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Abstract

State-of-the-art automatic speech recognition (ASR) systems
perform well on healthy speech. However, the performance on
impaired speech still remains an issue. The current study ex-
plores the usefulness of using Wav2Vec self-supervised speech
representations as features for training an ASR system for
dysarthric speech. Dysarthric speech recognition is particu-
larly difficult as several aspects of speech such as articulation,
prosody and phonation can be impaired. Specifically, we train
an acoustic model with features extracted from Wav2Vec, Hu-
bert, and the cross-lingual XLSR model. Results suggest that
speech representations pretrained on large unlabelled data can
improve word error rate (WER) performance. In particular, fea-
tures from the multilingual model led to lower WERs than filter-
banks (Fbank) or models trained on a single language. Improve-
ments were observed in English speakers with cerebral palsy
caused dysarthria (UASpeech corpus), Spanish speakers with
Parkinsonian dysarthria (PC-GITA corpus) and Italian speakers
with paralysis-based dysarthria (EasyCall corpus). Compared
to using Fbank features, XLSR-based features reduced WERs
by 6.8%, 22.0%, and 7.0% for the UASpeech, PC-GITA, and
EasyCall corpus, respectively.

Index Terms: wav2vec, speech recognition, dysarthric speech,
Parkinson’s disease, cerebral palsy

1. Introduction

Individuals with Parkinson’s, cerebral palsy, amyotrophic lat-
eral sclerosis (ALS), and other disorders greatly benefit from
being able to use speech-enabled technology. However, most
automatic speech recognition (ASR) systems are not able to ac-
curately recognise speech from patients with dysarthric speech.
Several reasons cause low dysarthric speech recognition perfor-
mance such as imprecise articulation that deviates from stan-
dard healthy speech. Furthermore, dysarthric speech not only
varies between speakers but can also vary within speakers and
in severity. Dysarthria itself is subdivided into several types
such as flaccid dysarthria, spastic dysarthria, ataxic dysarthria,
hypokinetic dysarthria [1].

Another reason for degraded performance on dysarthric
speech recognition is the scarcity of impaired speech data.
While standard speech recognizers are trained on thousands
of hours of speech data, dysarthric speech is more difficult to
collect. A recent method of alleviating the issue of speech
data scarcity is the use of self-supervised representation learn-
ing. This method involves pretraining a network on a large
unlabelled corpus. The network learns speech representations

from raw audio which can be used in downstream tasks such
as speech recognition. Speech representation learning mod-
els such as Wav2Vec2.0 [2], and Hubert [3], have shown that
learned representations produce state-of-the-art results on a va-
riety of speech tasks: Speaker and language identification [4]],
emotion recognition [5]], spoofing speech detection [6]], and sec-
ond language mispronunciation detection [7]. However, there is
a lack of studies regarding the benefits of Wav2Vec or other
speech representation models for impaired speech tasks like
speech recognition or diagnosis.

1.1. Self-Supervised Representation Learning

Since labelled data are difficult to obtain, research into pre-
training with unlabelled data has grown. In general, self-
supervised representation learning involves training a model
on a large amount of unlabelled data and learning an acous-
tic representation to be used on a downstream task. For ex-
ample, Figure[T]displays the Wav2Vec2.0 model which takes a
raw waveform as input to several blocks of temporal convolu-
tions. The output is then masked and fed to a transformer-based
context network that uses convolutional layers to learn relative
positional embeddings. The output of this feature encoder uti-
lizes product quantization to select quantized representations
which can then be used on a downstream task in replacement of
traditional features such as Mel-frequency cepstral coefficients
(MFCC). The training process depends on a contrastive loss
where the model needs to identify the true quantized speech rep-
resentation. Other approaches include using BERT-like masked
prediction (Hubert) [3] or masked reconstruction (TERA) [8].
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Figure 1: Wav2Vec 2.0 framework for learning speech represen-
tations [2)].




1.2. Related Work

Several techniques have been proposed to handle the lack of
dysarthric speech data. Augmenting healthy speech data to
replicate dysarthric speech was explored in [9} [10]. In [11],
a speaker-dependent phonetic analysis-based augmentation
method was proposed. A generative adversarial network(GAN)
based approach that directly modifies dysarthric speech to
sound more healthy showed Word Error Rate (WER) improve-
ments in [12].

WER is not only useful for assessing speech recognition
systems but also for assessing speech impairments [13]. The
PEAKS system for evaluating speech and voice disorders re-
lies on automatic speech recognition for analyzing impairments
in laryngectomees and children with cleft lip and palate [14].
In [15], two features based on the word accuracy and the dy-
namic time warping algorithm were proposed to assess intelligi-
bility deficits in Parkinson’s disease (PD) patients. The suitabil-
ity of these features was evaluated on the PC-GITA corpus [16]
for the recognition of words in several sentences and used to
discriminate between PD patients and healthy control (HC) sub-
jects (accuracies of up to 92%). Similarly, an ASR system based
on Hidden Markov Models (HMM) was proposed in [17]. The
authors evaluated this approach in the same corpus but in diado-
chokinetic tasks, where WERs of 2.90 for HC subjects and 7.10
for PD patients were reported.

