
CycleGAN-Based Unpaired Speech Dereverberation

Hannah Muckenhirn1, Aleksandr Safin2, Hakan Erdogan1, Félix de Chaumont Quitry1, Marco
Tagliasacchi1, Scott Wisdom1, John R. Hershey1

1Google Research
2Skolkovo Institute of Science and Technology

muckenhirn@google.com, aleksandr.safin@skoltech.ru, {hakanerdogan, fcq, mtagliasacchi,
scottwisdom, johnhershey}@google.com

Abstract
Typically, neural network-based speech dereverberation mod-
els are trained on paired data, composed of a dry utterance and
its corresponding reverberant utterance. The main limitation of
this approach is that such models can only be trained on large
amounts of data and a variety of room impulse responses when
the data is synthetically reverberated, since acquiring real paired
data is costly. In this paper we propose a CycleGAN-based ap-
proach that enables dereverberation models to be trained on un-
paired data. We quantify the impact of using unpaired data by
comparing the proposed unpaired model to a paired model with
the same architecture and trained on the paired version of the
same dataset. We show that the performance of the unpaired
model is comparable to the performance of the paired model on
two different datasets, according to objective evaluation met-
rics. Furthermore, we run two subjective evaluations and show
that both models achieve comparable subjective quality on the
AMI dataset, which was not seen during training.
Index Terms: Dereverberation, unpaired training, CycleGAN

1. Introduction
In speech processing and communication applications, rever-
beration can reduce intelligibility and signal quality [1]. Re-
verberation occurs when sound is reflected off surfaces, such
as walls, ceilings, and furniture, adding delayed versions of the
sound that, in effect, blur the signal across time. This effect is
more pronounced in large rooms with reflective surfaces when
the microphone is far away from the speech source.

The goal of dereverberation is to remove reverberation
while preserving the non-reverberated (dry) signal. In this pa-
per, we focus on single channel speech dereverberation. In
recent years, there has been a shift from signal processing-
based methods, such as weighted prediction error (WPE) [2],
to neural network (NN) based methods for dereverberation. As
such, DNN-WPE [3] uses a deep neural network to estimate the
power spectrum of the target signal for WPE. Wang et al. [4]
use a convolutional neural network (CNN) to estimate real and
imaginary parts of dry speech directly from the reverberant one.

Such NN-based models have been trained using pairs of
aligned audio clips of dry and reverberated data, either with
supervised training [5, 6] or generative adversarial networks
(GANs) [7, 8]. The model takes as input a reverberated audio
clip and is trained to produce the corresponding dry audio clip.

Paired data can be obtained in two ways. The first is to
record the same speech with a pair of microphones: one close
to the speaker’s mouth, which records less reverberant speech,
and the other farther away from the speaker, which records
more reverberant speech. The AMI dataset [9], for example,
was recorded this way. Due to the special recording setup, the

amount and variety of paired data of this type is limited. It is
also difficult to achieve a strong contrast in reverberation with-
out introducing such noises as breaths and lip smacks in the
near microphone or sensor and environment noise in the far mi-
crophone. Other problems include time misalignment and dif-
ferences in frequency response between the two microphones.
These spurious inter-microphone differences can interfere with
effective learning of dereverberation.

The second way to obtain paired data is to generate syn-
thetic reverberated signals either through simulated or measured
room impulse responses [3, 4, 10]. This has the advantage that
one can use large amounts of dry speech as a source and syn-
thesize the corresponding reverberated audio clips. However,
the availability of measured room impulse responses is limited
and may not cover all scenarios in the target domain. Mea-
sured room impulse responses are also linear and time-invariant,
whereas real scenarios can have nonlinear and time-varying
acoustic phenomena, such as motion effects. Using simulated
room impulse responses addresses these problems by covering
a larger space of possible room characteristics, and potentially
allowing simulation of motion effects and other phenomena.
However, there are many ways in which synthetic reverbera-
tion may fail to match real reverberation, and it is challenging
to close this gap. All of these factors may impair generalization
from synthetic reverberation to real-world reverberation.

This paper addresses these problems by training derever-
beration models on unpaired data, using large independent col-
lections of dry speech and real reverberant speech data. To
train such models we use a cycle-consistency loss for unpaired
training inspired by CycleGAN [11], which was developed for
unpaired image-to-image translation. CycleGANs have pre-
viously been used in unpaired speech denoising [12, 13, 14].
CycleGANs have been used on log Mel filterbank features to
improve downstream tasks such as automatic speech recogni-
tion [15] and speaker verification [16] for noisy and reverberant
speech. Voice conversion has also been performed using Cycle-
GANs [17]. However this is, to the best of our knowledge, the
first time that such an approach is proposed for dereverberation.

