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Abstract
Automatically predicting the outcome of subjective listening
tests is a challenging task. Ratings may vary from person
to person even if preferences are consistent across listeners.
While previous work has focused on predicting listeners’ rat-
ings (mean opinion scores) of individual stimuli, we focus on
the simpler task of predicting subjective preference given two
speech stimuli for the same text. We propose a model based on
anti-symmetric twin neural networks, trained on pairs of wave-
forms and their corresponding preference scores. We explore
both attention and recurrent neural nets to account for the fact
that stimuli in a pair are not time aligned. To obtain a large
training set we convert listeners’ ratings from MUSHRA tests
to values that reflect how often one stimulus in the pair was
rated higher than the other. Specifically, we evaluate perform-
ance on data obtained from twelve MUSHRA evaluations con-
ducted over five years, containing different TTS systems, built
from data of different speakers. Our results compare favourably
to a state-of-the-art model trained to predict MOS scores.
Index Terms: Preference prediction, text-to-speech, twin
neural networks, MUSHRA

1. Introduction
Human ratings are the gold standard in evaluating speech gen-
eration technologies. Participants are asked to listen to speech
stimuli and rate them in isolation or in context. Ratings are sub-
jective, varying from person to person, even more so in cases
where the listener is given less context and training. The most
common type of evaluation is the MOS test [1]. MOS scores are
collected from listeners hearing each utterance in isolation, re-
lying on the fact that every person has an internal reference for
what is highly natural (score 5) and unnatural (score 1). Even
when relative preferences are consistent across listeners, MOS
values may vary from person to person. Paired comparison tests
(so-called ‘AB tests’) exhibit a much lower variance in their re-
sponses, which in turn makes statistical significance easier to
detect [2, 3]. Although it is possible to retrieve ordinal rankings
from AB tests [4], MOS (and to some extent MUSHRA tests
[5]) are presumably more widely used as their results can dir-
ectly be used to rank systems in a single scale. In a MUSHRA
(MUltiple Stimuli with Hidden Reference and Anchor) test, par-
ticipants are asked to score systems on a scale from 1–100 by
listening to stimuli for the same text side-by-side alongside a
high quality reference. Unlike MOS tests, where ratings are
given in isolation, MUSHRA test participants are performing a

∗The author is now at Amazon. All contributions done while at CSTR.

multiple comparison test. This design makes it more sensitive
to small differences between stimuli than MOS tests.

Obtaining reliable results from subjective tests requires
careful design and a considerable number of listeners [6]. An
easier alternative to human evaluation is promised by so-called
objective measures. They can be computed for a given wave-
form stimulus automatically and are deemed objective as they
rely on the same computation no matter who performs it. Al-
though each measure is deterministic, different measures might
give drastically different results. The accuracy of a metric (how
closely it correlates with human ratings) will most likely depend
on the particular characteristics of the stimuli (the speaker, the
listener, the linguistic content, the quality of the recording, etc).
Designing a measure that works well in every condition is a very
challenging task. While measures that are based on auditory
models fail to generalise to conditions where the model alone
cannot explain human scores, data-driven measures struggle on
conditions that were unseen during training.

Most objective measures were in fact designed to assess
natural speech that has been corrupted by a telecommunica-
tion channel and/or environmental noise (notably PESQ [7],
POLQA [8] and STOI [9]) rather than artificially generated
speech. There has been a growing interest however in met-
rics for synthesised speech (speech generated by text-to-speech
(TTS) systems or voice conversion). Most prominent among
these are machine learning models trained on paired audio rat-
ing data. These include the models in [10] which uses the data
from Blizzard Challenge 2012 (220 datapoints); the model in
[11], trained on data from 6 years of the Blizzard Challenge [12]
(3,324 datapoints); AutoMOS, trained on an extensive propriet-
ary dataset of human scores (47,320 datapoints) [13]; MOS-
Net [14], first trained on voice conversion data from the Voice
Conversion Challenge (13,580 datapoints) and later on both
TTS and voice conversion data from one of the tracks of the
ASVSpoof Challenge 2019 (number of datapoints not reported)
[15]; and more recently the model proposed in [16] trained on 8
years of Blizzard Challenge data, 2 years of Voice Conversion
Challenge plus augmented data generated using POLQA (num-
ber of datapoints not reported). All these models are trained to
predict MOS ratings for a single waveform. Experience shows
that predicting MOS is a very challenging task (esp. for un-
seen speakers, listeners and systems in the out-of-domain set-
ting [17]), requiring large amounts of training data.

