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Abstract

Most recent speech recognition models rely on large supervised
datasets, which are unavailable for many low-resource lan-
guages. In this work, we present a speech recognition pipeline
that does not require any audio for the target language. The only
assumption is that we have access to raw text datasets or a set
of n-gram statistics. Our speech pipeline consists of three com-
ponents: acoustic, pronunciation, and language models. Unlike
the standard pipeline, our acoustic and pronunciation models
use multilingual models without any supervision. The language
model is built using n-gram statistics or the raw text dataset. We
build speech recognition for 1909 languages by combining it
with Crúbadán: a large endangered languages n-gram database.
Furthermore, we test our approach on 129 languages across two
datasets: Common Voice and CMU Wilderness dataset. We
achieve 50% CER and 74% WER on the Wilderness dataset
with Crúbadán statistics only and improve them to 45% CER
and 69% WER when using 10000 raw text utterances.
Index Terms: low-resource speech recognition, multilingual
speech recognition, endangered languages

1. Introduction
Recently, the performance of speech recognition has witnessed
rapid improvement due to modern architectures [1, 2, 3]. Those
models typically require thousands of hours of training data for
the target language. However, there are around 8000 languages
in the world [4], the majority of which do not have any au-
dio or text datasets. There have been some attempts to reduce
the size of the training set by using pretrained features from
self-supervised learning models [5, 6]. However, such models
still rely on a small amount of paired supervised data for word
recognition. More recently, inspired by the recent success of un-
supervised machine translation [7, 8], there is some work apply-
ing the unsupervised approach to speech recognition as well [9].
Those models apply adversarial learning to automatically learn
a mapping between audio representations and phoneme units.
They can learn a phoneme recognition model using an unla-
beled audio dataset and a text dataset.

Despite the success of those recent approaches, all of these
models rely on some audio datasets of the target language (la-
beled or unlabeled), which significantly restricts the scope of
target languages. In this work, we investigate whether we can
develop speech recognition systems without requiring any au-
dio dataset or pronunciation lexicon for the target language. The
only assumption is the existence of some monolingual text or a
set of n-gram statistics for the target language. Our proposed
method consists of three components: acoustic, pronunciation,
and language models. Both acoustic and pronunciation mod-
els can be trained using supervised datasets from high-resource
languages, and then applied to the target language by taking
advantage of some linguistic knowledge. Both models can be
applied in a zero-shot learning fashion without any supervision.

Finally, we use the raw texts or n-gram statistics to create a lan-
guage model, which is then combined with the pronunciation
model to create a WFST decoder. To analyze our pipeline more
efficiently with small test sets, we also propose an approach
to decompose the observed errors into acoustic/pronunciation
model errors and language model errors.

We apply our approach to 1909 languages using Crúbadán:
a large endangered languages n-gram database and then test our
approach on 129 languages: 34 languages from the Common
Voice and 95 languages from CMU Wilderness dataset [10, 11].
On the Wilderness dataset, we achieve 50% CER (character er-
ror rate) and 74% WER (word error rate) respectively when us-
ing Crúbadán’s statistics only, and improve them to 45% CER
and 69% WER by using 10000 raw text utterances. As far as
we know, this is the first attempt to build speech recognition for
thousands of languages without audio.

2. Related Work
Most speech recognition approaches can be classified into one
of several groups depending on their data requirements. The
most common group has access to the paired supervised dataset
D = {(Xi, Yi)}Ni=1 where (X,Y ) is a paired audio and text of
an utterance. If the sizeN of the dataset is large enough, various
end-to-end models can be trained using CTC, ASG, seq2seq,
RNN Transducer, and other objectives [12, 13, 14, 15]. If the
size is small, then it would be a low-resource speech recogni-
tion in which some acoustic knowledge should be transferred
from high-resource languages [16, 17]. Self-supervised train-
ing takes advantage of another large raw speech dataset {Xj}
to learn hidden representations of speech signals, those repre-
sentations are useful to the supervised tasks and can reduce the
amount of the paired dataset [5, 6]. The semi-supervised learn-
ing approach also leverages unlabeled speech datasets or text
datasets to augment the supervision set [18, 19, 20].

