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Abstract
FullSubNet has shown its promising performance on speech
enhancement by utilizing both fullband and subband informa-
tion. However, the relationship between fullband and subband
in FullSubNet is achieved by simply concatenating the output
of fullband model and subband units. It only supplements the
subband units with a small quantity of global information and
has not considered the interaction between fullband and sub-
band. This paper proposes a fullband-subband cross-attention
(FSCA) module to interactively fuse the global and local infor-
mation and applies it to FullSubNet. This new framework is
called as FS-CANet. Moreover, different from FullSubNet, the
proposed FS-CANet optimize the fullband extractor by tempo-
ral convolutional network (TCN) blocks to further reduce the
model size. Experimental results on DNS Challenge - Inter-
speech 2021 dataset show that the proposed FS-CANet outper-
forms other state-of-the-art speech enhancement approaches,
and demonstrate the effectiveness of fullband-subband cross-
attention.
Index Terms: interactive fusion, fullband-subband cross-
attention, speech enhancement

1. Introduction
The interference of environmental noise is one of the main
factors that hinder the speech communication. Single-channel
speech enhancement methods remove background noise from
single-channel noisy audio signals, aiming to improve the qual-
ity and intelligibility of the speech, and have significant appli-
cations in hearing aids, audio communication and automatic
speech recognition. Traditional speech enhancement meth-
ods use statistical signal theory to effectively suppress station-
ary noise, but they do not perform well under conditions of
low signal-to-noise ratio (SNR). In the past few years, deep
learning-based methods have achieved promising results, espe-
cially in dealing with non-stationary noise in complex acous-
tic environments. The neural networks can enhance the noisy
speech either in frequency-domain or directly in time-domain.
The frequency-domain approaches [1–4] generally take the
noisy spectral feature as the input, and their learning target
is the clean spectral feature or the mask such as Ideal Ratio
Mask [5] and complex Ideal Ratio Mask (cIRM) [6]. On the
other hand, The time-domain approaches [7–9] predict a clean
speech waveform from the corresponding noisy speech wave-
form. Overall, the frequency domain approaches is more prefer-
able considering the robustness of system and computational
complexity [10].

† Work conducted when the first author was intern at Tencent.
∗ Corresponding author.

The subband model [11] is a previously proposed work for
frequency-domain speech enhancement. The work is performed
in a subband style: the input of the model consists of one fre-
quency together with several contextual frequencies. Thus the
subband model learns the frequency-wise signal stationarity to
discriminate between speech and stationary noise. However,
since it can not model the global spectral pattern and exploit the
long distance cross-band dependencies, it is difficult to recover
clean speech on subband with low SNR. To solve this problem,
the FullSubNet [12] introduces a fullband model extracting the
global spectral information on the basis of the subband model,
and performs joint optimization after connecting the two in se-
ries. By means of this way, the FullSubNet can capture the
global spectral context [1,2] while retaining the ability to model
signal stationarity and attend the local spectral patterns. Conse-
quently, FullSubNet achieves excellent results on DNS Chal-
lenge dataset [13].

The success of FullSubNet effectively demonstrates the im-
portance of global spectral information for the subband model.
However, in FullSubNet, the relationship between fullband
model and subband model is achieved by simply concatenating
the output of fullband model and subband units. This concate-
nation method only supplements a small amount of global infor-
mation for the subband units. It lacks the interaction between
fullband information and subband information, which limits the
potential of the FullSubNet.

To address the above issue of FullSubNet, this paper pro-
poses the fullband-subband cross-attention (FSCA) module to
interactively fuse the fullband and subband information and ap-
plies it to FullSubNet. Furthermore, a fullband extractor [14]
composed of TCN blocks [15] is used to instead the fullband
model in FullSubNet for reducing model size. This new net-
work is called as FS-CANet. Experimental results on the DNS
Challenge dataset show that our FS-CANet outperforms Full-
SubNet+ [14] and FullSubNet in terms of both number of pa-
rameters and performance. Furthermore, the FS-CANet also
exceeds other state-of-the-art speech enhancement methods on
the DNS Challenge - interspeech 2021 dataset. These experi-
mental results also demonstrate that the fullband-subband cross-
attention is an effective interactive fusion method.