Although AB scores are more consistent and potentially
easier to predict, we know of only one study that has looked into
predicting AB scores derived from listening tests [18]. They
proposed a neural network that is trained to predict whether or
not two stimuli are perceived as different in listening test re-

1

ar
X

iv
:2

20
9.

11
00

3v
1 

 [
cs

.S
D

] 
 2

2 
Se

p 
20

22

mailto:cvbotinh@inf.ed.ac.uk


sponses. To obtain a balanced training set, they designed an
adaptive listening test that gradually distorts speech using, e.g.,
additive noise, reverberation and compression. It is not clear
how one would gradually distort audio to obtain similar data for
text-to-speech. In their more recent work [19] the authors in-
corporate contrastive learning and multi-dimensional learning
to encourage the model to learn ‘content’ invariant representa-
tions that better generalise to different speakers and sentences.

In this paper we propose PrefNet, a neural network trained
to predict listener preference given two speech stimuli. In or-
der to create a sizeable set of preference data to train PrefNet
we propose converting MUSHRA scores derived from several
listening evaluations to pairwise preference scores. We evaluate
our system using unseen data (different voices and synthesisers)
and compare it to MOSNet [14]. Our code, pre-trained models
and data are publicly available.1

2. Method
2.1. Preference scores

To convert MUSHRA scores into pairwise preference scores we
compared the scores of every pair of stimuli belonging to the
same MUSHRA screen as shown to the left in Fig. 1.

This shows which out of two stimuli (different systems
speaking the same utterance) a listener preferred. The numer-
ical difference between the scores is not taken into account as
we assume every participant might use the 0–100 scale dif-
ferently. The final preference scores were calculated on a per
screen basis (i.e., per waveform) as the average of preference
scores across participants (right side of Fig. 1). The strength
of the preference is therefore measured in terms of how many
participants rated one stimulus above the other, rather than the
difference in average score between the two stimuli.

2.2. Preference prediction

Fig. 2 shows the general architecture of PrefNet. Each input
waveform is processed by an encoder network made of a mel
spectogram extraction layer (with fixed coefficients) followed
by several convolutional layers (which are shared across the dif-
ferent inputs). The variable length encoded representations are
then processed by an alignment/scoring mechanism which re-
turns a vector d(·) that essentially subtracts the encoded version
of XB from the encoded version of XA. That vector is then
processed by a fully connected network f(·) and a sigmoid ac-
tivation σ(·) as follows:

Φ(XA, XB) = σ(f(d(XA, XB))− f(−d(XA, XB))) (1)

where XA ∈ RNA×1 and XB ∈ RNB×1, NA and NB are the
number of mel spectogram frames for each input.
1 https://github.com/cassiavb/PrefNet
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Figure 2: The general architecture of PrefNet. Same-colour
boxes denote identical networks with the same weights.

PrefNet is trained to predict the (empirical) probability of
how often waveform A was preferred over waveform B. The
purpose of Eq. (1) is to ensure that the predicted probabil-
ities are consistent when the input waveforms are swapped:
Φ(XB , XA) = 1 − Φ(XA, XB). This should lead to more
data-efficient modelling, since this property is built in and does
not have to be learned.

Architectures where the exact same neural network is ap-
plied to multiple inputs are known as twin neural networks (or
Siamese neural networks). These are often employed in order
to learn functions that are symmetric in the input arguments,
e.g., similarity scores. The design of PrefNet instead leverages
a twin setup to learn a function that is anti-symmetric in the two
input stimuli. (Specifically, the output, prior to the final sig-
moid, is multiplied by −1 if the two inputs change places.) We
therefore call our setup an anti-symmetric twin neural network.

