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Abstract

Podcasts are conversational in nature and speaker changes are
frequent—requiring speaker diarization for content understand-
ing. We propose an unsupervised technique for speaker di-
arization without relying on language-specific components. The
algorithm is overlap-aware and does not require information
about the number of speakers. Our approach shows 79%
improvement on purity scores (34% on F-score) against the
Google Cloud Platform solution on podcast data.

Index Terms: Speaker Diarization, Sparse Optimization

1. Introduction

Speaker Diarization is the process of logging the timestamps
(or writing in a diary—thus the term “diarization”) when differ-
ent speakers spoke in an audio recording. At Spotify, we have
found that reliable speaker diarization is a foundational tech-
nology we need in order to build downstream natural language
understanding pipelines for podcasts. Podcasts are more diverse
in content, format, and production styles [11 2| 13| 4] than clas-
sical application areas for diarization—requiring a revisit to the
techniques.

Many established diarization techniques utilize a pipeline
similar to the one shown in Figure EKA) [S]. A typical pipeline
involves several independent components. The Embedding
component segments the audio into small chunks and converts
each chunk into a vector (e.g. i-vectors [6]], d-vectors [7], or
x-vectors [8]) which represents the auditory characteristics of
the speech heard in a chunk and the speakers who produce it.
The Clustering component divides those vectors into several
groups by applying Spectral Clustering [9, [10, [11], Agglom-
erative Clustering [[12], or other techniques [13}14]. Finally, a
Post Processing component takes care of some issues not han-
dled by the previous components, such as detecting overlapping
speech with more than one simultaneous speaker [[15].

Classical research in speaker diarization was focused on in-
dependently improving the performances of these blocks [3].
However, with growing popularity in the end-to-end [16] learn-
ing models using e.g. deep learning, recent implementations
have used combinations of multiple modalities (e.g. audio and
text) [17]. For instance, Google has developed an algorithm
that performs speech recognition jointly with diarization [18];
d-vectors have been proposed to utilize both audio and text [7].

A drawback of incorporating textual information into a di-
arization algorithm is it also renders the algorithm dependent
on language. Such an algorithm needs to be retrained for ev-
ery supported language which quickly becomes impracticableﬂ
Human perception is quite capable to perform speaker diariza-
tion without understanding the language, and diarization would

As of March 8%, 2022, e.g., Google cloud transcription supports
speaker diarization for only a handful languages among the languages
supported: https://cloud.google.com/speech-to-text/docs/languages
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Figure 1: (A) Classical speaker diarization approach vs. (B)
our proposed approach

seem to be a task which should be solvable automatically with-
out specific training or specific knowledge resources for the lan-
guage being spoken. In this paper, we propose an audio-only
solution for speaker diarization which is naturally language ag-
nostic.

The clustering component introduces several problems for
the overall diarization effort. Typical clustering algorithms de-
pend on a pre-determined number of clusters—in this applica-
tion scenario, number of distinct speakers. However, it is im-
practical to decide the number of speakers beforehand in the
speaker diarization scenario. Additionally, many clustering al-
gorithms group the audio segments into disjoint clusters. This
approach makes identifying overlapping speech (a frequent oc-
currence in natural and unscripted conversation, such as in pod-
casts) an afterthought, typically solved by introducing post-
processing modules based on e.g. Hidden Markov Models [19],
neural networks [20], or other methods [21]. Fully supervised
speaker diarization approaches have been proposed [22f], but
supervision requires manual annotation of large training data
sets—which is costly, time-consuming, and dreary work for hu-
man annotators. In addition, a training dataset must be balanced
over various languages, production styles, and format categories
(e.g. audiobooks, enacted drama, panel discussions etc.) which
adds up to being a considerable engineering effort.