2. FS-CANet
This paper only focuses on the denoising task in the STFT do-
main, and the target is to suppress noise and recover the re-
verberant speech signal (the reverberant signal received at the
microphone). FS-CANet is proposed to interactively fuse the
fullband and subband information by fullband-subband cross-
attention module.

The architecture of FS-CANet is shown in Fig.1(a), which
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Figure 1: (a) The overall diagram of the proposed FS-CANet. The model mainly contains a Fullband Extractor, a FSCA module and
a Subband Model. (b) The details of the FSCA module, where “Multihead” refers to the multi-head attention. (c) The details of
the Fullband Extractor. (d) The details of TCN block. The “DD-Conv” indicates a dilated depth-wise separable convolution. The
“G-norm” is a global layer normalization [16].

mainly consists of three main parts: a fullband extractor Gfull,
a FSCA module Af2s, and a subband model Gsub. To begin
with, the input X ∈ RF×T is fed to the fullband extractor
Gfull, and additionally it is also the subband units Ψs after un-
folding. Then the fullband extractor Gfull extracts the global
spectral information from the input spectrogram and outputs
the fullband embedding Ψg . After a python broadcast, Ψg is
treated as the input of FSCA module Af2s together with the
subband units Ψs. Next, Af2s obtains the fusion embeddings
Ψ after interactively fusing Ψs and Ψg . Finally, taking the Ψ
as input, the subband model Gsub predicts the learning target
cIRM Mr and Mi. In the following these modules are de-
scribed in detail.

2.1. Fullband Extractor

The fullband extractor is an efficient fullband processing model,
which is illustrated in [14]. Compared with the fullband model
in FullSubNet, it has a better performance with a smaller num-
ber of parameters [14]. Therefore, the fullband extractor is used
to replace the original fullband model in FullSubNet.

As a model with powerful temporal sequence modeling
ability, TCN blocks have been widely used in speech separa-
tion [16–18] and target speaker extraction tasks [19] recently.
Fig.1(d) shows the structure of the TCN block, which consists
of three main components, namely input 1 × 1 Conv, depth-
wise dilated convolution (DD−Conv) and output 1×1Conv.
Parametric ReLU (PReLU) activation function and normaliza-
tion layers are inserted between adjacent convolutions. Resid-
ual connection is applied to alleviate gradient vanishing prob-
lem. In fullband extractor, similar to Conv-TasNet [16], the
TCN blocks are stacked by exponentially increasing the dila-

tion factor in each group to capture the features of speech sig-
nals with long-range dependence over the fullband. As shown
in Fig.1(c), for the fullband extractor, there are M groups of N
TCN blocks, where M and N are hyper-parameters. A fully
connected layer and a ReLU activation function are deployed
after these stacked TCN blocks.

The fullband extractor extracts fullband information and
outputs the fullband embedding Ψg with the same size as its
input X, which is expected to provide complementary informa-
tion for the subband units Ψs. The fullband embedding and
subband units together serve as the input of Af2s.

2.2. Fullband-Subband Cross-Attention

Recently, the multi-head cross attention mechanism has shown
a surprising potential in speech-related interactive fusion tasks
like multi-modal active speaker detection [20] and speaker ex-
traction [21]. Inspired by this, FSCA module is proposed for
interactively fusing the fullband and subband information to re-
place the simple concatenation [12] in original FullSubNet.

2.2.1. The concatenation in FullSubNet

For each frequency f , we take a frequency bin vector Xf ∈
RT and the 2 × n frequency bin vectors adjacent to it in the
frequency domain from the weighted magnitude spectrogram
X as a subband unit Ψs

f :

Ψs
f =[Xf−n, · · · ,Xf , · · · ,Xf+n] ∈ R(2n+1)×T . (1)

In addition, circular Fourier frequencies are used for boundary
frequencies.



