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Abstract
We introduce a new paradigm for single-channel target source
separation where the sources of interest can be distinguished
using non-mutually exclusive concepts (e.g., loudness, gen-
der, language, spatial location, etc). Our proposed heteroge-
neous separation framework can seamlessly leverage datasets
with large distribution shifts and learn cross-domain represen-
tations under a variety of concepts used as conditioning. Our ex-
periments show that training separation models with heteroge-
neous conditions facilitates the generalization to new concepts
with unseen out-of-domain data while also performing substan-
tially higher than single-domain specialist models. Notably,
such training leads to more robust learning of new harder source
separation discriminative concepts and can yield improvements
over permutation invariant training with oracle source selection.
We analyze the intrinsic behavior of source separation train-
ing with heterogeneous metadata and propose ways to alleviate
emerging problems with challenging separation conditions. We
release the collection of preparation recipes for all datasets used
to further promote research towards this challenging task.
Index Terms: target speech separation, semi-supervised learn-
ing, heterogeneous conditions, conditional inference

1. Introduction
As exemplified in the cocktail party problem [1], humans have
the uncanny ability to focus on a source of interest within a com-
plex acoustic scene, and may change the target of their focus de-
pending on the situation, relying on attention mechanisms that
modulate the cortical responses to auditory stimuli [2,3]. While
the field of source separation has made great strides towards
reproducing such abilities in machines, particularly with the ad-
vent of deep learning approaches, there is still a gap in terms of
the flexibility with which the target source can be determined.

Early works developed “specialist” models intended to iso-
late only a particular type of sound, such as for speech enhance-
ment [4–7] or instrument demixing [8], where the target was
determined by the training scheme and could not be changed at
test time. Later works such as deep clustering and permutation
invariant training (PIT) [9–11] focused on separating all sources
in a mixture without an a priori differentiating factor. However,
this lack of explicit bias can lead to instability [12, 13], and re-
introducing some bias, for example via fixed assignments based
on energy or speaker ID [14], may help stabilize training.

Conditioned models, in which the target source of a system
is determined based on some semantic information given as in-
put, either via a sound class (e.g., speaker ID, instrument type)
or an exemplar (e.g., reference utterance by a target speaker),
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Figure 1: Illustration of the heterogeneous target speech sepa-
ration task. Notice that speakers can be separated using any of
the semantic concepts and speaker attributes on the left.

can also benefit from the good training properties of an ex-
plicit bias while allowing some flexibility in choosing the tar-
get source at test time. Such methods can provide significant
gains over PIT for speech [15–19], music [20–22], and universal
sound source separation [23–25], but conditioned models have
so far each only considered a single type of condition looking at
extracting distinct sources based on mutually-exclusive criteria.

Arguably, the problem of sound source separation is not as
well-posed as the way it has been considered in the past. There
are many ways to “slice” an acoustic scene depending on the
application or the user’s intention, where the grouping of sounds
considered as target may vary. A first attempt in this direction
was motivated by the fact that sounds can be considered as part
of hierarchies, and a desired target may lie at various points
along such a hierarchy [26]. Here, we explore another direction,
by proposing to make the conditioned models mimic humans’
flexibility when selecting which source to attend to, by focusing
on extracting sounds based on semantic concepts and criteria of
different nature, i.e., heterogeneous, such as whether a speaker
is near or far from the microphone, being soft or loud, or speaks
in a certain language. The main contributions of this paper are:

• We introduce a novel heterogeneous target source separation
task and publicly release the associated datasets.

• We propose a simple neural network architecture which can
effectively separate target speech sources based on several
non-mutually exclusive signal characteristic conditions, often
outperforming PIT-based models with oracle assignment.

• We make several experimental discoveries: 1) heterogeneous
conditioning can help cross-domain generalization, 2) robust-
ness to non-discriminative concepts can be achieved with a
small amount of such examples without impacting the overall
conditional performance, and 3) adding extra “easy” condi-
tions can lead to better learning on more difficult conditions.
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Figure 2: Illustration of the conditional Sudo rm -rf audio sep-
aration architecture. We show the FiLM modulation which is
applied to the input y(b) of the b-th U-ConvBlock in the stack.

