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Abstract
In this paper we propose a multi-modal multi-correlation learn-
ing framework targeting at the task of audio-visual speech sep-
aration. Although previous efforts have been extensively put
on combining audio and visual modalities, most of them solely
adopt a straightforward concatenation of audio and visual fea-
tures. To exploit the real useful information behind these two
modalities, we define two key correlations which are: (1) iden-
tity correlation (between timbre and facial attributes); (2) pho-
netic correlation (between phoneme and lip motion). These
two correlations together comprise the complete information,
which shows a certain superiority in separating target speaker’s
voice especially in some hard cases, such as the same gender
or similar content. For implementation, contrastive learning or
adversarial training approach is applied to maximize these two
correlations. Both of them work well, while adversarial train-
ing shows its advantage by avoiding some limitations of con-
trastive learning. Compared with previous research, our solu-
tion demonstrates clear improvement on experimental metrics
without additional complexity. Further analysis reveals the va-
lidity of the proposed architecture and its good potential for fu-
ture extension.
Index Terms: cross-modal learning, audio-visual speech sepa-
ration, contrastive learning, adversarial training

1. Introduction
Conventional speech separation aims to extract specified
speaker’s voice in multi-speaker environment against other
speakers’ interference [1,2], which is also known as the “Cock-
tail Party” problem. Our work focuses on audio-visual speech
separation. In such scenario where the video of target speaker is
given, recent studies have shown that using auxiliary visual in-
formation in video can significantly improve speech separation
performance [3–29].

But using what kind of auxiliary visual information is the
crux of difficulty. The most intuitive method regards static im-
age as reference [3–6], which usually misses a great deal of
useful information. Some other architectures take all the video
frames as input to capture their temporal correspondence with
audio [7–29]. Due to the high redundancy and excessive size of
video frames, merely extracting lip motion from video is a more
appropriate choice [30–32].

Combining audio with lip motion feature can greatly im-
prove speech separation performance [30–32]. The underlying
intuition is that a strong cross-modal correlation exists between
aligned visual and audio signals (e.g. lip motion is closely re-
lated to speech content). Another crucial cross modal infor-
mation lies in the speaker identity. Based on some previous
efforts [29, 33, 34], here we summarize the major correlations
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between audio and visual modalities into two aspects. The first
is speaker identity, which corresponds to the speaker’s facial at-
tributes in video and timbre in audio respectively. The second
is phonetic information, which is closely relevant to lip motion
in video and phoneme in audio. Intuitively they can help to deal
with some hard cases in speech separation task. For example,
when two speakers’ characteristics are quite similar, e.g. of the
same gender, usually it would be more difficult to separate the
two voices. The phonetic information (content) of speech can
help with this issue. In another case, if two speakers say similar
or even the same words simultaneously, we can turn to exploit
the subtle difference in speaker characteristics as a hint.

Although some prior work already consider the above men-
tioned two audio-visual correlations [29, 34], they fail to make
full use of them. Most of previous methods simply concatenate
mixed audio with visual feature (image, lip motion, frames) as
input [3–32], which allows the model to implicitly learn the cor-
relation between audio and visual representation. [35] utilizes
a contrastive learning framework to directly learn the audio-
visual correlation. They just assume an underlying common
bond between audio and the corresponding video without ex-
plicitly modelling the identity or phonetic correlation between
them. [33] adopts the same method and makes a further step
to target at the identity correlation, while they ignore to explic-
itly model the phonetic correlation. Unlike them, our work put
forward a more comprehensive architecture that explicitly mod-
els both identity and phonetic correlations between audio and
visual modalities and shows its superiority by experimental re-
sults.

Specifically, we follow the training scheme in [33] and [35]
to take advantage of the two correlations defined above under a
contrastive learning framework. The key point is how to con-
struct a triplet (a,b, c) from training data, which contains a
positive pair (a,b) with correlation and a negative pair (a, c)
without correlation. Our goal is to “pull” positive (similar) pairs
relatively close under a specific metrics, while “pushing” nega-
tive (dissimilar) pairs far away. For speaker identity correlation,
we regard sample of the same speaker as positive and treat pair
of different speakers as negative. For phonetic correlation, we
sample positive pairs from audio and video of the same sen-
tence, and negative pairs from audio and video containing dif-
ferent sentences. Note that contrastive learning usually uses co-
sine distance to measure the gap between positive and negative
pairs. But it may be hard to precisely measure the distance be-
tween audio and visual embeddings in latent space due to the
limitation of cosine distance. For example, it is required that the
two embeddings are of the same shape, which is not always the
case in practice. Therefore a different correlation learning ap-
proach is proposed in this work, which is based on adversarial
training. Unlike previous contrastive learning, a classification
neural network is trained as the discriminator to tell audio and
visual embeddings apart. In experiments we find the proposed

ar
X

iv
:2

20
7.