According to the concatenation method of FullSubNet,
each subband unit is concatenated with a frequency bin vec-
tor of the output of fullband extractor, denoted as Ψg

f ∈ RT , to
serve as the input Ψ̃f to the Gsub:

Ψ̃f = [Ψs
f ,Ψ

g
f ] ∈ R(2n+2)×T . (2)

In this way, each subband unit is actually supplemented with
the output of fullband extractor in only one frequency domain
dimension, which does not make an adequate use of the global
information. Furthermore, it lacks the interaction of global and
subband information. To cope with the above issues, we pro-
pose the FSCA module.

2.2.2. The details of Fullband-Subband Cross-Attention

Different from the existing work on frequency-domain self-
attention [22], our FSCA module focuses on the interfusion of
the output of the full-band model and the subband units to con-
vey more fullband temporal and spectral information to the sub-
band units. The structure of the FSCA module Af2s is shown
in Fig.1(b), which mainly consists of the multi-headed attention
layer for interactive fusion and linear layers for further fusion.
Besides, residual connections are applied in the FSCA module
to alleviate the gradient vanishing problem.

The FSCA module Af2s takes the fullband embeddings and
subband units together as the input. Following section 2.2.1, we
get a total of F subband units. For the purpose of making each
subband unit interact with a fullband embedding, we obtain F
fullband embeddings Ψg by python broadcast. These subband
units and fullband embeddings serve as the input to the Af2s.
The FSCA module Af2s processes these F pairs of subband
units and fullband embeddings in parallel. For each subband
unit Ψs

f and fullband embedding Ψg , the Ψs
f is linearly con-

verted to Vs, Ks ∈ RF×T while the Ψg is linearly converted
to Qg ∈ RF×T . A multi-head attention mechanism is carried
out to achieve the interaction between fullband and subband in-
formation:

Ψ̂s
f = Multihead(Qg,Ks,Vs) (3)

where Multihead(·) denotes the multi-head attention and the
Ψ̂s

f represents the output with the same size as Ψs
f . Through

this interactive fusion, Ψ̂s
f contains global temporal and spec-

tral information at multiple dimensions that Ψs
f focus on. Then,

the Ψ̂s
f is added to Ψs

f . Eventually, we stack another two lin-
ear layers with residual connection to further fuse them into the
fusion embedding Ψf ∈ R(2n+1)×T . The total of F fusion
embeddings output by the FSCA module are then fed to the
subband model Gsub.

2.3. Subband Model

For the benefit of learning the frequency-wise signal stationar-
ity while maintaining stability in model training, as shown in
Fig.1(a), the subband model Gsub applies a structure composed
of two stacked unidirectional LSTM layers and one fully con-
nected layer instead of stacked TCN blocks.

We obtain a total of F fusion embeddings after the interac-
tive fusion of the FSCA module. Each fusion embedding con-
tains the local spectral patterns as well as the global spectral in-
formation, both of which complement each other. All of the fu-
sion embeddings are fed into the subband model with shared pa-
rameters in parallel. In subband model, the stacked LSTM lay-
ers learn the global and local frequency-wise signal stationarity

based on these fusion embeddings. Finally, the fully-connected
layer outputs the cIRM as our learning target.