Recently, unsupervised speech recognition attempts to tar-
get the dataset D = ({Xi}Ii=1, {Yj}Jj=1) where we have ac-
cess to an unlabeled raw audio set {Xi}Ii=1 and a raw text
dataset {Yj}Jj=1 [9]. The audio and text do not need to be
aligned with each other. A generator model is jointly trained
with a discriminator model. The generator model attempts to
translate audio into phonemes, while the discriminator model
attempts to distinguish between phonemes transliterated from
text and phonemes recognized from the generator. The disad-
vantage of this direction is that the model could only recognize
phonemes instead of words and it requires a phonemizer (pro-
nunciation model) for the target language, which would not be
available for most languages. Another related direction is un-
supervised speech unit discovery [21, 22], which is similar to
the self-supervised learning approach and attempts to discover
phone units from audios D = {Xi}Ii=1. This group of ap-
proaches, however, cannot emit explicit phonemes or words as
it does not have knowledge of the lexicon and language model
for the target language.
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In this work, we propose a new paradigm to focus on the
text-only dataset D = {Yj}Jj=1. While all the previous groups
require some amount of audio datasets {Xi} (paired or un-
paired) for the word recognition of the target language, we argue
this requirement can be relaxed to some extent.

3. Model
Our speech pipeline is divided into the acoustic model, pronun-
ciation model and language model. The joint probability over
speech audio X and speech text Y can be factorized as

pθ(X,Y ) =
∑
P

pam(X|P )ppm(P |Y )plm(Y ) (1)

, where P is the phoneme sequence corresponding to the text Y .
The pronunciation model ppm is typically modeled as a deter-
ministic function δpm. In our pipeline, only the language model
can be estimated from the text, both the acoustic model and
pronunciation model are approximated using zero-shot learning
or transfer learning from other high resource languages, there-
fore we denote p̂am, δ̂pm for the approximated acoustic model
and pronunciation model. The previous factorization can be ap-
proximated by

pθ(X,Y ) ≈ p̂am(X|P̂ )plm(Y ) (2)

, where P̂ = δ̂pm(Y ) is the approximated phonemes.

3.1. Acoustic Model

The acoustic model should be able to recognize phonemes of
the target languages even when the languages are unseen in
the training set. We follow a direction of recently proposed
allophone-based multilingual architectures [23, 24]. This direc-
tion attempts to recognize phonemes of an unseen language us-
ing language-independent phone representations and their map-
pings to the language-dependent phonemes. Essentially, those
architectures attempt to represent the acoustic model as follows:

p̂am(P |X) =
∑
Q

plang(P |Q)puni(Q|X) (3)

, where puni(Q|X) is a language-independent universal phone
recognition model, recognizing physical-level phone units
Q from the speech audio X . The allophone architecture
plang(P |Q) is to encode how each physical phone should be
mapped to a language-dependent phoneme. The relation be-
tween phones and phonemes is called an allophone, which is
usually encoded as a 1-n deterministic function annotated by
phonologists for each language. The mapping is easier to obtain
than the supervised dataset for low resource languages. We rely
on Allovera and PHOIBLE datasets for allophone mapping of
more than 2000 languages [25, 26]. The other model puni(Q|X)
does not have any dependency on the target language, therefore
it can be trained using high-resource languages such as English
and Mandarin. The CTC objective is used to train this acous-
tic model [12]. The conditional independence assumption in
CTC prevents the model from biasing too much towards one
specific language model (e.g: English), therefore it can be eas-
ier to apply to other low-resource languages. In our experiment,
we observe the originally proposed model [24], is not very ro-
bust when recognizing audios from different domains. To fur-
ther improve the model, instead of using the standard filterbank
features, we use self-supervised learning (SSL) features as our
frontend feature extraction [5, 6, 27].

3.2. Pronunciation Model

The pronunciation model is essentially a G2P (grapheme-to-
phoneme) model that can predict the phoneme pronunciation
given a grapheme sequence: P = δpm(Y ). For high-resource
languages, the G2P model can be either trained using a dictio-
nary or be developed using rule-based systems [28, 29]. How-
ever, the majority of the languages do not have any accessi-
ble dictionaries or rules, therefore we consider an approximated
pronunciation model δ̂pm instead. In particular, we apply a re-
cently proposed multilingual G2P model as our pronunciation
model [30]. For any target language ltarget, this G2P model se-
lects top-k nearest languages: ltopk ∈ KNN(ltarget) whose train-
ing set is available, then during the inference, it first propose k
hypothesis using each nearest language model δltopk , the models
are ensembled by combining hypothesis into a lattice to emit
the most-likely approximated sequence:

δ̂ltarget = Ensemble({δltopk |ltopk ∈ KNN(ltarget)}) (4)

The similarity metric between languages is defined to be the
shortest path of two languages on the phylogenetic tree (i.e:
language family tree). This approach enables us to approxi-
mate the pronunciation model for every language in Glottolog
database [31], which contains phylogenetic information about
7915 languages.