01
19

7v
1 

 [
cs

.S
D

] 
 4

 J
ul

 2
02

2



method outperforms conventional audio-visual speech separa-
tion approaches. Note that our method won’t affect the model
complexity and efficiency during inference stage since correla-
tion learning is only applied in the training process.

In summary, our main contributions are threefold:

1. Besides the speaker identity correlation modelled in [33],
we propose to explicitly model the phonetic correlation
between audio (phoneme) and video (lip motion).

2. In addition to contrastive learning used in previous work,
we propose an adversarial training approach to learn
identity and phonetic audio-visual correlations.

3. We launch detailed experiments in public datasets and
visualize the correlation score after the proposed corre-
lation learning. This verifies the effectiveness of the pro-
posed framework.

2. Approach
2.1. Pipeline

The conventional audio-visual speech separation approach is an
end-to-end system. We choose it as our baseline model (AV
baseline). The whole train and test process can be formulated as
a mix-and-separate pipeline (as shown in Fig. 1). In the training
process, we randomly collect two audio segments a1 and a2,
Then the mixed audio x can be simply obtained by adding them
together. All the audio signal we use in experiment is in the
STFT (Short-time Fourier transform) domain CTa×F , where Ta

and F are time and frequency dimension respectively.
The input to model is two-stream signal, including the

mixed audio x and one target speaker’s video frames v. v com-
poses face tracks on rgb space RW×H×C and lip motion frames
on black and white space RW×H , where W and H are the width
and height of the image. C denotes the channel number. The
number of video frames is Tv . The audio input is processed
by an audio encoder to obtain the audio embedding. The face
tracks and lip motion frames are processed by two video en-
coders respectively to get the video embeddings. The two kinds
of extracted embeddings are reshaped to be aligned in temporal
dimension T for concatenation (see Fig. 1 left part).

Subsequently, the audio-visual embedding is fed into a
backbone neural network. Instead of outputting the target audio
directly, we predict the mask m within 0 ∼ 1. If the target au-
dio is a1, the predicted audio can be obtained by element-wise
multiplying mixed audio with the mask:

a1 = m1 ∗ x (1)

2.2. Audio-visual correlation enhancement

The baseline model simply concatenates the audio and video
information as input, without formally modelling the correla-
tion between audio and video. Intuitively, there are two kinds
of available correlations as mentioned in Sec. 1. The first one
is speaker identity correlation, which is the connection between
timbre and facial attributes. The second one is phonetic cor-
relation between phoneme and lip motion. In order to utilize
these correlations in latent space, we use several pretrained
models to extract the target embeddings. Specifically, we use
a speaker identification model [33] for audio and a face iden-
tification model [33] for video frames to obtain the audio and
visual identity embeddings. Then we apply a speech recogni-
tion model [36] for audio and a lip reading model [37] for video

frames to extract phonetic and lip motion embeddings. After
that, our goal is to pull the correlated embeddings closer and
keep uncorrelated embeddings away from each other (correla-
tion enhancement), which can be achieved by either contrastive
learning or adversarial training based approach. The two corre-
lation enhancement methods are described as below in detail.
Contrastive learning approach

For identity correlation learning, we first follow [33]
and [35] to adopt a triplet loss with cosine distance d(.). In
practice, a group of triplets denoted as (aA1 ,aA2 ,aB) will be
constructed from the dataset. Here aA1 and aA2 are two audio
segments randomly sampled from speaker A, aB is an audio
segment sampled from speaker B. We regard the (aA1 ,aA2)
as positive pair and (aA1 ,aB) as negative pair to construct the
triplet. After extracting the corresponding speaker identity em-
bedding ia from audio and iv from video through pretrained
model, we apply the triplet loss L1 with margin m to speaker
identity embedding as follows (as proposed by [33]).

L1 = max{d(iaA1
, ivA2

)− d(iaA1
, ivB) +m, 0} (2)

Then we seek to explicitly model the correlation between
lip motion and phoneme. The phonetic embedding in video
(lip motion) pv is extracted by a pretrained lip reading model.
And we regard the output of feature extraction layers in a
speech recognition model as phoneme embedding pv in audio
(phoneme). The triplet loss L2 with margin m can also be ap-
plied as above. The difference is that only two audio segments
A and B are needed for this loss:

L2 = max{d(pa
A,p

v
A)− d((pa

A,p
v
B) +m, 0} (3)

Via minimizing L1 and L2, we can pull the correlated em-
beddings closer while pushing others away from each other.