We propose an unsupervised speaker diarization algorithm
that avoids all the problems described above by replacing the
clustering and the post-processing components with a sparse (£1
regularized) optimization approach as shown in Figure[T{B). We
use a pretrained audio embedding model with convenient char-
acteristics that makes the algorithm overlap aware. The hyper-
parameters required for our proposed processing model and al-
gorithm are automatically adjusted by employing theories from
compressed sensing [23} [24] and linear algebra. Our algorithm
is similar to Vipperia et al. [25] but unlike that, the proposed
algorithm doesn’t need any manual intervention for construct-
ing a global basis for overlap handling. The embedding basis
is constructed automatically by utilizing an ¢;-regularization
over a local basis matrix. This approach makes it completely
tuning-free from the users’ perspective—enabling the usage in



large scale setting as in Spotify. The proposed solution is also
highly scalable with hardware such as Graphical Processing
Units (GPUs).

Finally, we compare the performance of the proposed algo-
rithm against several industry standard solutions such as Google
cloud platform and PyAnnote.

2. Methods

Our proposed approach has two major steps: a) Construction of
the embedding signal, and b) Sparse optimization.

2.1. Constructing the Embedding Signal

We generate a sequence of M -dimensional (M = 512) vectors
for an audio recording using a pre-trained VggVox [26] embed-
der. VggVox is a convenient choice for our purposes, for several
reasons. It is trained on the VoxCeleb [26] dataset which con-
tains over 1 million utterances for 6,112 celebrities from around
the world in various contexts and situations. Due to the “wild”
nature of the VoxCeleb dataset, VggVox is able to capture not
only the acoustic characteristics, but also dialectal and stylis-
tic speech characteristics. This allows us to use vector similar-
ity metrics (such as cosine similarity) to identify whether two
speech segments are from the same speaker.

VggVox vectors have the attractive and convenient charac-
terstic of adhering to a linearity constraint—i.e. a VggVox em-
bedding, V(), of an audio chunk from speaker S1 of length p
concatenated with an audio chunk from speaker S of length g,
V(S1[1 : p] @ S2[1 : q]) is approximately equal to its weighted
arithmetic average:

1
m(pV(Sl [1:p]) +qV(S21:q])) 6]

We segment a recording into a series of overlapping chunks
by sliding a 6-second window over the recording with a variable
step size of 1 second or less. We set the step size to be such that
it yields at least 3,600 chunks and compute a vector for each
using the pretrained VggVox model.

We use MobileNe{"|27] to detect non-speech regions in the
recording and we set the vectors for non-speech regions to zero.
We arrange the sequence of these vectors for a recording into
a matrix which we call the embedding signal, £ € RM*T so
that vectors from each of the 7' time-steps are represented in
the columns of the matrix. We normalize the embedding signal,
£, such that the columns are unit vectors.

2.2. Speaker Diarization using Sparse Optimization

The embedding signal, £, has a useful property that allows us
to use techniques from compressed sensing [23| 24] for speaker
diarization. The embedding signal is, in general, low rank
with many dependent columns. This is due to the fact that the
step size of the sequence is short and speakers do not typically
change turns at a rate higher than the step size which means
that the columns of £ remain identical over several consecutive
time-steps. It is possible to factor out £ as a matrix product of
an embedding basis matrix, ¥ and an activation matrix, A as
shown in Figure 2} or, mathematically as in equation 2]

E=VA 2)

where the columns of ¥ € RM** represent the M-
dimensional embeddings for each speaker in the audio; k is the

2Ak.a. YAMNet: https://tthub.dev/google/yamnet/1
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Figure 2: Model of the Embedding Signal as a matrix product
of Embedding Basis Matrix and Activation Matrix

maximum number of allowed speakers, and 7" is the length of
the embedding signal, i.e. the number of timesteps. The rows
of A € R**T represent which speaker is activated at a certain
timestep. The elements of A can take a value in O to 1. This
model converts the diarization problem into a matrix factoriza-
tion problem. This formulation does not require us to know the
exact number of the speakers in the audio. As long as the value
of k is large enough, this formulation works by setting the acti-
vation and embedding for all the unused speakers to zero.