2. Heterogeneous Target Source Separation
2.1. Task formulation

We consider a mixture x =
∑N
j=1 sj ∈ RT of N source wave-

forms s1, . . . , sN , with T time-domain samples. In general, we
assume that there exists a signal characteristic condition C (e.g.,
the spatial location of a source) in a set C of conditions, and
a desired concept value v for that condition (e.g., far or near)
which belongs to the set Vof all discriminative concepts. Now,
given the condition C and its concept value v, we would like to
retrieve from the input mixture x the target submix sT of all
sources whose condition C matches the concept value v:

sT =
∑N
j=1δ(C(sj) = v)sj , (1)

where δ is an indicator function, and we use the same notation C
to denote a signal characteristic and the function C : RT → V

which returns the value of that characteristic for an input signal.
In this work, as an illustration, we focus on the case of

speech sources, and consider signal characteristics C in the set
C={E ,G,S,L}, where E denotes the signal-energy (with val-
ues low/high), G the gender (female/male as self-identified by
the dataset’s speakers), S the spatial location (near/far), and L
the language (English/French/German/Spanish). Thus, we can
specify a target based on a total of |V| = 2 + 2 + 2 + 4 = 10
concepts. We can encode the semantic discriminative informa-
tion for the desired concept v in a one-hot vector c = 1[v] ∈
{0, 1}|V| which has one only at the corresponding index of the
concept v, given some arbitrary ordering of V. The goal of the
task is then to train a separation model f , parameterized by θ,
which takes as input a mixture of sources x alongside a condi-
tioning vector c and estimates the target submix ŝT as follows:

ŝT = f(x, c;θ). (2)

2.2. Proposed framework

We construct a new conditional separation model based on the
efficient Sudo rm -rf default model configuration [27], which
obtains high fidelity audio reconstruction for source separation
problems with minimal memory and computational require-
ments. Specifically, we add a FiLM [28] modulation layer at
the input of each of the B U-ConvBlocks, as shown in Fig. 2.
The extra parameters for the scaling and the bias are B pairs of
matrices (Wβ ,Wγ) with size |V| × Cin, where Cin = 512 is
the number of intermediate channels in each processing block.
Notably our proposed method, could theoretically scale up to
an infinite amount of concepts since there is a dedicated 512-
dimensional parameterization for each one-hot representation.
We set the network f to produce estimates ŝT and ŝO for sT
and the submix sO of other (non-target) sources, enforcing
ŝT + ŝO = x = sT + sO via a mixture consistency layer [29].

We assume that we have access to a set of domains/datasets
D =

⋃
j Dj , from where we sample clean sources and their

Table 1: Data collection metadata.
Metadata WSJ SLIB SVOX

Conditions C {E,G} {E,G,S} {E,L,S}

Room height (m) - U [2.6, 3.5] U [2.75, 3.25]
Room length (m) - U [9.0, 11.0] U [8.0, 10.0]
Room width (m) - U [9.0, 11.0] U [8.0, 10.0]
RT 60 (sec) - U [0.3, 0.6] U [0.4, 0.6]
Microphone location - Center Center
Source height (m) - U [1.5, 2.0] U [1.6, 1.9]
Far field distance (m) - U [1.7, 3.0] U [1.5, 2.5]
Near field distance (m) - U [0.2, 0.6] U [0.3, 0.5]

Number of test recordings 1,770 2,620 11,083
Number of test speakers 18 40 294
Number of train recordings 8,769 132,553 124,937
Number of train speakers 101 1172 2347
Number of val recordings 3,557 2,703 10,244
Number of val speakers 101 40 279

semantic concepts to train our model by minimizing the l1 loss:
Lθ = |̂sT − sT|+ |̂sO − sO|, ŝT, ŝO = f(x, c;θ),

x = s1 + s2, si ∼ D, D ∈ D, c ∼ P (v), v ∈ V,
(3)

where the target submix sT is synthetically constructed as
shown in Eq. 1 given the sampled conditioning vector c and the
sources si. Notice that the sampling procedures for c and si are
independent and thus, the same mixture x can heterogeneously
disentangled in multiple ways. We argue that controlling the
sampling prior of a certain concept P (v) is key to robust learn-
ing as well as out-of-domain generalization.