L = L1 + L2 (4)

Although triplet loss is able to deal with such a correlation
learning task, it might not always be the best solution. Specif-
ically, it relies on handcrafted metrics to learn the gap between
positive and negative data pairs, which is usually a cosine dis-
tance as in [33]. One main limitation of cosine distance is that
the magnitude of vectors is not taken into account, while merely
their direction information is included. In practice, this implies
that the difference of values is not fully considered, which might
lead to severe inaccuracy in some cases. Here we are inspired
by adversarial training method and propose a new correlation
learning approach that can learn metrics automatically to eval-
uate a task.
Adversarial training approach

In particular, we train a discriminator D whose loss func-
tion LD is to distinguish between the audio and visual speaker
identity embeddings. And we design the generator (backbone
network) trained with loss function LG to inhibit the two em-
beddings from being classified by the discriminator:

LG = min
G

Ex∼iv log(D(x)) + Ex∼ia log(1−D(x)) (5)

LD = max
D

Ex∼iv log(D(x)) + Ex∼ia log(1−D(x)) (6)

We train the backbone network and discriminator alter-
nately. Finally the discriminator is unable to classify the two
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Figure 1: The pipeline of the proposed method. A concatenation of audio and visual embeddings is put into the backbone neural
network. Two pretrained models are used to extract the speaker identity and phoneme embedding from target speaker’s predicted
audio. These two pairs of embedding will be refined in latent space with contrastive learning or adversarial training method to
maximize the correlation between the same speaker and text.

embedding in latent space, indicating that the speaker identity
in two modalities tend to be consistent. The phonetic correlation
between lip motion and phoneme embedding can be enhanced
in the same way.

We propose this method based on a very simple but clear in-
tuition: any hand-crafted loss function has its limitation.The ex-
perimental results confirm our intuition: for all the dataset, the
proposed adversarial training method outperforms contrastive
learning method.

In addition, it should be emphasized that all our approaches
are tested under the same complexity as baseline method. Al-
though we use a number of pretrained models in our method,
in test stage, only the baseline model is needed. For exam-
ple, we use wave2vec2.0 pretrained model [36] in contrastive
learning method (or use a discriminator to discriminate two em-
beddings in adversarial training method). Both of the correla-
tion enhancement modules will be discarded during inference.
Therefore our method won’t increase model complexity com-
pared with previous work.

3. Experiment

3.1. Setup

The whole network structure can be divided into the following
parts: a backbone network (U-net) for separation, a lip read-
ing network [37] for extracting lip motion embedding, a speech
recognition network wav2vec2.0 [36] for recovering phoneme
information, and two resnet18 classification network [33] for
speaker identification. All the models are pretrained follow-
ing the above work. In adversarial training framework, all
the discriminators are MLP-based. We adopt SI-SNR [38] as
the main loss function and metrics. Signal-to-Distortion Ratio
(SDR), Signal-to-Interference Ratio (SIR), Signalto-Artifacts
Ratio (SAR), PESQ (Perceptual Evaluation of Speech Qual-
ity) [39] and STOI (Short-Time Objective Intelligibility) [40]
are also measured. We cut audio segments into 2.56s with
a sampling rate of 16000Hz, the corresponding video clip
contains 64 frames with fps=25. We apply PyTorch official
STFT and iSTFT function with nfft=512, hop size=160, win-
dow size=512 and center=True. We use 4 Nvidia V100 GPUs
with 32GB for train and test.

SDR PESQ STOI
[35](AV Baseline) 8.46 2.27 0.843
[35](CMC loss) 8.85 2.39 0.854

Ours(AV baseline) 9.392 2.536 0.851
Ours(triplet) 9.623 2.545 0.855

Ours(adversarial) 9.982 2.584 0.861
Table 1: Results on LRS3. The first and second rows are base-
line version without correlation learning and their proposed
CMC loss in [35].

3.2. Dataset

VoxCeleb2 [41] contains over 1 million utterances for 6,112
celebrities in YouTube. LRS3 [42] consists of thousands of spo-
ken sentences from TED and TEDx videos. We split train and
validation set from development set with the ratio of 4:1. For
testing our model, we randomly synthesize 500 and 200 audio
mixtures from test set respectively.

3.3. Results

The result on VoxCeleb2 and LRS3 datasets is given by Ta-
ble 1 and Table 2. Note that since the train & test split of
VoxCeleb2 dataset are not given by [33], we make a split on
our own. For fairness and clarity, we show all the results in-
cluding the one reported by [33] based on their train & test
split, the result on our split with [33]’s officially released model
and the result of our implemented version based on [33]’s offi-
cial code. We can see our proposed approach achieves consis-
tent improvement on all the metrics. In comparison with [35]
on LRS3 dataset, without any detail given for their split, we
hold the official partition for our experiments. Without explic-
itly modelling identity/phonetic correlations, the CMC loss [35]
apply triplet loss directly on audio and video embeddings. As
far as we know, our method can outperform the State-of-the-
Art speech separation method implemented on VoxCeleb2 and
LRS3 datasets [33] [35]. Also, adversarial training proves to be
more effective than triplet loss.