2.2.1. Formulating the optimization problem

We solve the matrix factorization problem using a sparse op-
timization approach. We minimize the Zl-norrrﬁ of the differ-
ence, ||€— WA |1, to enforce model constraint as in equation[2]
In order to obtain the unique solution of this under-determined
problem, we enforce sparsity constraint over both ¥ and A by
minimizing their ¢; norms, respectively. From the diarization
perspective, the sparsity constraint over W enforces that the em-
bedding signal be reconstructed by utilizing as few speakers as
possible. On the other hand, sparsity over A enforces the solu-
tion contains as few nonzero elements for A as possible. Fur-
thermore, we also enforce that columns of W are each within a
unit disk and the elements of A is within the range [0, 1].

The exact values of the embeddings may vary slightly from
time to time depending on the background music or noise in the
audio. To address this concern, we introduce a jitter loss that
enforces continuity and penalizes producing too many broken
values in the rows of A. This loss is expressed as an £1-norm
of the difference between consecutive values in the rows of A.
The overall optimization problem is shown below:

minimize Hg — ‘I’AH1 =+ >\1H\I’||1 + A2||AH1 +X3J (3)

wrt ¥, A

subject to, V,. 0.0 < Afr,t] < 1.0
. Vel £ 1.0

o

an

kT
.. 1
where, jitter loss, J = T Z Z |A[r,t] — Alr,t — 1]|

r=1t=2

2.2.2. Solving the optimization problem

The objective function shown in equation [3] is non-convex.
However, when either W or A is held fixed, it becomes con-
vex over the other parameter. We solve this optimization prob-
lem by alternatingly updating the two model parameters. We
utilize the fast iterative shrinkage thresholding algorithm 28]
(FISTA) to enforce sparsity over the model parameters, ¥ and
A. In addition, we project the parameters in their respective fea-
sibility space at every iteration. We implement the optimization
algorithm in Tensorflow® to take advantage of the automatic

3The £1-norm of X € RV || X||; := 22U VX [u,v]|

u=1 v=1



Algorithm 1: Speaker diarization
Input: £, k

Output: &, A

14— 0;

A < random, ¥ < random;
while not converge do
Compute loss,

L= —PAl1 + M| ¥[l1 + Azl[Allx + Asd:
Calculate gradient of L w.r.t ¥, Vg L;
6 Update ¥ using Adam:

D 9y ye L

7 | @D  shrink(wEHD);

8 | WO « projectunitaisk(TT);
9 Recompute loss,

L=€—-%A1+ Mm%+ Aef[Alls + Asd;
10 Calculate gradient of L w.r.t A, Va L;
11 Update A using Adam

ACHD  AD YA L

12 AU ¢« shrink(AUTY)

13 AUFY « project)o 1) (AUTY);

14 14 1+1

AW N =

wm

gradient computation using the Wengert [29] lisﬂ approach. As
aresult, we do not need to analytically compute the gradients of
the objective function. Similar functionality is also available in
PyTorch®. We use Adam [30] for updating the model parame-
ters. The overall optimization process is shown in Algorithm [I]

The shrink operation on a matrix X is defined in equa-
tion 4| where « and ) represents the learning rate and the La-
grange multiplier respectively. This operation pushes each com-
ponent of the matrix towards zero and thus achieves sparsity
quickly [28].

shrink(X) := sign(X)maz(0,|X]| — ) 4)

The projectunitdisk and project g 1) are two projection op-
erations responsible for keeping the magnitudes of the model
parameters in check. They are defined in equation [5]and equa-
tion[6] respectively.

. X[, e
prOJECtunitdisk(X) = m Veolumn index,c (5)

projectjg 1(X) := max {0, min (1, X)} (6)

For A1, A2, and A3, we use the values 0.3366, 0.2424, and
0.06 respectively. We obtained these values using a Bayesian
Hyper-parameter search as implemented in the Google Cloud
Platform [31]]. We used a randomly sampled subset (n=60) from
the validation set.