3. Experimental Framework
3.1. Data collections

To show how heterogeneous conditional training behaves in
various cross-domain training schemes with large distribution
shifts (anechoic vs reverberant) as well as incorporate multi-
ple conditions, we synthesize new conditioning datasets using
Pyroomacoustics [30]. Generated mixtures are based on single-
speaker utterances from the following three data collections.
Wall Street Journal (WSJ): Anechoic English utterances from
the WSJ0 corpus [31] following the same clean audio extraction
and partitioning recipe as in the widely used WSJ0-2mix [9].
Spatial LibriSpeech (SLIB): Synthetically reverberant ver-
sions of {train-360|dev|test}-clean LibriSpeech [32] partitions.
Spatial LibriSpeech (SVOX): We use clean speech record-
ings available from the multi-lingual Voxforge [33] data collec-
tion. We use all available files under “English” (53%), “French”
(15%), “German” (16%), and “Spanish” (16%). Since there is
no specified partitioning, we randomly split the speakers at a
ratio of 8:1 :1, for train, validation, and test, respectively.

3.2. Mixtures and conditions generation configurations

All mixture datasets are synthetically generated on-the-fly (see
the uniform sampling range for each parameter in Table 1), with
fixed random seeds for the reproducibility of each partition. The
exact data preparation recipes are available online.

For each training epoch, we generate 20,000 new on-the-fly
mixtures consisting of two speakers, while for validation and
testing we have a fixed-seed generation process of 3,000 mix-
tures per separation concept v ∈ V. For each mixture, we sam-
ple a domainD ∈ D and a valid separation concept for the cho-
sen domain D, according to a specified prior v ∼ P (v). Then,
we sample from D two sources which can be separated using
the concept value v, and mix them with a uniformly sampled
overlap between [75, 100]%. For cross-domain training we al-
ways assume equal prior among the data collections and create
only single-domain mixtures. In the case of in- or cross-domain



training with the WSJ and SVOX datasets, we create mixtures
with an input SNR in U [0, 5] and U [0, 2.5], respectively. The
SLIB dataset is always used in cross-domain training with either
WSJ or SVOX and follows the corresponding input SNR distri-
bution. In order to magnify the domain mismatch for the WSJ-
SLIB cross-domain training pair, we assume that SLIB mixtures
always contain one near-field and one far-field speaker. On the
contrary, when performing cross-domain training with SVOX,
we assume that the prior of sampling near/near-field, far/far-
field, and near/far-field utterance combinations is equal (except
when conditioning on the spatial location S, which needs the
sources to be spatially separable, i.e., S(s1) 6= S(s2)). Con-
sequently, we found that SVOX, which is also male-dominated,
can become particularly challenging for the language condition-
ing, where all spatial location combinations are present.

Our method allows us to also create degenerate conditions
where the constituent sources map to the same concept value for
the sampled condition C(s1) = C(s2), thus the target submix
would become either sT = x or sT = 0. Except in Section 4.3
where we provide an in-depth analysis of how the prior of these
degenerate examples alters the operating point of our model,
we always assume that during training the sampled sources can
be separated using the concept v. All source audio files have a
4-second length and are downsampled to 8 kHz.

3.3. Experimental details

Model: We use a conditional Sudo rm -rf model (see Section
2.2) with B = 16 processing blocks. For efficient processing,
we set the encoder and decoder filter lengths to 41 taps with a
hop size of 20 time-domain samples. The number of learnable
encoder/decoder bases and the number of intermediate channels
are set to 512. For all other parameters, we use the default val-
ues from the unconditional Sudo rm -rf model [27]. This setup
leads to only a slight increase in trainable parameters compared
to the unconditional version, from 9.66→ 9.84 millions.
Training: The conditional models minimize the l1 loss defined
in Eq. (3) while the unconditional models are optimizing the
conventional PIT [9–11] l1 loss after computing the optimal as-
signment of the estimates to the target sources. We train all of
the models using a batch size of 6 using the Adam [34] opti-
mizer with an initial learning rate of 10−3, halving it every 20
epochs. We empirically found that 120 epochs is enough train-
ing time for both PIT and conditional models to converge.
Evaluation: We evaluate the source reconstruction fidelity of
all the models at 120 epochs using the median scale-invariant
signal to distortion ratio (SI-SDR) [35] between the estimate
ŝT and the ground-truth target sT, as shown below:

SI-SDR(ŝT, sT) = −20 log10(‖αsT‖/‖αsT−ŝT‖), (4)

where α = s>T ŝT/‖ŝ‖2 is a scalar which makes the metric in-
variant to scaling. The oracle PIT models are evaluated with
SI-SDR but using the best possible assignment of the estimated
sources to the target waveform. For the cases where the target
submix is zero, sT = 0, thus, sO = x, we report the non-trivial
SI-SDR(ŝO, sO) which equivalently measures the reconstruc-
tion of the mixture at the non-target slot and is a meaningful
metric since we enforce mixture consistency at the output of
our models, namely x = ŝT + ŝO. We want to underline that
although all of our experiments display a similar behavior under
the mean aggregation, we choose to report the median because
of the susceptibility of SI-SDR to outliers. This metric instabil-
ity becomes even more evident for conditional models that need
to perform combined source ordering and separation.

Table 2: Median SI-SDR (dB) results of our proposed heteroge-
neous conditioning method on gender (G), spatial location (S),
and language (L) on the SVOX and SLIB dataset test partitions,
for various combinations of training domains (D) and condi-
tions (C). We also show PIT unconditional models with oracle
target selection. ∗ indicates specialist systems which are each
trained and tested on a given pair of domain and condition.

Train condition priors (%) Test conditions

Training
method

SLIB SVOX SLIB SVOX

|D| |C| G S L S G S L S

Conditioned∗ 1 1 100 100 100 100 11.4 11.2 2.5 9.1

PIT (Oracle)∗ 1 1 100 100 100 100 11.0 10.7 4.6 7.5

In-domain
heterogeneous 1 2 50 50 10.9 10.7 −0.5 8.6

50 50 −0.6 6.2 3.2 6.8

PIT (Oracle) 1 2 50 50 9.5 8.9 5.6 6.8
50 50 5.2 4.5 4.6 5.6

Cross-domain
heterogeneous

2 2

50 25 25 −1.4 9.2 4.3 8.2
25 25 50 9.9 9.9 −0.7 9.0
50 50 10.1 8.9 −0.9 9.0

50 50 −0.5 8.4 4.3 6.8

2 3 25 25 25 25 8.9 8.7 4.4 7.8

PIT (Oracle) 2 3 25 25 25 25 8.0 7.3 5.5 6.5

4. Results and Discussion
4.1. Cross-domain multi-conditioning

Table 2 compares the proposed heterogeneous framework with
a system using PIT training and oracle speaker selection on the
SLIB and SVOX datasets. For the specialist systems (annotated
with ∗), which are trained to focus on a single signal charac-
teristic, the conditioned models outperform their PIT counter-
parts with oracle selection for all conditions except SVOX lan-
guage, likely because of the difficulty of simultaneously learn-
ing a harder concept like language and separating under chal-
lenging recording conditions. We also note only a small drop
in performance between the specialist and in-domain hetero-
geneous models, meaning a single model can learn to jointly
perform targeted separation based on multiple signal character-
istics. In addition, the most general multi-condition and multi-
domain pre-trained network almost always outperforms uncon-
ditional separation with oracle source assignment (last 2 rows).
Finally, heterogeneous training can aptly perform domain adap-
tation (see cross-domain heterogeneous rows), since learning
spatial conditioning appears to work well for SLIB when trained
using spatial labels only for the SVOX data, and vice-versa.