Pretrained speech representations for impaired speech is a
relatively unexplored field. Positive results were obtained for
Alzheimer’s detection through speech with Wav2Vec [18, [19].
However, limited studies have evaluated the effectiveness of
speech representations for dysarthric speech recognition. The
current study explores using Wav2Vec speech representations to
handle both the variability of dysarthric speech and the scarce-
ness of data. In particular, the Wav2Vec 2.0 model trained on
cross-lingual data (XLSR) should have been exposed to a large
variety of similar phonemes that could be useful for dysarthric
speech recognition. The rest of the paper is organized as fol-
lows. Section 2 presents the Spanish and English dysarthric
speech datasets. The experimental procedures and results are
presented in Sections 3 and 4. Lastly, Section 5 concludes the
paper with some future directions.

2. Dysarthric Speech Databases
2.1. UASpeech

The UA-Speech corpus [20] is composed of 15 patients with
cerebral palsy and 13 healthy controls. Participants were re-
cruited by the Rehabilitation Education Center at the University
of Illinois between the ages of 19 and 58. The data is split into
three blocks. Each block contains 255 words from all 28 speak-
ers. From those 255 words, the same 10 digits, 26 radio al-
phabet words, 19 computer commands and 100 common words
occur in each block. There are also 300 uncommon words that
are split between the three block such that each block contains
different uncommon words.

Speech intelligibility was assessed to obtain the severity of
dysarthria for each speaker. Five naive listeners were instructed
to provide orthographic transcriptions of each word spoken by
an individual with dysarthria. The correct percentage was then
averaged across five listeners to obtain each speaker’s intelli-
gibility. Speakers were classified into very low (0-25%), low
(26%-50%), mid (51%-75%) and high (76%-100%) levels of
intelligibility.

2.2. Extended Version of PC-GITA

This dataset is part of an extended version of the PC-GITA cor-
pus [I16]. It considers speech recordings from 50 PD patients
and 50 HC subjects in the same acoustic conditions, and 20 PD
and 20 HC in different non-controlled acoustic conditions. All
participants are native Colombian Spanish speakers that were
asked to read a total of 21 isolated words. The patients were
evaluated by an expert neurologist according to the third part of
the Movement Disorders Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS-III) which ranges from 0 to 152,
where 0 means completely healthy and 152 means highly im-
paired [21]. All participants were evaluated by three different
phoniatricians according to the modified Frenchay Dysarthria
Assessment (mFDA) [22] scale, which ranges from 0 to 52,
where 0 means healthy speech and 52 means highly impaired
speech production. For the labelling of the participants the me-
dian between the three phoniatricians was considered. MDS-
UPDRS-III aims to assess the neurological state of the PD pa-
tients, while mFDA evaluates the dysarthria level. Additional
demographic information of the participants is presented in Ta-

ble[il

Table 1: General demographic information of the subjects in
the extended PC-GITA dataset. Higher UPDRS and FDA scores
reflect more impairments in speech.

PD patients ~ HC subjects

F/M F/M
Number of subjects 36/34 34/36
Age [years] 59.8/62.6 59.4/62.8
MDS-UPDRS-III 36.4 /404

mFDA 28.1/29.3 6.6/8.7

Values are expressed as mean. F: female. M: male.
The MDS-UPDRS-III ranges from 0 to 132 and
the mFDA ranges from 0 to 52.

2.3. EasyCall

The EasyCall corpus consists of 24 healthy (10 females, 14
males) and 31 dysarthric (11 females, 20 males) Italian speak-
ers [23]. A range of disorders causing dysarthria includes
Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lat-
eral Sclerosis, peripheral neuropathy, myopathic or myasthenic
lesions. However, among the 31 patients, 24 speakers have
paresis (partial paralysis) based dysarthria. The severity of
the dysarthria was assessed with the Therapy Outcome Mea-
sure (TOM) [24] by a neurologist. The TOM score ranges
from 1 to 5 and corresponds to mild, mild-moderate, moderate,
moderate-sever, and severe dysarthria. The corpus is specifi-
cally created to improve smartphone ASR systems and includes
simple mobile command phrases like scroll up” (Scorri verso
I’alto), "new contact” (Nuovo contatto) , “end call” (Termina
chiamata). Speakers recorded 66 to 69 sentences using an in-
house smartphone application.