In this paper, we show that unpaired training is effective for
the task of dereverberation. To do so, we compare the perfor-
mance of our proposed unpaired model with a paired model that
has the same architecture and was trained on a paired version of
the same dataset. This enables us to quantify the impact of us-
ing unpaired data only, without having other parameters to take
into account, such as different architecture or training data. We
show via objective and subjective evaluation that our unpaired
model performs comparably to the paired model, especially on
out-of-domain data. Although we focus on synthetic data in
this paper, validation of the unpaired approach is a key step in
enabling the use of large amounts of real training data.
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2. Proposed approach
In this section, we describe our proposed approach, which is
based on CycleGAN [11]. We use the following notations. Let
R denote a set containing reverberant speech and D denote a
set containing dry speech, representing the source and target
distributions for dereverberation. In terms of content, speaker
identities, emotional content, gender, accent, we assume the sets
are balanced and mostly equivalent.

These sets can be prepared in various ways. One option is
to select real recordings based on their reverberation properties,
such as T60 and direct-to-reverberation ratio. The reverberation
level may be known or may be estimated using a model (e.g.,
[18, 19, 20, 21]). In this paper, we take the approach of gener-
ating the reverberated dataset from a relatively dry speech set.
This produces data that can be treated as either paired or un-
paired, allowing us to evaluate and directly compare these two
approaches.

During training, the model is presented with “unpaired” tu-
ples (xR, yD), where xR is reverberated and yD is dry. As
stated before, xR ∈ R and yD ∈ D are not paired, e.g., they
have different speech content and come from different speakers.
We do not have access to xD , i.e., the dry version of xR, nor to
yR, i.e., the reverberated version of yD .

Our model contains the following components:
Generator GR→D: removes reverberation and produces dry
speech.
Generator GD→R: adds reverberation and produces reverber-
ant speech.
Discriminator DR: distinguishes real reverberant speech from
the outputs of generator GD→R.
Discriminator DD: distinguishes real dry speech from the out-
puts of generator GR→D .

The generatorsGR→D andGD→R are trained jointly using
a mix of seven losses: LGR→D , LGD→R , LcycleR , LcycleD ,
Lfeat cycleR , Lfeat cycleD , and LidD , further detailed below.
LGR→D and LGD→R correspond to the adversarial losses,

adopting the following hinge-loss variant:

LGR→D = ExR [max(1−DD(GR→D(xR)], (1)

LGD→R = EyD [max(1−DR(GD→R(yD)], (2)
where ExR and EyD indicate expectations.

We define cycle outputs x̃R = GD→R (GR→D(xR)) and
ỹD = GR→D (GD→R(yD)), used to compute the cycle losses:

LcycleR = ExR [Lrec (x̃R, xR)], (3)

LcycleD = EyD [Lrec (ỹD, yD)], (4)
with Lrec a multi-scale spectrogram reconstruction loss [8, 22].

In addition, we have a feature loss on each discriminator’s
intermediate layer activations as follows:

Lfeat cycleR = ExR

[∑
l

∣∣∣D(l)
R (x̃R)−D(l)

R (xR)
∣∣∣] , (5)

Lfeat cycleD = EyD

[∑
l

∣∣∣D(l)
D (ỹD)−D(l)

D (yD)
∣∣∣] . (6)

Here D(l)
R (x) and D(l)

R (x) indicate the lth layer activation of
the reverberant and dry discriminators respectively.

Finally, we provide an identity loss which enforces the
equality of output to the input when using the dereverberation
model on an already dry signal:

LidD = EyD [Lrec (GR→D(yD), yD)]. (7)

Figure 1: Architecture of the generators.

Note that we do not use an identity loss for the generator
GD→R, since this generator always adds reverberation, even
when the input is already reverberated.

Overall, the loss of the generators can be written as:

LG =λgan (LGR→D + LGD→R) + λcycle(LcycleR + LcycleD )

+ λfeat(Lfeat cycleR + Lfeat cycleD ) + λidLidD

(8)
The losses used to train the generator serve different purposes
and finding the right balance among them can be challenging.
The goal of LGR→D is to ensure that the outputs of GR→D

are dry. The goal of LGD→R is to ensure that the outputs of
GD→R are reverberated. The purposes of LcycleR , LcycleD ,
Lfeat cycleR , Lfeat cycleD and LidD is to ensure that the speech
characteristics, such as phonetic content and speaker identity,
are not modified by the generator. We have seen in practice that
when λid, λcycle or λfeat are set to 0, the model either diverges
or its performance is significantly impacted. On the other hand,
if λid, λcycle or λfeat are too large, the generators learn an iden-
tity mapping.