4.2. Learning to generalize with bridge conditioning

Table 3 further explores domain adaptation, but in more severe
conditions, as WSJ is anechoic and SLIB is reverberant. The
proposed heterogeneous training method achieves 7.1 dB SI-
SDR for the gender conditioned mixtures on SLIB, even though
no SLIB gender-conditioned mixtures were used during train-
ing, compared to 5.8 and 4.2 dB when seeing no in-domain
SLIB training data at all. We ablate the benefit of the proposed
approach across two dimensions. First, we investigate the im-
portance of having a “bridge” condition (here, the signal-energy
characteristic E), which is a common signal characteristic used
to train the model across domains. Removing the bridge con-
dition leads to a performance drop in SLIB gender conditioned
cases from 7.1 to 5.5 dB. Second, we evaluate the importance
of the bridge condition concept to be as discriminative as pos-
sible. If the signal-energy bridge condition includes ambigu-
ous energy mixtures (e.g., sources mixed at ≈ 0 dB which do
not contain a clearly louder speaker), performance on SLIB’s



Table 3: Test median SI-SDR (dB) results for gender (G) and
signal-energy (E) conditioning on WSJ and SLIB datasets with
different cross-domain training seen conditions. “Exclude amb.
E cases” indicates exclusion of training with ambiguous cases
in E conditions: when sampling an energy conditioning vector
(c = 1[E(s1)]), we only mix sources with a discriminative en-
ergy gap using a random input SNR of U [1, 5]dB. When this is
not enforced, input SNR is sampled from U [0, 5]dB.

Train condition priors (%) Test conditions

Training
method

WSJ SLIB WSJ SLIB

G E G E G E G E

Proposed 25 25 50 13.3 12.4 7.1 8.8

(-) Bridge condition 50 50 14.5 7.4 5.5 9.2

(-) Exclude amb. E cases 25 25 50 13.0 11.8 6.2 8.4

(-) In-domain data 100 17.3 −2.4 5.8 −2.3
50 50 15.2 14.3 4.2 3.0

PIT (Oracle)* 100 100 100 100 17.3 13.6 10.9 10.2

PIT (Oracle) 25 25 25 25 12.9 11.9 9.3 8.5

gender-conditioned test set drops from 7.1 to 6.2 dB.

4.3. Learning from degenerate conditions

A heterogeneous target speech separation model allows a user
to select the signal characteristic most relevant for isolating
the desired speaker in a specific mixture. However, to make
a truly robust system, our model should still behave as expected
when the query is a degenerate, meaning that the target for a
given query is a zero waveform sT = 0 (e.g., we condition on
“French” and the mixture contains only “English” speakers), or
when the query matches all sources in the mixture itself. To do
so, we control the prior distribution for a concept P (v) to be
non-discriminative, where C(s1) = C(s2). To the best of our
knowledge, shifting the operating point for controlling the ro-
bustness of separation systems has only been studied for uncon-
ditional separation models [36] and a few works have consid-
ered degenerate conditions in target speech extraction but with-
out thoroughly investigating the influence on performance of
the ratio of such conditions in the training data [37,38]. Because
separating degenerate conditions as a task by itself is trivial, i.e.,
the target is either silence or the mixture, such samples can eas-
ily saturate the loss function during training. Figure 3 shows
the trade-off between the percentage of degenerate gender con-
dition cases used during training with WSJ and the performance
on various conditioning tasks on WSJ test sets. We evaluate the
performance on cases where the concept is discriminative (top-
panel) and non-discriminative (bottom panel). We see that in-
cluding no degenerate causes the system to fail on same gender
mixtures, but including even 1% degenerate examples during
training degrades the performance for cross-gender mixtures.
For this dataset, there appears to be a sweet-spot when training
with 0.4% degenerate condition examples.