3.3. Language Model

For the language model, we first estimate the vocabulary V =
{w1, w2, ..., w|V |} from the raw text dataset {Yi}. For each
word wi ∈ V , its pronunciation can be approximated using the
pronunciation model and then this lexicon information can be
encoded into a lexicon graph L. The text dataset also enables
us to estimate the classical n-gram language model by counting
n-grams statistics C(w1, ..., wn). This n-gram language model
can be then encoded into a grammar graph G. Composing the
lexicon graph L and the grammar graph G as well as the CTC
topology graph H would generate a WFST-based language de-
coder HLG [32].

We realize that the text dataset requirement {Yi} can be
further relaxed as the building blocks of the HLG graph only
consist of the statistics {V,C} estimated from the text dataset.
For languages whose text dataset {Yi} is absent but {V,C} is
available, we can still proceed to build the decoder HLG. This
is common for many languages in the internet: while only a few
hundred languages are recognized as being in use for web texts
on the World Wide Web [4], there exists several large databases
collecting lexicon-related statistics for thousands of languages.
For example, Crúbadán is a database consisting of vocabulary,
bigrams, and character-trigrams statistics for around 2000 lan-
guages [33]. Employing statistics from it, we build speech
recognition systems for around 2000 languages.

3.4. Error Decomposition

Since the acoustic, pronunciation models are approximated
models, it is helpful to understand how the approximation
would impact our results. As the final observed errors also con-
tain the language model errors, we propose a framework to de-
compose the observed errors εobserved into language model errors
and other errors. To achieve this, in addition to the experiment
using the approximated models, we conduct a new set of ex-
periments using the oracle acoustic and pronunciation models
(i.e. the acoustic and pronunciation model that achieves perfect



performance), such that any recognition errors in this new ex-
periment should be attributed to the language model εlm. The
gap between the observed error εobserved and the oracle error
εlm should correspond to the errors made by the approximated
acoustic and pronunciation model εam/pm. In other words, the
observed errors can be decomposed as follows:

εobserved = εam/pm + εlm (5)

To estimate the oracle error εlm, every testing utterance is
first converted to the phoneme sequence using our pronuncia-
tion model, the phoneme sequence is then augmented with the
CTC blank labels by inserting blank labels "〈blk〉" between ev-
ery pair of phonemes. (e.g: "a b" is converted to "〈blk〉 a 〈blk〉
b 〈blk〉"). Next, the augmented sequence is converted to CTC
logits by giving an extremely high probability to each phoneme
(including blank) for every timestep. Finally, the logits is fed
into the decoder HLG to be decoded. We obtain the oracle error
εlm by comparing it against the expected word sequence. The
achieved error rate is the oracle error rate, as we assume the
pronunciation model is perfect: pronunciation in logits is per-
fectly consistent with the pronunciation in the HLG decoder.
The acoustic model is perfect as well: it assigns extremely high
probability to the “correct” phoneme.

4. Experiments
For the acoustic model, we tried 4 different models, one from
the previous literature and the newly proposed SSL-based mod-
els [24]. All the models are trained using cmn, deu, eng, fra, ita,
rus, tur, vie languages from the Common Voice dataset [10]. In
the SSL-based model, we tried three different self-supervised
learning features: HuBERT, wav2vec2, and XLSR [5, 6, 27].
All the features are extracted using s3prl framework [34]. For
every SSL model, the features from the last hidden layer were
used. Two layers of transformers are appended on top of the
pretrained features, which are then connected with the multi-
lingual architecture plang(P |Q) as proposed in the original lit-
erature [24]. The transformer layer has a 768 hidden size and
4 multi-attention heads. Other parameters follow the original
literature [24]. For the pronunciation model, we use the multi-
lingual model proposed in the previous literature and its imple-
mentation [30] 1. For the language model, we first download the
complete dataset from Crúbadán’s website [33], which results in
1909 languages after cleaning. Each language consists of sev-
eral files: unigrams, bigrams, web urls for the target language,
and character trigrams. The most relevant files are unigrams
(vocabulary) and bigrams. We provide statistics in Table 1. The
same set of information can also be extracted from raw text sets
{Yi} if we have access to them. For the WFST decoder, we
use the k2 library and adapt its icefall recipe2. We build trigram
models from texts and bigram models from Crúbadán. During
the decoding, we set the search beam size to be 20, output beam
size to be 8, min and max active states to be 30 and 10000.