2.2.3. Determining the maximum number of speakers

The use of £1 norm of ¥ in equation [3|ensures that algorithm
utilizes as few embedding vectors as possible to reconstruct the
embedding signal, £. This process relieves the users from the
burden of supplying an exact number of speakers to the al-
gorithm. However, setting a reasonable maximum number of
speakers (k) is still crucial because setting it too high would

*Ak.a. Gradient Tape in Tensorflow
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Figure 3: A practical situation where the proposed algorithm is
able to recover the true speaking activity from an overlapping
region

make the computation unnecessarily slow. We obtain a reason-
able value for k from the estimated rank of the embedding sig-
nal. The columns of the embedding signal can be thought of
just the embeddings of different speakers that are “copied” over
time. In that scenario, it is possible to compute the number of
the speakers by computing the Singular Value Decomposition of
the embedding signal and counting the number of non-zero sin-
gular values. However, the measurement noise in the speaker
embeddings makes the situation a bit complicated because it
yields many small but non-zero singular values. We circum-
vent this situation by sorting the singular values in a descending
order and find the “knee” of the curve using the Kneedle [32]]
algorithm. We multiply the location of the knee by a factor of
2.5 which gives us a useful margin of error for the upper bound
for number of speakers and ensures that the sparsity constraint
for the embedding basis matrix still holds.

2.2.4. Overlap awareness

The utilization of the sparsity constraint along with the linear-
ity property as in equation [I] allows the proposed algorithm to
practically identify and disambiguate regions with overlapping
speakers. We describe the rationale for this capability with the
help of figure[3] Let us assume the rows A and B in figure[3|show
the regions in the audio recording where speaker 1 and speaker
2 are speaking respectively. The resulting embedding signal is
shown in row C. Noticeably, there is a region in this row where
the two speakers overlap. Therefore, as per equation [1} the
resulting embedding sequence in this overlapping region will
be a linear combination of the embeddings from speaker 1 and
speaker 2.

There are two ways of accommodating this resulting em-
bedding sequence using the embedding basis matrix and ac-
tivity matrix. The overlapping region can be interpreted as a
new speaker embedding with the corresponding activity value
of 1.0. Alternatively, the activity value for both speakers can
be set to be nonzero without introducing a new speaker embed-
ding. Since the introduction of a new embedding would incur
additional loss, the optimization algorithm will prefer the sec-
ond approach. There are settings in which this algorithm will
fail to identify overlapping regions (e.g. when a speaker al-
ways is overlapped, or when the resulting linear combination of
speaker embeddings happens to exactly match the embedding
of another speaker), but these are unlikely to occur in practice.

3. Experiments

In order to ground the diarization performance of the pro-
posed algorithm, we evaluate it against a few publicly avail-
able speaker diarization solutions. We conduct the evaluation
over the two largest publicly available annotated datasets: This
American Life Podcast Dataset [33] and VoxConverse [34]].
The “This American Life Podcast” dataset [33] consists of
663 episodes from a podcast with the same name. The dataset



Table 1: Diarization results on two data sets

| VoxConverse data set

\ This American Life Podcast

Method | DER  Purity Coverage F | DER Purity Coverage F

GCP 0.39 0.74 0.92 0.80 0.63 0.47 0.93 0.62
Spectral Clust. 0.50 0.70 0.87 0.76 0.53 0.73 0.77 0.73
PyAnnote v1.1 0.42 0.68 0.92 0.76 0.38 0.73 0.75 0.74
PyAnnote v2.0 0.12 0.90 0.92 0.91 0.25 0.94 0.92 0.93
One Speaker 0.53 0.57 1.00 0.70 0.77 0.32 1.00 0.47
Random 0.67 0.57 0.52 0.52 0.83 0.32 0.48 0.37
Sparse Opt. (Ours) ‘ 0.56 0.90 0.60 0.70 ‘ 0.35 0.84 0.84 0.83

consists of dialog transcripts and human annotated speaker la-
bels at the utterance level. It consists of a total of 637 hours of
audio. On average, each audio recording is 57.7 minutes long
and contains 18 speakers in this dataset.

The “VoxConverse” dataset [34]] consists of 448 audio
recordings from various speakers. This dataset was created by
mixing together a collection of audio samples from YouTube
videos. The speaker labels were obtained using an automated
pipeline that can recognize the speakers’ face, and can asso-
ciate the audio with the speaker by analyzing the facial move-
ments [34]. The average audio length in VoxConverse is 8.5
minutes and contains 5.5 speakers per audio.