The dry discriminator DD is trained with the following
GAN discriminator loss:

LDD = EyD [max(1−DD(yD)] +

ExR [max(1 +DD (GR→D (xR))]. (9)

The reverberant signal discriminator’s loss is defined similarly.
The total discriminator loss is simply LD = LDD + LDR .

3. Architecture
In this section, we describe the architecture of the generators
GR→D and GD→R and the discriminators DR and DD .

The generators GR→D and GD→R have exactly the same
architecture. They take as input a complex short-time Fourier
transform (STFT), computed on the input waveforms with a
window length of 20 ms (320 samples) and an overlap of 10 ms.
The complex STFT is fed to the generators as a two-channel im-
age, where the two channels are the real and imaginary parts of
the STFT. The generators are 2D-convolutional UNets, which
follows the architecture described in [23]. The UNet is com-
posed of an encoder and a decoder, which is a mirrored version
of the encoder. There are skip connections between each en-
coder block and the corresponding decoder block.

Each encoder block is composed of two convolutional lay-
ers. The first one has a kernel size of 3x3 and a stride of 1x1.
The second one has either a kernel size of 3x4 and a stride of
1x2 or a kernel size of 4x4 and stride of 2x2. The overall archi-
tecture is illustrated in Figure 1.



The discriminators DR and DD have the same architecture
as MelGAN [24]. Each discriminator is multi-scale: it is com-
posed of three discriminators that have the same architecture
and take as input a raw waveform that is down-sampled respec-
tively by x1, x2 and x4. Each discriminator is fully convolu-
tional and is composed of the following layers: 1 convolution,
4 grouped convolutions and 2 convolutions.

4. Experimental setup
4.1. Datasets
The dereverberation models are trained on synthetically rever-
berated data. The dry audio samples were taken from the Lib-
rivox dataset [25], which contains audio books. Utterances that
were shorter than 1 second were removed and a speech activ-
ity detector was used to extract speech segments. The data and
its processing is described in [26]. For our use case, we addi-
tionally filter the data to remove reverberant and/or noisy utter-
ances. To do so, we use a criterion based on a speech enhance-
ment model with the same architecture as the generator, trained
to perform dereverberation and denoising. If the output of this
model is significantly different from the input, then we discard
the audio clips as it means that it contains noise or/and rever-
beration. This is done by computing the ratio of the standard
deviation of the output and the standard deviation of the resid-
ual, computed over rolling windows of 3 seconds. Two criteria
are used: 1) if any window has a ratio smaller than a chosen
threshold or 2) if the logarithm mean is smaller than a chosen
threshold, then the entire audio clip is removed. This process
removes around 40% of the data. We then split the audio clips
into 3 second-long clips. We finally split the remaining data into
two sets: the training set, which contains 18 million utterances
and the evaluation set, which contains 10000 utterances.

From these dry utterances, we synthetically generate paired
reverberated utterances on-the-fly by convolving them with
room impulse responses (RIRs) randomly chosen from a large
set of simulated RIRs. We simulated 650,000 and 30,000 room
impulse responses for train and test sets using the image method
with frequency-dependent wall reflections. The room dimen-
sions are uniformly randomly chosen between 3-7 meters in
width, 4-8 meters in length and 2.13-3.05 meters in height. We
randomly choose among 5 wall materials, 4 floor materials and
4 ceiling materials with varying frequency dependent acoustic
reflection characteristics. When applying the image method,
we artificially jitter the image locations randomly inside a cube
with a side length of 16 cm to avoid the sweeping echo phe-
nomenon [27]. Our “dry” targets actually include the early re-
verberation part of an RIR, as we have seen in practice that it
improves the performance of the dereverberation models. To do
so, we apply a rectangular window of 20ms width to each RIR,
i.e. the values of the RIR 20 ms after its peak value are set to 0,
and we convolve it with the dry source data.

The unpaired model sees two different sets of data during its
training and learns to transform the data from one set to another:
a set composed of dry utterances and a set of reverberant utter-
ances. Thus, we need to ensure that all the data in the first set
is dry and all the data in the second set is reverberant. The first
case is ensured by our filtering process of the Librivox dataset.
We ensure the second case by only using RIRs that produces
reverberant “enough” signal, by filtering out RIRs with a rever-
beration time T60 lower than 400ms. The remaining 127,000
RIRs have T60 values ∈ [0.4, 1.2] seconds and DRR values
∈ [−19.0, 18.3] dB. Note that these constraints do not apply
to the paired models, as the paired data is always “ordered”, i.e.

the reverberant utterance is always equally or more reverberated
than its corresponding dry utterance. However, we use the same
data for the paired model to have a fair comparison.