3. Experiment

The training process with the UA-Speech data follows from pre-
vious studies using the database [11]]. All audio from the 13
healthy controls is used for training, along with block 1 and
block 3 from dysarthric speakers. Testing is conducted on block
2 of dysarthric speakers. We also train a model solely on control
speakers. Unlike previous studies using UA-Speech, we do not



trim silences from the audio.

With the PC-GITA corpus, we run two main experiments.
First, we train with all control speakers and then test with
dysarthric speakers from the same recording session. We also
evaluate the model with dysarthric speakers from a second
recording session and different acoustic conditions. Second, we
train an acoustic model with both control and dysarthric speak-
ers from recording session 1 and evaluate on different dysarthric
speakers from the second recording session.

Similar to the PC-GITA corpus, the EasyCall experiments
include a training session with only control speakers and an-
other session with control and dysarthric speakers (no speaker
in the test set in the train set). The train and test split was se-
lected based on the split from the EasyCall article [23]. The test
set contains 12 dysarthric speakers (7 male, 5 female) ranging
from mild to severe dysarthria.

Speech features are extracted using the base and large
Wav2Vec2.0 model [2], the multilingual XL.SR model [25]], and
Hubert [3]. Large Wav2Vec and Hubert models are pretrained
on 60,000 hours of English data from the LibriVox database.
The XLSR model is trained on 56,000 hours of audio from 53
different languages using the Multilingual Librispeech, Com-
monVoice, and Babel data sets. The UA-Speech corpus is
trained with Wav2Vec, Hubert and XLSR models, while the PC-
GITA is only trained with the XLSR model. Acoustic models
are built using the ESPnet [26] toolkit. All acoustic models are
trained end-to-end with a conformer encoder and transformer
decoder [27]]. We use Byte Pair Encoding sub-words as output
units. 500 sub-words for English, and 178 for Spanish. No lan-
guage model is used when decoding. All experiments use the
same acoustic model with only changes in learning rate.

4. Results
4.1. UA-Speech Results

Results in Table [2] show that all self-supervised representation
trained models outperform baseline filterbank (Fbank) features.
The Wav2Vec 2.0 model showed WER improvements of 29.3%
compared to the Fbank model’s 32.9%. However, the best per-
forming model is the multilingual XLSR model with a WER
of 26.1% and a character error rate (CER) of 24.1%. Results
from individual intelligibility categories are examined in Ta-
ble[3] These results reflect the speaker-dependent models from
Table 2| Improvements were seen across all categories. Com-
pared to Fbanks, XLSR feature reduce WER by 5.4% for very
low, 8.9% for low, 12.2% for mid, and 3.8% for high intelligi-
bility speakers.

Table 2: Performance of speech representation with the UA-
Speech data when conducting speaker-dependent training.

Model WER(%) CER(%)

Fbank 32.9 30.8
Wav2Vec 2.0 29.3 27.7
Hubert 29.7 28.2
XLSR 26.1 24.1

According to Table[d] XLSR extracted features are the most
robust for speaker-independent models only trained on healthy
speech. Compared to the 63.9% WER from using Fbanks, Hu-
bert and XLSR based features achieved WERs of 50.3% and
47.3% respectively. In general, features extracted from the

Table 3: UA-Speech speaker-dependent WERs (%) of speech
representation based on intelligibility categories.

Model Verylow Low Mid High
Fbank 67.4 374 315 99
Wav2Vec 2.0 66.7 333 363 67
Hubert 68.0 36.0 234 6.2
XLSR 62.0 286 193 6.2

multilingual XLSR model outperformed Wav2Vec, Hubert, and
Fbank features for all English experiments.

Table 4: Speaker-independent WER performance of speech rep-
resentation with the UA-Speech data.

Model WER(%) CER(%)

Fbank 63.9 64.4
Wav2Vec 2.0 47.6 44.3
Hubert 50.3 474
XLSR 47.3 45.0

4.2. PC-GITA Results

Results with the PC-GITA data is limited to the multilingual
XLSR model. Training sets for all conditions use healthy
speech data from recording session 1, while testing is conducted
on either session 1 or session 2 data from dysarthric speakers.
XLSR-based features show improvements in both session 1 and
2 compared to Fbanks, see Table[5] The effectiveness of XLSR
features is further emphasized by the superior performance on
session 2 which contains recordings with different speakers and
different acoustic conditions. Further improvements are seen
by XLSR-PD when including speech from PD patients. A CER
of 4.5% was achieved when training on healthy speech and PD
speech from session 1. Table [6] displays results when dividing
speakers by MDS-UPDRS III and mFDA scores. As there is no
official or standard method of classifying speakers into severity
levels we simply divide speakers into three groups (low, mid,
and high). Depending on the measure type, CERs range 8.5% to
25.5% when training with Fbanks and between 1.7% and 10.9%
when training on XLSR features.