3. Experiments

3.1. Datasets

We trained and evaluated FS-CANet on a subset of the DNS
Challenge - Interspeech 2021 dataset with 16 kHz sampling
rate, which will be called as DNS Challenge dataset in the fol-
lowing sections. The clean speech set includes 562.72 hours
of clips from 2150 speakers. The noise dataset includes 181
hours of 65302 clips from over 150 classes. During training, we
used dynamic mixing to simulate speech-noise mixture as noisy
speech to make full use of the dataset. To be specific, 75% of
the clean speeches were mixed with the randomly selected room
impulse response (RIR) from openSLR26 and openSLR28 [29]
datasets before the start of each training epoch. After that, the
speech-noise mixtures were dynamically generated by mixing
clean speeches and noise at a random SNR between -5 and
20 dB. The DNS Challenge also provides a publicly available
test dataset consisting of two categories of synthetic clips [30],
namely without and with reverberations. Each category has 150
noise clips with a SNR distributed between 0 dB to 20 dB. We
used this test set to evaluate the effectiveness of the model.

3.2. Training setup and baselines

We used Hanning window with frame length of 32 ms and frame
shift of 16 ms to transform the signals to the STFT domain.
Adam optimizer was used with a learning rate of 1e-3. For
the subband units, we set n = 15 as in [11], which means 15
neighbor frequencies are taken on each side of each input fre-
quency bin. During model training, the input-target sequence
pairs were generated as constant-length sequences, with the se-
quence length set to T = 192 frames (approximately 3 s).

In order to verify the effectiveness of the proposed model,
we compared the following models. All of the models used the
same experimental settings as well as learning target (cIRM).

FullSubNet: The model consisted of a fullband model and
a subband model, each containing two layers of stacked LSTMs
and one fully-connected layer. The fullband model had 512 hid-
den units per LSTM layer, while the subband model had 384
hidden units per LSTM layer. In addition, compared with the
subband model, the fullband model had an additional ReLU ac-
tivation function after the fully-connected layer.

FullSubNet+: To further demonstrate the advantages of
our model with a small number of parameters and excellent
performance, we introduced FullSubNet+ [14] for comparison.
Following the configuration in [14], the number of channels
in the MulCA module was 257 and the sizes of the kernels of
the parallel 1-D depthwise convolutions were {3,5,10} respec-
tively. For each fullband extractor, 2 groups of TCN blocks
were deployed, each containing 4 TCN blocks with kernel size
3 and dilation rate {1,2,5,9}. The subband model contained 2
LSTM layers with 384 hidden units for each layer.

FS-CANet: There were 2 groups of TCN blocks deployed
in the fullband extractor, each containing 4 TCN blocks with
kernel size 3 and dilation rate {1,2,5,9}. The multi-head atten-
tion in FSCA module had 8 attention heads. The subband model
contained 2 LSTM layers with 384 hidden units per layer.



Table 1: The performance of WB-PESQ [MOS], NB-PESQ [MOS], STOI [%], and SI-SDR [dB] on the DNS Challenge test dataset.

Model Year # Para
(M)

With Reverb Without Reverb

WB-PESQ NB-PESQ STOI SI-SDR WB-PESQ NB-PESQ STOI SI-SDR

Noisy - - 1.822 2.753 86.62 9.033 1.582 2.454 91.52 9.07
DCCRN-E [23] 2020 3.7 - 3.077 - - - 3.266 - -

Conv-TasNet [24] 2020 5.08 2.750 - - - 2.730 - - -
PoCoNet [25] 2020 50 2.832 - - - 2.748 - - -
DCCRN+ [26] 2021 3.3 - 3.300 - - - 3.330 - -
TRU-Net [27] 2021 0.38 2.740 3.350 91.29 14.87 2.860 3.360 96.32 17.55
CTS-Net [28] 2021 4.99 3.020 3.470 92.70 15.58 2.940 3.420 96.66 17.99

FullSubNet [12] 2021 5.64 3.057 3.584 92.11 16.04 2.882 3.428 96.32 17.30
FullSubNet+ [14] 2022 8.67 3.177 3.648 93.64 16.44 3.002 3.503 96.67 18.00

FS-CANet 2022 4.21 3.218 3.665 93.93 16.82 3.017 3.513 96.74 18.08

Table 2: Performance of WB-PESQ [MOS], STOI [%] and SI-
SDR [dB] in the comparative study 3.4 using the test set without
reverberation.