We propose two versions of PrefNet that vary in terms of
how alignment and scoring is performed.

2.2.1. Attention-based scoring

We investigate an attention-like mechanism [29] to align and
score the distance between input stimuli. The encoder network
of the attention-based model predicts two sets of representations
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Figure 1: Converting same-screen MUSHRA scores (left) to preference scores (right).
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Large set Eval1 Eval2 Eval3 Eval4 Eval5 Eval6 Eval7
Stimuli pairs 17,047 2,160 1,440 800 800 800 3,300 720
System pairs 282 36 36 10 10 10 55 10

Systems 76 9 9 5 5 5 11 5
Speech corpus Hurricane [20] Blizzard

2013 [21]
Blizzard

2013 [21]
Blizzard

2013 [21]
Blizzard

2013 [21]
Blizzard

2013 [21]
LJ Speech

[22]
Blizzard

2013 [21]
TTS systems HTS [23],

Multisyn [24],
vocoded [25],
Merlin [26]

DCTTS [27] DCTTS [27] DCTTS [27] DCTTS [27] DCTTS [27] Merlin [26],
DCTTS

[27]

DCTTS
[27],

Tacotron
[28]

Table 1: Overview of the data used in the evaluation. The ‘Large set’ contains data from 12 different evaluations.

K and V for each input:

KA, VA = H(Encoder(XA)) (2)
KB , VB = H(Encoder(XB)) (3)

where H(·) is an affine layer, KA ∈ RNA×D , KB ∈ RNB×D ,
VA ∈ RNA×E and VB ∈ RNB×E . The attention matrix is then
computed as follows:

W = softmax
NA,NB

(KAK
T
B) (4)

where W ∈ RNA×NB . Note that the softmax operation is per-
formed across both rows and columns, i.e., all elements of W
collectively sum to one. The distance d(·) ∈ RE×1 between the
two inputs is derived as:

d(XA, XB) =

tA=NA,tB=NB∑
tA,tB=1

(VA[tA, :]−VB [tB , :])W [tA, tB ].

(5)

2.2.2. GRU-based scoring

Rather than comparing the input signals frame by frame, as the
attention-based system does, our other system variants process
each variable length representation with a shared GRU layer and
convert the processed sequence into a fixed length representa-
tion. The scoring vector d(·) is then computed as follows:

d(XA, XB) =g(GRU(Encoder(XA)))

− g(GRU(Encoder(XB)))
(6)

where d ∈ RE×1 and g(·) represents the operation that extracts
a fixed length representation from the GRU sequence, like from
instance its last output.

3. Evaluation
3.1. Data

Table 1 presents details on the data we used for training and
testing. The first column (‘Large set’) describes data collected
from 12 different lab-based MUSHRA tests over a period of 5
years (2014–2019). This includes the evaluations described in
[30, 31, 32, 33, 25, 34, 35], among others. The tests involve
stimuli of natural and vocoded speech, but with a focus on a
variety of TTS systems, including HMM-based systems build
with HTS [23], unit selection built with Multisyn [24] and early
DNN systems built with Merlin [26]. All systems in these eval-
uations were created using the same speech dataset, the Hur-
ricane Challenge corpus (male British speaker) [20].

Test fold: Fold 1 Fold 2 Fold 3 Fold 4 Average

Tr
ai

ni
ng

fo
ld

s # pairs 12,281 10,237 15,647 12,976 -
Attention 70.0 81.3 70.8 67.5 72.4

GRU1 91.2 90.4 90.6 90.0 90.5
GRU2 91.9 92.3 91.8 90.4 91.6
GRU3 92.7 92.4 92.2 90.5 91.9
GRU4 92.5 91.8 92.6 90.7 91.9

Te
st

fo
ld

# pairs 4,766 6,810 1,400 4,071 -
Attention 60.0 66.6 64.8 63.6 63.8

GRU1 68.7 70.8 73.6 62.2 68.8
GRU2 72.9 73.4 72.4 65.2 71.0
GRU3 75.3 75.2 75.1 70.1 73.9
GRU4 76.9 74.2 77.1 71.5 74.9

Table 2: Prediction accuracy (%) of different folds (columns) on
the training data (top rows) and on the test data (bottom rows).

