthesized speechesﬂ 8 unseen speakers from the test set and
6 seen speakers randomly selected from the training set are used
as reference voices. The text sentences are from the test set,
varying in length and content. For each speaker, only one utter-
ance is used as the reference speech to guide speech synthesis.
15 native Chinese speakers serves as subjects to take part in the
evaluation and rate on a scale from 1 to 5 with 1 point interval.

Table 1: The MOS on naturalness and SMOS (similarity MOS)
on speaker similarity with 95% confidence intervals.

Metric \ Model seen speakers unseen speakers

GSE 3.50 £0.16 3.56 £0.12

MOS CLS 3.51£0.14 3.53£0.11
Attentron* 3.63 +0.16 3.57+0.13

CDFSE 3.59 +£0.17 3.54 +0.12

GSE 3.89 +0.14 3.08+0.14

CLS 3.79 £ 0.16 3.12+0.14

SMOS Attentron*® 4.04 +0.17 3.294+0.13
CDFSE 4.11 £0.15 3.51+0.14

As shown in Table[] the results demonstrate our proposed
CDFSE method outperforms all three baselines in terms of
speaker similarity. CDFSE gets the best SMOS of 4.11 for
seen speakers and 3.51 for unseen speakers, and Attentron*
performance is relatively better than the two others. For unseen
speakers, the improvement on SMOS of CDFSE is more signifi-
cant by a gap of over 0.2, indicating that personal pronunciation
characteristics are very helpful to improve the speaker similar-
ity from the sense of listening for zero-shot speaker adaptation.
The MOS results on naturalness of these methods are generally
comparable. CDFSE has a slight decrease in MOS compared
with Attentron*, but is still acceptable in terms of naturalness
and intelligibility. This is understandable since frame-level fea-
tures from reference speech are applied to the TTS decoder out-
put in Attentron*, which helps improve quality and naturalness.

3.4. Investigation and ablation study

To investigate the impact of local speaker embeddings with dif-
ferent granularity, we adjust the kernel size of the average pool-
ing layer in the downsample encoders. In Table 2] the number
after ‘CDFSE-’ represents the overall downsampling times in
temporal compared with the reference mel-spectrogram. All the

3Speech samples, detailed figures and open-sourced codes are avail-
able at: https://thuhcsi.github.io/interspeech2022-cdfse-tts
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models are trained with the same settings as mentioned above.
We find that some synthesized speeches are poor in intelligi-
bility, which will affect the subjective judgment of similarity.
Therefore, we employ objective evaluations rather than subjec-
tive MOS in this part. To evaluate the intelligibility of synthe-
sized speech, the mispronunciation cases (excluding accents)
are marked by listeners and counted. To evaluate speaker sim-
ilarity, we employ a speaker verification system [27]] to extract
the utterance-level speaker vector and calculate the cosine sim-
ilarity between synthesized speech and ground truth.

Table 2: The performance in mispronunciation rate (MPR) and
speaker vector cosine similarity (CS) for unseen speaker.

Model MPR () CS (D
GSE 0.69% 0.719
CLS 0.69% 0.727
Attentron* 0.69%  0.737
CDFSE-64 0.69% 0.754
CDFSE-16 0.58% 0.756
CDFSE-4 11.39% 0.751
CDFSE-1 24.86% 0.754

CDFSE-16 w/o SC 1.84%  0.732

Table[2]shows the performance comparison among different
granularity models, and the results of three baselines are also
presented for reference. It is observed there exist several mis-
pronunciation cases in all models, which are more likely caused
by FastSpeech 2 itself and the training data. CDFSE-16 gets the
lowest mispronunciation rate and the highest speaker vector co-
sine similarity. With the decrease of downsampling times, the
mispronunciation rate of synthesized speech increases signifi-
cantly. That is, the granularity of local speaker embeddings is
crucial to the intelligibility and stability of synthesized speech,
rather than finer-grained speaker embeddings being better. This
can explain why we use the downsample encoder to extract
quasi-phoneme level embedding as stated in 2.1.

Apart from that, we have also employed some ablation stud-
ies to demonstrate the effectiveness of each module. We first
remove the explicit supervision of local speaker embedding by
excluding speaker classification loss, and this model is denoted
as ‘CDFSE-16 w/o SC’ shown in Table 2l The decline in both
two evaluation metrics indicates that introducing speaker infor-
mation can improve speaker similarity and synthesis stability.
We also remove the explicit supervision of local content em-
bedding by excluding phoneme classification loss, and find it
will cause the reference attention module fail.

3.5. Analysis and discussion

To clearly present content relevance between reference speech
and input text, we plot an alignment example from the refer-
ence attention module in CDFSE. As shown in Fig[2] when the
phoneme in the input text exists in the reference speech, the
reference attention tends to focus mainly on the correspond-
ing segment, like “sh”; when the phoneme does not exist, the
model will focus on similar segments, like “er2” in text similar
to “ai2” and “a2” in reference speech. For comparison, another
case with specific-designed input text is given, presenting align-
ments from CDFSE and the attention mechanism in Attentron*.
As shown in Fig[3] the reference attention module in CDFSE
successfully learns the right content alignment (especially, the
correct phoneme order within Chinese characters is maintained)
between reference speech and text, while Attentron* does not
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Figure 2: An alignment example in CDFSE.
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Figure 3: Alignments between reference speech and input text.
The input text is designed to first repeat the content of the refer-
ence speech and then reverse it at the Chinese character level.

Figure 4: T-SNE visualization of content-dependent fine-
grained speaker embeddings.

show this ability.

We further visualize the fine-grained speaker embeddings
by 2D t-SNE [28]|. As shown in Fig[] the fine-grained speaker
embeddings of the same speaker tend to group together while
exhibiting certain content dependent diversities that capture the
local pronunciation variations as stated in 2.2.

4. Conclusions

In this paper, we propose content-dependent fine-grained
speaker embedding for zero-shot speaker adaptation. The pro-
posed method can improve the speaker similarity of synthesized
speeches, especially for unseen speakers. Experimental analysis
demonstrates that this method has the ability to model personal
pronunciation characteristics.
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