We compare the proposed diarization algorithm over sev-
eral other approaches as shown in Table [[] GCP is a com-
mercial baseline representing the speaker diarization service
provided by Google Cloud Platform as of March 8", 2022.
Pyannote is a Python open-source toolkit which also provides
trained diarization models [35]. PyAnnote is a neural-network-
based supervised approach for diarization currently released
as version 1.1. A successor, PyAnnote v2.0, is currently ac-
tively under development with the technical details undisclosed
at the time of writing. Spectral Clustering is an in-house
implementation of the classical diarization pipeline using the
VggVox [26] embedding and spectral clustering. Comparison
against this baseline provides an indication of how much of
the change in the evaluation metrics is caused by the sparse
optimization algorithm alone, and not by the improved dis-
criminative capability of the embeddings. We also define two
naive baselines to evaluate the lowest bar for diarization: One
Speaker, where every word in the transcript is assigned to a sin-
gle speaker, and Random, where every word in the transcript is
randomly assigned to some speaker.

For evaluation, we use some standard diarization perfor-
mance metrics from the Pyannote metrics [35] python library.
Diarization Error Rate (DER) is the sum of the duration
of non-speech regions incorrectly classified as speech (false
alarm), the duration of speech regions incorrectly classified as
non-speech (missed detection), and the duration of speaker con-
fusion, as a ratio of the total duration of speech for all speakers.

Purity is a precision-related measure representing the qual-
ity of the each predicted speech segments. It is represented by
equation [7} where |cluster| and |speaker| represent the speech
duration of the predicted speech segments and the reference
speech segments respectively. |cluster N speaker| represents
the duration of their intersection. Coverage is the correspond-
ing recall-related measure calculated for each reference speech
segment as in equation[8] The F score is the harmonic mean of
purity and coverage. A better system has lower DER, or higher

purity, coverage, or F score.

D eluster MaXspeaker [Cluster N speaker|
chusler |CIUSter‘

purity = @)

2 speaker MXelusier | speaker M cluster]

Zspeaker |speaker|

It is evident from Table [T] that the sparse optimization al-
gorithm works much better in the This American Life podcast
dataset than the VoxConverse dataset. This behavior is due to
the fact that VoxConverse audio recordings are much shorter
and, therefore, result in fewer columns in the embedding signal
as compared to the rows. This transforms the matrix factor-
ization problem from the domain of under-determined systems
to an over-determined system that violates the assumptions for
sparse optimization formulation. However, we are interested
in diarization solutions for the podcast applications—which are
typically long, and therefore suitable for our use case.

The overall diarization purity for the proposed algorithm is
better than GCP, spectral clustering, and PyAnnote v1.1 by a
large margin: the predicted clusters are more pure, i.e. not a
mix of speakers, at a certain cost in coverage. The overall per-
formance (F-score) also shows similar trend. It is second only
to PyAnnote v2.0—for which the algorithm is still undisclosed.
If PyAnnote v2.0 works by taking a supervised approach it has
a risk of being susceptible to domain mismatch. In addition,
supervised approaches are often difficult to maintain due to dif-
ficulties in collecting data and the amount of engineering effort
it takes to keep the dataset balanced for preventing bias and en-
suring fairness.

coverage =

4. Conclusions

We present a novel method for speaker diarization that is
unsupervised—does not require human annotations which are
difficult to collect and maintain. The algorithm performance
beats a commercial solution (GCP) across all standard metrics.
It is completely audio-based, therefore, agnostic to transcrip-
tion or any other language-dependent processing. In addition,
it removes the burden of supplying an exact number of speak-
ers from the users; and thus works in a tune-free or self-tuned
fashion. Accommodating for the overlapping speech is built
into the design of the estimator, therefore removes the necessity
for any ad-hoc post-processing. Being a first order optimization
approach that is implemented in TensorFlow, this algorithm is
massively parallelizable and has great potential for speed im-
provement on the right kind of processing infrastructure (e.g.
utilizing TPU’s or GPU’s).
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