Models FSCA Concat WB-
PESQ STOI SI-SDR

FS-CANeta " % 3.017 96.74 18.08
FS-CANetc % " 2.900 96.52 17.73
FS-CANetac " " 2.966 96.57 17.96

3.3. Performance Comparison

Table 1 shows the performance of different speech enhancement
models on the DNS challenge dataset. In the table, “With Re-
verb” and “Without Reverb” refer to test sets with and without
reverberation respectively. “# Para” represents the parameter
amount of the model, which is measured in millions.

In the last three rows of Table 1, we compare the per-
formances of FullSubNet, FullSubNet+, and the proposed FS-
CANet. According to Table 1, FS-CANet outperforms the base-
line FullSubNet in all evaluation metrics with a smaller number
of parameters. In addition, Table 1 shows that the FullSubNet+,
which is a improved version of FullSubNet, has better perfor-
mance than FullSubNet. However, the FullSubNet+ also suffers
from a large number of parameters and a complex model struc-
ture. In contrast, the FS-CANet not only outperforms FullSub-
Net+, but also is achieved with a smaller number of parameters
and a simpler architecture.

To further analyse the proposed model, this paper also com-
pares it with other state-of-the-art time domain and frequency
domain speech enhancement methods [23, 25–28] on the DNS
Challenge - Interspeech 2021 dataset in Table 1. It can be con-
cluded that comparing with the latest methods, the proposed FS-
CANet shows the superior performance on noise reduction tasks
without reverberation and even more prominent performance
improvement with reverberation. This indicates that the pro-
posed FS-CANet inherits the excellent capabilities of the Full-
SubNet for reverberation effects described in [12], and greatly
improves the noise reduction ability by fullband-subband cross-
attention module.

3.4. Investigation of FSCA module

In order to investigate fullband-subband cross-attention (FSCA)
method, we use FS-CANet as the backbone and conduct exper-
iments with different fusion methods. FS-CANeta means orig-
inal FS-CANet with FSCA module for interactive fusion. FS-

CANetc represents the FS-CANet with the concatenation be-
tween the fullband embedding and subband units as described
in FullSubNet [12], and it does not contain FSCA module. FS-
CANetac denotes the FS-CANet that uses the above concate-
nation between fullband embedding and the fusion embeddings
outputted by the FSCA module. Table 2 shows the results of
the model on the test set without reverberation in three cases,
where “FSCA” refers to the use of FSCA module while “Con-
cat” refers to the use of the above concatenation approach.

According to Table 2, the performance of FS-CANeta, FS-
CANetac are better than FS-CANetc. This indicates that the
proposed FSCA module can effectively improve the perfor-
mance of the model in terms of both PESQ and SNR. In ad-
dition, the performance of FS-CANeta is better than that of FS-
CANetc, which shows that the FSCA module can effectively
replace the role of the concatenation approach, and reduce the
burden of the subsequent subband model by decreasing the in-
put dimension. Moreover, It can be found that the performance
of FS-CANetac is not as good as FS-CANeta. This is probably
because the fusion embeddings has conflicts with the informa-
tion contained in the original fullband embedding.

4. Conclusion and Future Work
This paper proposes a new single-channel speech enhancement
framework named FS-CANet. It adopts a fullband-subband
cross-attention (FSCA) module to interactively fuse the global
and local information. This paper also deploys a fullband ex-
tractor composed of stacked TCN blocks to instead the full-
band model in FullSubNet for reducing model size. Experi-
mental results1 demonstrate the effectiveness of the fullband-
subband cross-attention module. This paper also compare FS-
CANet with other state-of-the-art methods on the DNS chal-
lenge dataset, which shows that the superior performance of
proposed FS-CANet.

This paper only considers incorporating fullband informa-
tion into the subband information. In the future, we will explore
bi-directional fusion of the subband and fullband features.
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