4.4. Robust learning of new concepts using more conditions

As shown in Table 2, SVOX conditioned on language has the
lowest SI-SDR scores, possibly because we have four possible
languages, thus, there is a higher prior probability of picking a
speaker with the incorrect language. In Fig. 4, we explore how
adding an easier signal characteristic, spatial location S, im-
proves performance on the more difficult language condition-
ing L. Surprisingly, the best performance for language condi-
tioning is achieved when only 20% of the training mixtures are
conditioned usingL and 80% are conditioned using S. Unfortu-
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Figure 3: Median SI-SDR performance on the WSJ test set for
various conditions when training with a static prior of sampling
an energy condition vector P (c = 1(E(s1))) = 50% and
sweeping through the percentage of degenerate gender condi-
tioning. In essence, the leftmost points correspond to training
a model with only easy cross-gender mixtures whereas as we
move towards the rightmost points, the percentage of the degen-
erate gender conditioning with same-gender inputs increases.
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Figure 4: Evaluation of the median SI-SDR performance on
the SVOX test set for language and spatial conditioning when
training with different priors of the input conditional vectors.
From left to right we increase the amount of the harder lan-
guage conditioning P (c = 1(L(s1))) : 0 → 1 and (inversely
P (c = 1(S(s1))) : 1 → 0 for the complementary easier spa-
tial conditioning). Note that the best model for the harder lan-
guage condition is not the one trained solely for this task.

nately, the inverse relationship does not hold, i.e., including the
more difficult condition L negatively impacts performance for
the easier condition S. We suspect this is due to model param-
eters that are unrelated to the conditioning, such as the learned
encoder and decoder receiving large gradient updates for cases
when the incorrect language is chosen, which may cause them
to be less effective for speech separation in general. Mitigating
this issue is an important topic of future work.

5. Conclusion
In this paper, we have introduced the heterogeneous target
source separation task based on several non-mutually exclusive
signal characteristic conditions. We have experimentally shown
that the proposed heterogeneous condition training framework
provides benefits in terms of domain generalization and has the
ability to leverage “easy” conditions to facilitate training with
more difficult concepts. Heterogeneous conditioning can be
made robust to degenerate cases and often performs better than
unconditional models with oracle source assignment. In the fu-
ture, we plan to extend our method to incorporate a variable



number of speakers and training with self-supervised schemes.

6. References
[1] E. C. Cherry, “Some experiments on the recognition of speech,

with one and with two ears,” J. Acoust. Soc. Am., vol. 25, no. 5,
pp. 975–979, 1953.

[2] J. B. Fritz, M. Elhilali, S. V. David, and S. A. Shamma, “Auditory
attention—focusing the searchlight on sound,” Current opinion in
neurobiology, vol. 17, no. 4, pp. 437–455, 2007.

[3] N. Mesgarani and E. F. Chang, “Selective cortical representation
of attended speaker in multi-talker speech perception,” Nature,
vol. 485, no. 7397, pp. 233–236, 2012.

[4] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study
on speech enhancement based on deep neural networks,” IEEE
Signal Process. Lett., vol. 21, no. 1, pp. 65–68, 2014.

[5] F. J. Weninger, J. R. Hershey, J. Le Roux, and B. Schuller, “Dis-
criminatively trained recurrent neural networks for single-channel
speech separation,” in Proc. GlobalSIP, Dec. 2014, pp. 577–581.

[6] H. Erdogan, J. Hershey, S. Watanabe, and J. Le Roux, “Phase-
sensitive and recognition-boosted speech separation using deep
recurrent neural networks,” in Proc. ICASSP, Apr. 2015, pp. 708–
712.

[7] D. Wang and J. Chen, “Supervised speech separation based on
deep learning: An overview,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 26, no. 10, pp. 1702–1726, 2018.

[8] A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar,
and T. Weyde, “Singing voice separation with deep U-Net convo-
lutional networks,” in Proc. ISMIR, Oct. 2017, pp. 23–27.

[9] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clus-
tering: Discriminative embeddings for segmentation and separa-
tion,” in Proc. ICASSP, 2016, pp. 31–35.

[10] Y. Isik, J. Le Roux, Z. Chen, S. Watanabe, and J. R. Hershey,
“Single-channel multi-speaker separation using deep clustering,”
in Proc. Interspeech, Sep. 2016, pp. 545–549.

[11] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation invari-
ant training of deep models for speaker-independent multi-talker
speech separation,” in Proc. ICASSP, Mar. 2017, pp. 241–245.

[12] M. Yousefi, S. Khorram, and J. H. Hansen, “Probabilistic per-
mutation invariant training for speech separation,” in Proc. Inter-
speech, Sep. 2019, pp. 4604–4608.