To test our approach on unseen languages, we use the 34
languages from Common Voice dataset (denoted by CV) and 95
languages from CMU Wilderness corpus (denoted by WN) [11].
For the Common Voice languages, we select the subset of lan-
guages whose dataset is larger than 1000 utterances. Any lan-
guages seen in the acoustic model are excluded (i.e: cmn, deu,
eng, fra, ita, rus,tur, vie). 95 languages from Wilderness are
selected based on the top-100 MCD score, which measures the

1https://github.com/xinjli/transphone
2https://github.com/k2-fsa/icefall

Table 1: Descriptive statistics for distinct unigrams and bigram
for 1909 languages from Crúbadán database.

mean std 25% median 75%

unigram 10870 14012 837 5149 14761
bigram 29383 22087 2504 42996 50000

alignment qualities. 5 languages are excluded due to duplica-
tions and preprocess failure (i.e: gag, xsb, nah, may, pxm).

4.1. Results

We first evaluate the acoustic model using PER (phoneme error
rate). Note that our PER is only an approximation of the actual
PER as the expected phoneme sequence relies on the pronun-
ciation model, which is only an approximation. However, it
reveals many useful insights into the acoustic models. Table 2
shows the performance across 4 models. The baseline acoustic
model has around 50% PER and half of the errors are deletion
errors (e.g: /a/, /i/ are our most deleted phonemes). We find
the main causes of deletion errors are the domain mismatch and
language mismatch. To improve the robustness, we employ the
SSL-based models, which decreases the error rate by 5%. Most
of the improvement is from the deletion reduction. We find the
XLSR model, which is a multilingually pretrained model, per-
forms the best and we use it as the main model in the pipeline.

Table 2: Average results (%) of the acoustic model on all test
languages. PER is the phoneme error rate, Ins, Del, Sub are
Insertion, Deletion and Substitution Error. CV and WN denote
Common Voice and Wilderness datasets.

Acoustic Model PER Ins Del Sub
CV WN

Baseline [24] 51.7 49.2 1.02 30.2 19.7
SSL (HuBERT) [6] 49.7 44.3 1.15 23.8 20.8
SSL (wav2vec2) [5] 49.8 43.4 1.37 25.8 18.1
SSL (XLSR) [27] 47.8 42.1 1.49 24.7 19.2

Table 3: Average Performance (%) of the language model on
all testing languages under different resource conditions. CER,
WER denotes character error rate and word error rate.

Language Model CER WER
CV WN CV WN

Crúbadán Model 65.5 50.2 92.4 74.5
Text Model (1k utterances) 55.3 50.8 84.6 76.9
Text Model (5k utterances) 51.3 47.0 80.2 72.2
Text Model (10k utterances) 50.9 44.9 79.0 69.2

Table 3 shows the language model performance (using
XLSR as the acoustic model). First, we try n-gram statistics
from the Crúbadán without using any text dataset. It shows
that Crúbadán captures some character-level information even
without any text dataset: it achieves 65% and 50% CER on
two datasets. The Crúbadán WER of the Wilderness languages
is also very promising under this condition: 74.5%. Next, we
use 1k, 5k, 10k text utterances from the training set to train the
model without Crúbadán. As the training text datasets are in the

https://github.com/xinjli/transphone
https://github.com/k2-fsa/icefall


Table 4: A Welsh example from the Common Voice dataset. The
top two rows are the hypothesis (HYP) and reference (REF)
phonemes, the bottom two rows are the hypothesis and refer-
ence words. Deleted phonemes and words are highlighted.