Finally, to simulate unpaired data, we simply split the train-
ing data into two halves and used the dry utterances from the
first half and the reverberated utterances from the second half.
This ensures that the model never sees the same utterance in its
two different versions: dry and reverberated.

We evaluate the dereverberation models on two paired
datasets. The first one is the evaluation set that corresponds
to the data used for training: the dry data was taken from the
evaluation set of the filtered Librivox dataset and the reverber-
ant paired data is synthetically generated from it. It is worth
noting that a different set of room impulse responses were gen-
erated so that the rooms were not already seen during the train-
ing. We also evaluate the models on real reverberant data. We
use recordings from the AMI dataset [9], which consists of
meetings recorded in 3 different rooms. Each participant was
equipped with a headset microphone, in addition to the room
far field microphones. To compute the evaluation metrics, we
use the headset recordings as targets and the far-field micro-
phone recordings as reverberant inputs. It is worth noting that
the far field data is not only reverberant, it is also noisier than the
target and misaligned. The headset recordings also have breath-
ing noise that the far field microphones do not capture. The
estimated T60 values of Librivox and of AMI are respectively
comprised in the range [0.17, 0.98] and [0.12, 0.64].

4.2. Metrics
To evaluate our models, we use 3 metrics: signal-to-
distortion ratio (SDR) [28], frequency-weighted segmental
SNR (FWSegSNR) [29, 30] and an estimation of the reverbera-
tion time (T60). We report SDR instead of the more commonly
used SI-SDR metric, because the AMI dataset is misaligned.
SDR allows a misalignment of up to 512 samples. FWSegSNR
is commonly used for evaluating dereverberation models, it was
for example used in the REVERB challenge [10]. For the third
metric, we use a neural network-based model that was trained
on synthetic reverberant and noisy data to predict T60 values,
described in [21]. T60 is the time it takes for a reverberation to
decay by 60 dB.

4.3. Paired model
In Section 5, we will compare our proposed unpaired model to
the equivalent paired model. The paired model is composed
of one generator and one discriminator, which correspond to
GR→D and DD , with the same architecture described in Sec-
tion 3. The generator is trained with the loss LGR→D described
in (1) and a paired feature loss [24, 31], computed between the
output and paired target: LG = LGR→D + 100 × Lfeat. The
discriminator is trained with the loss LDD described in (9).

The paired model is trained on the same dataset as the un-
paired model, described in section 4.1. However, it sees paired
pairs of utterances (xD, xR), where xR is the synthetically re-
verberated version of xD .

4.4. Training
Both models were trained with a batch size of 32 and a learn-
ing rate of 0.0001 for the generators and 0.001 for the dis-
criminators. Both models are trained on input of 512 ms with
a sampling rate of 16 kHz. Each input is peak normalized
and a uniform random gain between 0.3 and 1.0 is applied.
For the unpaired model, we used the following loss weights:
λgan = 1.0, λcycle = 0.1, λfeat = 1.0, λid = 0.5.



Table 1: Evaluation of paired and unpaired models on the evaluation subset of the Librivox dataset and the AMI dataset. For FWSegSNR
and SDR, higher values mean better, for estimated T60, lower is better.

Librivox AMI
Models FWSegSNR SDR Estimated T60 FWSegSNR SDR Estimated T60
Paired model 15.5± 0.04 14.2± 0.06 0.10± 2× 10−4 3.3± 0.07 2.5± 0.15 0.12± 6× 10−4

Unpaired model 15.5± 0.06 12.8± 0.06 0.11± 4× 10−4 3.2± 0.07 1.6± 0.14 0.12± 9× 10−4

No model 13.1± 0.10 11.4± 0.08 0.38± 3× 10−3 2.6± 0.07 1.6± 0.14 0.25± 3× 10−3

Table 2: Results of subjective evaluation. Percentage of votes
for each model on two criteria: which model produces less
reverberation and which model produces better quality audio.
The p-values are < 10−3 on Librivox, and 0.45 and 0.15 for
“less reverb” and “better quality”, respectively, on AMI.

Librivox AMI
Paired Unpaired Paired Unpaired

Less reverb 61.5% 38.5% 51.2% 48.8%
Better quality 59.5% 40.5% 52.3% 47.7%

5. Results
In this section we present the results obtained with the paired
model and the proposed unpaired model. Paired model perfor-
mance serves as an upper bound on the unpaired model’s perfor-
mance, since the paired model has access to more information.