[13] S.-F. Huang, S.-P. Chuang, D.-R. Liu, Y.-C. Chen, G.-P. Yang, and
H.-y. Lee, “Stabilizing label assignment for speech separation by
self-supervised pre-training,” in Proc. Interspeech, Aug. 2021, pp.
3056–3060.

[14] G.-P. Yang, S.-L. Wu, Y.-W. Mao, H.-y. Lee, and L.-s. Lee, “In-
terrupted and cascaded permutation invariant training for speech
separation,” in Proc. ICASSP, May 2020, pp. 6369–6373.

[15] M. Delcroix, K. Zmolikova, K. Kinoshita, A. Ogawa, and
T. Nakatani, “Single channel target speaker extraction and recog-
nition with speaker beam,” in Proc. ICASSP, Apr. 2018, pp. 5554–
5558.

[16] T. Ochiai, M. Delcroix, K. Kinoshita, A. Ogawa, and T. Nakatani,
“A unified framework for neural speech separation and extrac-
tion,” in Proc. ICASSP, May 2019, pp. 6975–6979.

[17] Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. Her-
shey, R. A. Saurous, R. J. Weiss, Y. Jia, and I. L. Moreno, “Voice-
Filter: Targeted voice separation by speaker-conditioned spec-
trogram masking,” in Proc. Interspeech, Sep. 2019, pp. 2728—
-2732.

[18] X. Xiao, Z. Chen, T. Yoshioka, H. Erdogan, C. Liu, D. Dimitri-
adis, J. Droppo, and Y. Gong, “Single-channel speech extraction
using speaker inventory and attention network,” in Proc. ICASSP,
May 2019, pp. 86–90.

[19] Z. Chen, X. Xiao, T. Yoshioka, H. Erdogan, J. Li, and
Y. Gong, “Multi-channel overlapped speech recognition with lo-
cation guided speech extraction network,” in Proc. SLT, Dec.
2018, pp. 558–565.

[20] P. Seetharaman, G. Wichern, S. Venkataramani, and J. Le Roux,
“Class-conditional embeddings for music source separation,” in
Proc. ICASSP, May 2019, pp. 301–305.

[21] G. Meseguer-Brocal and G. Peeters, “Conditioned-U-Net: Intro-
ducing a control mechanism in the U-Net for multiple source sep-
arations,” in Proc. ISMIR, Nov. 2019, pp. 159–165.

[22] O. Slizovskaia, G. Haro, and E. Gomez Gutierrez, “Condi-
tioned source separation for musical instrument performances,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 29, pp.
2083–2095, 2021.

[23] E. Tzinis, S. Wisdom, J. R. Hershey, A. Jansen, and D. P. El-
lis, “Improving universal sound separation using sound classifica-
tion,” in Proc. ICASSP, May 2020, pp. 96–100.

[24] T. Ochiai, M. Delcroix, Y. Koizumi, H. Ito, K. Kinoshita, and
S. Araki, “Listen to what you want: Neural network-based uni-
versal sound selector,” in Proc. Interspeech, Oct. 2020, pp. 1441–
1445.

[25] Y. Okamoto, S. Horiguchi, M. Yamamoto, K. Imoto, and
Y. Kawaguchi, “Environmental sound extraction using ono-
matopoeia,” arXiv preprint arXiv:2112.00209, 2021.

[26] E. Manilow, G. Wichern, and J. Le Roux, “Hierarchical musical
source separation,” in Proc. ISMIR, Oct. 2020, pp. 376–383.

[27] E. Tzinis, Z. Wang, X. Jiang, and P. Smaragdis, “Compute and
memory efficient universal sound source separation,” Journal of
Signal Processing Systems, vol. 94, no. 2, pp. 245–259, 2022.

[28] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville,
“FiLM: Visual reasoning with a general conditioning layer,” in
Proc. AAAI, Feb. 2018, pp. 3942–3951.

[29] S. Wisdom, J. R. Hershey, K. Wilson, J. Thorpe, M. Chi-
nen, B. Patton, and R. A. Saurous, “Differentiable consistency
constraints for improved deep speech enhancement,” in Proc.
ICASSP, May 2019, pp. 900–904.

[30] R. Scheibler, E. Bezzam, and I. Dokmanić, “Pyroomacoustics: A
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