Model Sentence

HYP kOpTXi:ðErp@nv@nk@sfOn@k@nhar@X
REF kOpe:aTjOi:jXi:ðErp@nvi:nEkEsfo:n@nk@nharaX

HYP gobeithio ch dderbyn yn gyson cynharach
REF gobeithio i chi dderbyn fy neges ffôn yn gynharach

Figure 1: The trend of CER (left) and WER (right) using dif-
ferent sizes of training text. The horizontal axis represents the
size of the text dataset. The vertical axis is the error. Each blue
circle point denotes an observed error εobserved from a particular
language in the Common Voice corpus and each orange square
point shows the oracle error εlm. An OLS estimator is applied
to all sets of points.

same domain as the test dataset, this improves the performance
significantly. With 10k text dataset, we achieve 51% and 45%
CER respectively. While we omit the result in this table, we also
investigate the effect of combining Crúbadán and text language
models together. However, it does not improve the performance
because there is a domain mismatch between two models. The
text-only language model shown in Table.3 performs the best.

To understand the language model errors, we compute the
insertion, deletion, and substitution errors. We find the dom-
inant errors are deletion and substitution. By comparing the
most common word errors and phoneme errors, we observe that
the phoneme errors have been propagated into the word errors:
the previous deletion of phonemes /a/, /i/ caused deletions of the
entire words, especially of some short words (e.g: na, ni). The
substitution error also suffers from the missing phonemes issue.
For example, the most substituted pair is (charirca, carica), it
is clear that our model failed to recognize several consonants.
Table 4 shows a typical example from the pipeline. The acous-
tic model tends to recognize fewer phones from the audio, those
phoneme deletions propagate to the language model and lead to
the word deletions.

4.2. Error Decomposition Analysis

Next, we apply the error decomposition framework to our re-
sults in Figure 1. The figure shows the trend of how the
CER/WER responds to the size of the training text dataset. Each
blue circle point on the top region represents an observed error
εobserved from the Common Voice corpus and each orange square

point on the bottom region is an oracle error εlm with our frame-
work. It shows that both errors tend to decrease as the size of
the text dataset increases, however, the oracle error has a much
sharper decreasing slop than the observed one. As we men-
tioned in the previous section, the oracle error shows the errors
from the language model and the gap between the two errors is
the error from the acoustic and pronunciation model. Based on
this assumption, the figure indicates that 30 ∼ 40% word errors
are from the language model and 40 ∼ 50% word errors are
from the acoustic model and pronunciation model; most of the
character errors are caused by the acoustic model and pronun-
ciation model.

4.3. Language Analysis

We can also interpret the results from the linguistic perspec-
tive and discuss several limitations of the pipeline. First, we
find the phonology of the target language has a crucial impact
on the PER performance. Since our acoustic model is trained
using high-resource languages (most of them, Indo-European)
and then applied to the target language, phonemes that are not
common in Indo-European languages should be difficult to rec-
ognize. For example, non-pulmonic consonants are common
in some languages (e.g: implosive consonants are widespread
in Sub-Saharan Africa) but are not typical phonemes in high-
resource languages. Another example is the tonal language,
we find the Sochiapam Chinantec language displays bad perfor-
mance: 73% PER, 75.9% CER, and 96.5% WER. This language
is a tonal language with 7 different tones. The acoustic model is
trained without tonal information and fails to distinguish tonal
contrasts (Mandarin Chinese, a tonal language, is included in
the acoustic training set, but the tonal information was not used
during the training). Orthography depth is another important
factor for acoustic performance. The pronunciation model tends
to fail more frequently when the language has a deeper orthog-
raphy (i.e. the rules to map graphemes to phonemes are compli-
cated). For instance, the Swedish language has deep orthog-
raphy, which makes the PER (67%) significantly worse than
the average PER. Furthermore, if the writing system of the tar-
get language is unknown to the pronunciation model, then the
model cannot infer its pronunciation. In our dataset, the Maldi-
vian language is written in the Thaana script, which is mostly
unknown to the pronunciation model. The error rates are 80%
PER, 81% CER and 99% WER. Finally, we observe that some
languages have relatively small gaps between CER and WER,
and others have larger gaps. For example, the Tai Dam lan-
guage has an error rate gap of less than 20%. On the other
hand, in the closely related Northern Thai language, we observe
a gap of around 40%. We find the length of a typical word is
the main cause: the average token length in Tai Dam is 3.48
characters (e.g., choi), but Northern Thai has an average token
length of 7.04 (e.g.: we-machi-warbogwad-e-nandi). We find
there is a strong correlation between the gap and the length of
word (r = 0.8015, in our experiment).

5. Conclusion
In this paper, we propose a speech recognition pipeline using
raw text or n-gram statistics, and we apply it to around 2000
languages. Our training scripts will be released for more re-
searchers to explore this direction.3

3our code will be available at https://github.com/
xinjli/asr2k
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