In Table 1, we present the performance of the two models,
evaluated on the test set of Librivox as well as on the test set of
the AMI dataset, which was not seen during training and is com-
posed of real reverberant audio clips. In the row “No model”,
we present the evaluation metrics computed on the reverber-
ant input data, not processed by any model. For each metric,
we also provide 95% confidence intervals, obtained with non-
parametric bootstrapping. We observe that the FWSegSNR and
estimated T60 metrics of the two models are on par on the two
datasets, indicating that the unpaired model reaches a similar
level of performance as the paired model. On the other hand,
SDR is lower for the unpaired model, by 10% on Librivox and
by 36% on AMI dataset. SDR, while allowing for a small mis-
alignment, is a sample-by-sample metric. On the other hand
FWSegSNR is computed on a frame-level and the estimated
T60 is computed on an utterance-level. One possible explana-
tion for this discrepancy between SDR and the two other metrics
is that the unpaired model does not have any incentive to pro-
duce perfectly aligned outputs on a sample level, since it never
sees aligned or paired data.

To confirm the results obtained with the objective evalua-
tion metrics, we also present the results of two subjective eval-
uations. The goal of the first evaluation was to compare the
amount of reverberation in the outputs of the paired and un-
paired models, while the goal of the second was to compare the
overall audio quality. Both evaluations were run in the form
of A/B tests. In each question, the raters were presented with
two audio clips, corresponding respectively to the outputs of the
paired and unpaired models, run on the same reverberant audio
clip. They were asked to choose which audio clip had the small-
est amount of reverberation (for the first task) and which audio
clip had the best overall audio quality (for the second task). The
order in which the audio clips were presented was shuffled for
each question as to not advantage one model over the other.
The reverberant audio clips were taken from the same datasets
used to compute the evaluation metrics: 100 utterances from the
filtered librivox dataset (synthetic reverberation), and 100 utter-

ances from the AMI dataset (real reverberation). All audio clips
have a duration of 3 to 5 seconds. Each question was answers
by ten raters.

The results are presented in Table 2. We observe that on
Librivox, the paired model gets ≈60% of the votes for both
tasks. On the other hand, both paired and unpaired models get
approximately the same number of votes on the AMI dataset. To
confirm these observations, we performed a Wilcoxon signed-
rank test and present the corresponding p-values. On Librivox,
the p-values are lower than 10−3 for both rating tasks, which
means that we can reject the null hypothesis that both models
have the same distribution of votes. On the other hand, on AMI,
the p-values are respectively equal to 0.45 and 0.15 for both
tasks, which means that we cannot reject the null hypothesis.
The fact that the paired model is somewhat preferred over the
unpaired model on Librivox is expected as it was trained with
more information about this specific dataset and specific type
of reverberation. On the other hand, both models generalize
equally well to unseen data and an unseen type of reverberation.
This shows that the unpaired models is capable of performing
as well as the same model trained in a paired manner 1.

6. Conclusion
We proposed an approach that enables speech dereverberation
models to be trained with unpaired data. We showed that the
proposed unpaired model performs comparably to an equiva-
lent paired model, both on in-domain and out-of-domain data,
on two evaluation metrics: FWSegSNR and estimated T60 val-
ues, which are computed on a frame and utterance level. On
the other hand, the sample-level SDR metric favors the paired
model, which is likely due to the fact that the unpaired model
has no incentive to match perfectly the target signal on a sample
level. We also conducted two subjective evaluations, which re-
vealed that the paired model overfits better to in-domain data but
both models perform comparably on out-of-domain data. Given
that unpaired models compare favorably to paired models,

One thing to note in the presented work is that we treated
the problem of unpaired dereverberation as a one-to-one map-
ping problem. However, in the case of reverberation, the gener-
ator that adds reverberation would correspond to a one-to-many
mapping, because the amount of reverberation can vary. In
future work, we plan to exploit this and add a latent encoder,
which will encode reverberation information and will serve as
conditioning to transform the one-to-many mapping into a one-
to-one mapping problem. This latent encoder could either be
trained in an unsupervised manner, e.g. with a contrastive loss,
or trained in a supervised manner, e.g. to predict T60 values.

1Audio examples available at https://google-research.
github.io/seanet/unpaired-dereverb/examples/

https://google-research.github.io/seanet/unpaired-dereverb/examples/
https://google-research.github.io/seanet/unpaired-dereverb/examples/
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