Table 5: Fbank and XLSR models are trained on healthy speech
data only. XLSR-PD, and Fbank-PD are trained on both
healthy and dysarthric speech from Session one.

Model Data  WER(%) CER(%) Test Sess.

Foank .o 20.9 13.7 |

XLSR min 6.10 43

Fbank R 46.6 32.5

XLSR ~ O8min 50 16.1 2
Foank-PD 34.9 20.8 5
XLSR-PD min 12.9 45

4.3. EasyCall Results

Similar to the PC-GITA results, acoustic models trained on
XLSR-based features outperform traditional Fbank features
presented in Table Furthermore, results from our experi-
ments show lower WER’s than the commercial ASR systems



Table 6: Severity-based performance (CER%). UPDRS scores
were divided into low (0-30), mid (31-60), and high (61-92).
Similarly, mFDA scores are divided as low (0-17), mid (18-34),
and high (35-52). Higher scores reflect more impairments in
speech.

Model Scale Low Mid High
Fbank  MDS-UPDRS-IIT 85 151 255
an mFDA 9.8 104 238
MDS-UPDRS-IIT 1.7 48 109

XLSR mFDA 41 27 80

(Microsoft and IBM speech-to-text) used for evaluation in the
EasyCall article. In the case of training on healthy speech only,
XLSR trained systems reduced the WER from 31.8% to 24.8%,
while including dysarthric speech data further decreases the
WER to 16.5%.

Table 7: XLSR-PD, and Fbank-PD are trained on both healthy
and dysarthric speech from Session one.

Model Train Data WER(%) CER(%)
EasyCall ASR1 [23] - 61.90 -
EasyCall ASR2 [23] - 135.26 -

Fbank 4 hours 31.8 254

XLSR 4 hours 24.8 19.6

Fbank-PD 9 hours 22.6 17.3
XLSR-PD 9 hours 16.5 12.1

Table 8: EasyCall CERs(%) based on TOM score ranges. Re-
sults are from models trained only with healthy speech

Model Low Mid High

Fbank 11.8 31 88.8
XLSR 72 284 739

4.4. Visualization

Figure 2| shows the spectrogram of a healthy speaker and a
speaker with dysarthria producing the word “number”. From
the healthy speaker’s waveform and spectrogram, we see a
clear distinction between the two syllables in /nam.bar/. Both
Fbank, and XSLR trained models correctly predict the correct
word number. The distinction between the two syllables in the
word number is less apparent in the speaker with dysarthria.
Instead, the two syllables are blended together and an Fbank
trained model incorrectly predicts the word as “time”. While
this prediction is very wrong, by looking at the spectrogram it
is understandable prediction. The first phoneme in /tarm/ is the
stop consonant /t/ which is often visualized as a sudden burst.
This is followed by a diphthong vowel which tends to be repre-
sented as a long segment.

Second, we can examine the raw XLSR embeddings used
to train the acoustic model. From Figure 3] we see that the
multilingual model clusters the three languages separately. Fur-
thermore, while healthy and dysarthric speakers from PC-GITA
show a large overlap in their representations, English and Ital-
ian speakers display slight non-overlapping clusters, possibly
due to more severe dysarthria in the UASpeech and EasyCall.

Healthy speaker

Fbank result: “number”
XLSR result: “number”

Speaker with cerebral palsy

12 14

Fbank result: “time”
XLSR result: “number”

Figure 2: Spectrogram of the word "number” for a healthy (top)
and dysarthric (bottom) speaker.

Healthy-EN
Dysarthria-EN
Healthy-ES
Dysarthria-ES
Healthy-IT
Dysarthria-IT

-0 -20 [ 0 0

Figure 3: English, Spanish and Italian T-SNE [28] embedding
representation of isolated words using XLSR raw embeddings.

5. Conclusion

This paper evaluates the effectiveness of self-supervised repre-
sentation learning for dysarthric speech recognition. We train
acoustic models with features extracted from Wav2Vec2.0, Hu-
bert, and XLSR models. Features extracted from the multilin-
gual XLSR model produced the lowest WERs for all English,
Spanish and Italian data sets. Despite that Wav2Vec and Hu-
bert models were pretrained on 60,000 hours of English, XLSR
features still led to lower WERs. Given that a multilingual
model should contain more variations of similar phonemes, it
may be more suitable for dysarthric speech recognition which
can also vary. Results with the UA-Speech data show state-
of-the-art performance, outperforming recent studies using the
same data [11,91[29]]. Promising results were also obtained with
the PC-GITA data. Particularly, good generalization with data
from PD speakers recorded in different recording conditions.
Also, fewer errors when training on less than an hour of healthy
speech. Future work would benefit from exploring Wav2Vec
representations more thoroughly and investigating whether use-
ful information can be extracted for clinical therapy. Early de-
tection of degenerative diseases using speech representations
seems to be a promising direction for future research.
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