The other columns in Table 1 describe data from more
recent lab-based MUSHRA evaluations, containing sequence-
to-sequence TTS models like DCTTS [27] and Tacotron [28].
Eval6 described in [36] involved voices built with Merlin and
DCTTS using the LJ Speech dataset (US female speaker) [22].
All other evaluations contained voices based on the Blizzard
Challenge 2013 corpus (US female speaker) [21].

All audio stimuli were resampled to 16 kHz. We extracted a
64-dimensional log-magnitude mel spectrogram representation
using a window of width 512 and 12.5 ms frame hop.

3.2. Models

We performed a hyperparameter sweep on the ‘Large set’ in
Table 1 using multifold cross-validation. The best attention-
based model we found was made of four convolutional layers of
width three (the first layer of dilation three, the others one) over
64 channels (D=32 and E=32). The encoder of the best GRU-
based model was made of two convolutional layers of kernel
width 9 over 64 channels. The GRU contained 64 units (E=64).
For all models the fully connected network f(·) had only one
layer. All models were trained to predict relative preferences
(probabilities) using the mean squared error loss (also known as
the Brier score). Training ran for 50 epochs with early stopping
based on a random selection of 10% of the training data for
validation, using the Adam optimiser with a learning rate of
0.001. The pairs of input sequences were batched according to
the size of the longer waveform in each pair.

We present results of four GRU-based models. GRU1 is a
variant without the anti-symmetric design whose output is in-
stead given by σ( f(g(Encoder(XA))− g(Encoder(XB))) ).
GRU2 is the anti-symmetric version proposed in Eqs. (1) and
(6) where g(·) extracts the final output of the GRU. GRU3 obeys
the same anti-symmetric architecture but rather than retrieving
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Train
Test Eval1 Eval2 Eval3 Eval4 Eval5 Eval6 Eval7

Pr
ef

N
et

Large set 48.8 / 55.6 46.6 / 44.4 55.4 / 60.0 52.8 / 60.0 57.5 / 80.0 56.8 / 61.8 68.2 / 100
Eval1 - 72.9 / 83.3 75.5 / 80.0 67.8 / 70.0 84.8 / 90.0 66.3 / 65.5 61.4 / 60.0

Large set and Eval1 (FT) - 68.8/ 88.9 69.9 / 80.0 63.2 / 80.0 83.6 / 100 65.5 / 70.9 63.5 / 70.0
Eval1−5 - - - - - 62.4 / 61.8 65.6 / 50.0

Large set and Eval1−5 (FT) - - - - - 66.1 / 72.7 63.2 / 50.0

M
O

SN
et Voice conversion data (VC)

[14]
51.2 / 50.0 49.2 / 33.3 68.6 / 80.0 45.9 / 60.0 51.0 / 70.0 65.1 / 67.3 51.5 / 30.0

Anti-spoofing data [15]
(TTS, TTS+VC, VC)

68.8 / 86.1 61.5 / 69.4 54.1 / 60.0 44.9 / 40.0 65.8 / 80.0 43.4 / 40.0 31.4 / 20.0

Table 3: Prediction accuracy (%) at stimuli / system level. FT stands for fine-tuned.

the final output, the average representation is obtained. GRU4

is a bi-directional version of GRU3.

3.3. Similar conditions: same speaker

To compare variants of the PrefNet architecture, we performed
a multifold cross-validation evaluation using the ‘Large set’
data. We divided the 12 evaluations into four folds ordering
the evaluations chronologically, so that different folds are less
likely to contain the same systems. (For instance, the first and
second fold contained only HMM-based TTS, while only the
third and fourth folds had DNN-based voices.) Each architec-
ture was trained four times, varying which fold was held out
from training. The prediction accuracy (calculated at a sentence
level across all sentences) is reported in Table 2.