In both VoxCeleb2 and LRS3, we achieve better perfor-
mance with adversarial training than contrastive learning, which
proves our former intuition. With an automatically learned met-
ric instead of a handcrafted one, adversarial training shows its



SDR SIR SAR PESQ STOI SI-SNR
[33](Reported) 10.2 17.2 11.3 2.83 0.87 -
[33](Released) 7.023 13.708 9.546 2.569 0.792 6.471
[33](Our impl.) 7.962 14.347 10.195 2.579 0.791 7.467

Ours(triplet) 8.178 14.692 10.38 2.6 0.793 7.676
Ours(adversarial) 8.949 16.012 10.79 2.687 0.811 8.477

Table 2: Results on VoxCeleb2. The first row is the result reported in [33]. Because they don’t show how to construct the test set, we
use their officially released model to test on our test set (the second row). The third row is our implementation of [33] using official
code based on our device. The last two rows are our method’s results using the same hyper-parameters as above.

potential and flexibility compared with triplet loss used in con-
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Figure 2: Visualization of positive and negative pairs’ corre-
lations. (a) shows the two correlations of AV baseline (with-
out correlation learning). (b) shows the correlations after joint
identity & phonetic correlation learning.

3.4. Correlation visualization

To prove whether the proposed approach learns to enhance
audio-visual correlations, a visualization of identity & phonetic
correlations before (AV baseline) and after adding correlation
learning modules is shown by Fig. 2. Particularly, we randomly
sample positive and negative audio segment pairs from the test
set. The same as defined in Sec. 2.2, for identity correlation
the positive pairs belong to the same speaker, for phonetic cor-
relation the positive pairs represent two audio segments with
the same phoneme information. And the negative pairs are vice
versa. Fig. 2’s horizontal and vertical axes respectively indi-
cate the identity and phonetic correlations (measured by cosine
similarity) of the sample pairs. If a sampled pair shows higher
similarity, it implies the model learns to discover stronger cor-
relation. Hence the positive pairs are expected to get a higher
score while negative pairs get lower. As can be seen from Fig. 2
(a), in AV baseline the positive and negative pairs are hard to
distinguished along either the identity or phonetic correlation
axis. On the other hand, as shown in Fig. 2 (b), the positive pairs
show much stronger correlations on both axes after correlation
learning while negative pairs are still as before. This indicates
that our proposed correlation learning surely enhances phonetic
correlation between correlated audio-visual representations be-
sides the identity correlation learning of [33]. Obviously this
will make the positive samples more separable from those neg-
ative ones and thus benefit speech separation task.

To further validate the effectiveness of our phonetic correla-
tion learning, we plot the SI-SNR score and phonetic correlation
for all positive pairs in Fig. 3. Vertical and horizontal axes rep-

resent the SI-SNR score and the phonetic correlation measured
by cosine similarity respectively. Fig. 3(a) shows the results
obtained by AV baseline vs. only adding phonetic correlation
learning (Ph). Fig. 3(b) shows identity correlation learning [33]
(Id) vs. joint identity & phonetic correlation learning as pro-
posed by this paper (Id+Ph). The more points in the right-top
area, the better separation performance and correlation score is
achieved. We can see [33] surely bring an improvement com-
pared with the AV baseline (concatenation), and our proposed
method can further acquire a more significant one. Such an im-
provement is in accordance with the enhanced phonetic corre-
lation as the horizontal axis shows. In Fig. 3(b) there are denser
blue points in the right-top area, which verifies the benefit of
phonetic correlation learning.
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Figure 3: Visualize the relationship between positive pairs’ pho-
netic correlation and SI-SNR. (a) AV baseline (without correla-
tion learning) vs. learning phonetic correlation (Ph). (b) learn-
ing identity correlation (Id) [33] and jointly learning both iden-
tity and phonetic correlation (Id+Ph).

4. Conclusion
In this paper, we propose a novel audio-visual speech separa-
tion framework with explicit correlation learning. In addition to
previous identity correlation learning method [33], we further
propose a scheme with explicit phonetic correlation learning be-
tween audio phoneme and visual lip motion. Experimental re-
sults show our approach outperforms previous work with a clear
margin. We conduct a detailed analysis of the audio-visual cor-
relation and speech separation performance, which proves the
effectiveness of explicitly learning phonetic correlation. Ad-
versarial training also shows its potential and performs more
effectively than contrastive learning. This work validates the
necessity of explicit correlation learning in audio-visual speech
separation, which also bears great potential for other tasks.
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