We see that accuracy on the training data (upper rows) is
relatively high, particularly for the GRU-based models. Per-
formance drops considerably when evaluating on unseen ma-
terial, i.e., the fold that has been held out (lower rows). Overall
we can see that the GRU-based models performs better than the
attention-based one. GRU2 scores higher than GRU1 indicating
that the anti-symmetric architecture is helpful. We observed that
introducing it improved not only accuracy, but also model con-
vergence. Taking the average over the GRU’s output sequence
(rather than using its last element) seems to further improve res-
ults, as well as using bidirectional GRUs. The remaining exper-
iments focus on the GRU4 variant of PrefNet.

3.4. Unseen conditions: different speakers and systems

To evaluate how well PrefNet predicts the preference between
more recent state-of-the-art TTS models we extended the eval-
uation to the data from evaluations Eval1 to Eval7, with sev-
eral different training and test data configurations. The results
are presented in Table 3. Rows refer to training material and
columns to the test set. We present scores at both stimulus level
and system level. For system-level results we calculated the ac-
curacy across all sentences of each system pair.

As a baseline, we compare the various PrefNet results to
results obtained from pre-trained MOSNet models, one trained
on voice conversion (VC) data [14] and one trained on both
VC and TTS data [15] including HMM-based systems, Merlin
and Tacotron trained on the VCTK corpus (multi-speaker Eng-
lish language dataset) [37]. These represent the state of the art
in publicly available models for MOS score prediction on syn-
thetic speech. The MOS scores predicted by MOSNet were con-
verted to pairwise preferences by checking which of two paired
stimuli had the higher predicted MOS score.

The results in Table 3 show that the model trained on the
‘Large set’ (top row) performs relatively well on Eval7 but
not on the other evaluations where the stimulus-level perform-

ance is close to chance rate. The model trained on Eval1
alone (second row) highlights the importance of representat-
ive training data, since it performs well on similar evaluations
(i.e., Eval2−5) but less so on evaluations with different speakers
and systems (Eval6 and Eval7). Fine tuning the model trained
on the ‘Large set’ with data from Eval1 (third row) seems to
improve results on Eval2−5 but to the detriment of perform-
ance on Eval7. Training with more quantities of similar data
(fourth and fifth row) does not seem to improve performance
on Eval6. System-level performance is generally better than
stimulus-level performance for all systems. System-level ac-
curacy seems to be higher for the fine-tuned models.

The MOSNet models generally perform worse than most
PrefNet models, with performance varying considerably de-
pending on the specific test set. Poor performance could to
some extent be explained by the fact that these models were
trained on data that is potentially more dissimilar to the test set
than PrefNet training data. In several cases, MOSNet perform-
ance is below chance rate, with Eval7 being the most challen-
ging to predict. Interestingly, the MOSNet model trained on
TTS data was not always the best. A possible explanation is
that it used less training data than the VC-only model.

4. Conclusions
This paper has introduced PrefNet, an approach to predicting
pairwise preferences between synthetic speech stimuli. We
demonstrated how data from side-by-side evaluations using nu-
merical ratings can be leveraged to create training data for pair-
wise preference prediction. We empirically investigated sev-
eral architectures and described a design rooted in twin neural
nets that ensures consistent pairwise preferences if the order of
the inputs is reversed. Results showed that GRU-based archi-
tectures outperformed those using attention to align and score
stimulus pairs, and that our anti-symmetric network design also
improved accuracy. PrefNet outperforms MOSNet (a state-of-
the-art model trained to predict MOS scores, from which impli-
cit pairwise preferences can be derived) in most conditions but
the performance of both models varies considerably depending
on training data and test data. The performance of the model
trained on the larger set of listening tests (including HMM and
DNN systems) improves when data from more recent (and thus
more similar) systems are included in training. Future work in-
cludes training with both stimulus-level and system-level pref-
erences and increasing the amount of training data by convert-
ing MOS (as well as MUSHRA) scores to preferences.
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